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Abstract

We develop a family of inexpensive discretization schemes for diffusion problems
on generalized polyhedral meshes with elements having non-planar faces. The ma-
terial properties are described by a full tensor. We also prove super-convergence for
the scalar (pressure) variable under very general assumptions. The theoretical results
are confirmed with numerical experiments. In the practically important case of logi-
cally cubic meshes with randomly perturbed nodes, the mixed finite element with the
lowest order Raviart-Thomas elements does not converge while the proposed mimetic
method has the optimal convergence rate.

1 Introduction

Tetrahedral and structured hexahedral meshes have been used for decades in the majority
of engineering simulations; they are relatively easy to generate and there exists an enor-
mous repository of numerical methods designed for these meshes. Nowadays, a growing
number of complex simulations show advantage of using polyhedral meshes. For example,
in the simulation of flow through a water jacket of an engine [14], the results obtained on a
polyhedral mesh are more accurate than the results obtained on a tetrahedral mesh with a
comparable number of elements. In oil reservoir simulations, the polyhedral mesh topology
offers unlimited possibilities: elements can be automatically joined, split, or modified by
introducing additional points, edges and faces to model complex geological features. Unfor-
tunately, most of the existing numerical methods cannot be extended to polyhedral meshes,
especially to meshes with elements having non-planar faces. This includes the practically
important case of logically cubic meshes with randomly perturbed nodes.
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In this paper we consider a diffusion problem, which appears in computational fluid
dynamics, heat conduction, radiation transport, etc., and develop a family of simple in-
expensive numerical schemes. This paper continues our analysis of the new discretization
methodology that we began in [5]. The methodology follows the general principle of the
mimetic finite difference (MFD) method — to mimic the essential underlying properties
of the original continuum differential operators such as the conservation laws, solution
symmetries, and the fundamental identities and theorems of vector and tensor calculus
[7, 11, 12, 4, 6] (see also the book [15] and the references therein).

The mixed form of our diffusion problem is

~F = −K grad p, div ~F = b, (1.1)

where the first equation is the constitutive equation relating the scalar function p (pressure

in flow simulations) to the flow field ~F and the second one is the mass conservation law.
The material properties are described by the full symmetric tensor K, and b is the source
function. For this problem, the MFD method mimics the Gauss divergence theorem, the
symmetry between the continuous gradient and divergence operators, and the null spaces
of these operators. Therefore, it produces a discretization scheme which is symmetric and
locally conservative.

The MFD method developed in [4] (the old method) uses one degree of freedom per
element to approximate the pressure and one degree of freedom per mesh face (the av-
erage normal component of the flow) to approximate the flow field. The same degrees
of freedom are used in the mixed finite element method on tetrahedral and hexahedral
meshes. We demonstrate with numerical experiments that both methods lack convergence
on generalized polyhedral meshes.

The MFD method developed in [5] (the new method) uses three degrees of freedom
(three average flow components) to approximate the flow field on non-planar faces. We
proved that this recovers the optimal convergence rate on generalized polyhedral meshes,
thus making our discretization methodology appealing in practical applications. When
mesh elements are regular polyhedra, the new MFD method is reduced to the old one.
When the element faces are strongly curved, the extra degrees of freedom allow the new
method to succeed and perform much better than other methods. Moreover, we prove that
the pressure super-converges (with an O(h2) rate) under very general assumptions. This
result was already observed experimentally in the case of flat faces, but it was not proved.
Here we prove it for both flat and curved faces.

The outline of the paper is as follows. In Section 2, we present the mimetic finite
difference method on generalized polyhedral meshes. In Section 3, we develop a family
of efficient (inexpensive and easy-to-code) numerical schemes. In Section 4, we prove the
super-convergence result for the scalar variable. In Section 5, the theoretical results are
confirmed with numerical experiments on logically cubic and generalized polyhedral meshes.

2 A mimetic finite difference method

To simplify the presentation, we consider the homogeneous Dirichlet boundary value prob-
lem. Other types of boundary conditions are naturally embedded in the mimetic method-
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ology [10].
Let Ω ∈ <3 be a domain with a Lipschitz continuous boundary. Furthermore, let Ωh

be a non-overlapping conformal partition of Ω into simply-connected generalized polyhedral
elements. The generalized polyhedral element is, roughly speaking, the image of a poly-
hedral element under a bi-Lipschitz mapping, and can be thought as a “polyhedron” with
possibly non-planar faces. Some basic assumptions of shape regularity are necessary to
prove convergence estimates [5]; however most of these assumptions are not required until
Section 3 and will be discussed there. To simplify the presentation, we assume that the
tensor K is constant inside each mesh element but may strongly vary across mesh faces.
We also assume that K is strongly elliptic, that is there exist two positive constants κ∗ and
κ∗ such that

κ∗‖v‖2 ≤ ‖K1/2v‖2 ≤ κ∗‖v‖2 ∀v ∈ <3, (2.1)

where ‖ · ‖ denotes the Euclidean norm.
The first step of the MFD method is to specify the degrees of freedom for the primary

variables p and ~F which we shall refer to as the pressure and the flow, respectively. With
a common abuse of language we shall often refer to ~F as the velocity field as well.

We consider the space Qh of discrete pressures that are constant on each element E. For
q ∈ Qh, we denote by qE its value on E. The number, NQ, of discrete pressure unknowns
is equal to the number of mesh elements.

In order to introduce the space Xh of discrete velocities we have first to define, on each
face of the decomposition, a reference system. For that, for every element E and for each
face e of E we consider the unit outward normal ne

E, which varies continuously on e. Thus,
we can define the average normal vector ñe

E as

ñe
E =

1

|e|

∫

e

ne
E dΣ, (2.2)

where |e| denotes the area of e. Later, we shall need the unit vector

ae,3
E =

ñe
E

‖ñe
E‖

.

It is not difficult to see that ‖ñe
E‖ ≤ 1 and equality is reached if and only if e is planar. It is

also clear that if E1 and E2 are two elements having the face e in common then ñe
E1

= −ñe
E2

.

The same is obviously true for ae,3
E1

= −ae,3
E2

.
Then we associate to each face e two additional unit vectors ae,1 and ae,2 that are

orthogonal to each other and to the vector ñe
E. Note that (in contrast to ae,3

E that points
in the outward direction to E) the two vectors ae,1 and ae,2 depend on the face e but not
on the element E.

The space Xh of discrete velocities is then defined as follows. To every element E
and to every face e of E, we associate a constant vector Fe

E . We will now make precise
the continuity assumptions on our discrete velocity field. For this, we need to distinguish
between moderately curved faces and strongly curved ones.

(M1) (Moderately and strongly curved faces). Let σ∗ be a constant independent of the
partition. Then, we say that the face e of the element E is moderately curved if at
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every point of e we have
‖ne

E − ñe
E‖ ≤ σ∗ |e|1/2. (2.3)

Otherwise, we say that the face e is strongly curved.

We impose the following continuity of the face-based velocity unknowns: we assume
that for each face e, shared by two generalized polyhedrons E1 and E2, we have

Fe
E1

· ñe
E1

= −Fe
E2

· ñe
E2

. (2.4)

Moreover, we assume that on strongly curved faces we have the full continuity of the discrete
velocity vector. This means that together with (2.4) we also have

Fe
E1

· ae,i = Fe
E2

· ae,i, i = 1, 2, (2.5)

where the unit vectors ae,1 and ae,2 are the ones chosen above.
We denote the vector space of face-based velocity unknowns by Xh. The number, NX ,

of our discrete velocity unknowns is equal to three times the number of boundary faces plus
six times the number of internal faces. In our theoretical discussion, we shall consider Xh

as the subspace of <NX which verifies (2.4) on all faces and (2.5) on strongly curved faces.
On moderately curved faces, only the normal component of Fe

E is subject to the continu-
ity requirements, and the other two components are treated as internal degrees of freedom
and are eliminated during the assembly process by static condensation. Hence, in the final
matrix, after static condensation, the total number of velocity unknowns equals the total
number of moderately curved faces, plus three times the number of strongly curved faces.

The second step of the MFD method is to define suitable inner products in the discrete
spaces. In the space Qh, the inner product is almost straightforward:

[p, q]Qh =
∑

E∈Ωh

pE qE|E|, (2.6)

where |E| is the volume of E. In the space Xh, the inner product is a sum of elemental
inner products [F, G]E defined for every element E in Ωh. Let FE be the restriction of
F ∈ Xh to element E. Furthermore, let kE be the total number of faces in E, so that
the total number of scalar components of FE and GE is `E = 3kE . We denote them by
{FE}1, ..., {FE}`E

and {GE}1, ..., {GE}`E
, respectively. For every positive integer number

r, we define two unique integer numbers α(r) and β(r) such that

r = 3α(r) + β(r), α(r) ≥ 0, 1 ≤ β(r) ≤ 3.

Then, we say that {FE}r is associated with a face e
α(r)
E and a unit vector a

eα(r),β(r)

E (hereafter,

we shall write a
(r)
E to simplify the notation).

Let us assume that we are given (for each E) a symmetric positive definite `E × `E

matrix ME. Then, we set

[F, G]E =

`E∑

r,s=1

ME,s,r {FE}s {GE}r. (2.7)
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Here and in the sequel, ME,s,r indicates the (s, r) entry of the given matrix ME . From
(2.7), we can easily construct the inner product in Xh by setting

[F, G]Xh =
∑

E∈Ωh

[F, G]E ∀F, G ∈ Xh. (2.8)

Some minimal approximation properties for the scalar product (2.7) are required, that
make the construction of the matrix ME a non-trivial task. We formulate and analyze
these conditions in the next section.

The third step of the MFD method is to discretize the divergence operator. For each G
in Xh, we define DIVh G as the element of Qh such that

(DIVh G)E :=
1

|E|

kE∑

s=1

Ges

E · ñes

E |es|. (2.9)

Note that (2.9) is a discrete version of the Gauss divergence theorem.
The fourth step of the MFD method is to define the discrete flux operator, Gh, as the

adjoint to the discrete divergence operator, DIVh, with respect to the inner product (2.8),
i.e.

[F, Gh p]Xh = [p, DIVh F]Qh , ∀p ∈ Qh ∀F ∈ Xh. (2.10)

Using the discrete flux and divergence operators, the continuum problem (1.1) is discretized
as follows:

DIVh Fh = b, Fh = Ghph, (2.11)

where b ∈ Qh is the vector of mean values of the source function b. This completes the
derivation of the MFD method.

3 A family of accurate scalar products

The choice of the matrix ME in the inner product (2.7) is not unique and every choice one
makes will result in a new MFD method. In this section, we describe a family of acceptable
matrices ME . Recall our assumption that the tensor K has a constant value inside each
mesh element E, which we denote by KE. To simplify the notation, we omit the subscript
E unless it becomes necessary to avoid confusion.

3.1 Matrix algebraic equation

For every vector-valued function ~G ∈ (H1(Ω))3, we define GI ∈ Xh as follows. To define
the components of (GI)e

E in the three orthogonal directions, we set

(GI)e
E · ae,3

E :=
1

|e| ‖ñe
E‖

∫

e

~G · ne
EdΣ and (GI)e

E · ae,i :=
1

|e|

∫

e

~G · ae,idΣ, (3.1)

where i = 1, 2. If ~G is continuous across the interior mesh faces, it is easy to see that the
resulting vector GI will satisfy the continuity conditions (2.4) and (2.5). Hence GI ∈ Xh.

We begin our analysis with two conditions on the inner product (2.7) that are sufficient
for getting a convergent MFD method [4].
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(S1) There exist two positive constants s∗ and S∗ such that, for every element E, we have

s∗|E|
kE∑

s=1

|Ges

E |2 ≤ [G, G]E ≤ S∗|E|
kE∑

s=1

|Ges

E |2 ∀G ∈ Xh. (3.2)

(S2) For every element E, every linear function q1 on E, and every G ∈ Xh, we have

[(K∇q1)I , G]E +

∫

E

q1 (DIVhG)E dV =

∫

∂E

q1 GE · nE dΣ. (3.3)

Assumption (S1) states that the matrix ME is spectrally equivalent to the scalar matrix
|E| I`E

where I`E
is the `E × `E identity matrix. In practice, the constants s∗ and S∗ are

expected to depend only on the skewness of the mesh elements and on the tensor K.
Assumption (S2) is the discrete Gauss-Green formula with the constant velocity K∇q1.

Since DIVhG is a constant, the second term in (3.3) can be easily computed. Also, note
that all terms in (3.3) are linear functionals of q1. For each q1, this assumption results in
a system of linear equations where the unknowns are the coefficients of the matrix ME .

Taking q1 = 1 in (3.3), we get the formula for the discrete divergence operator. As we
obviously expect frame invariance, we use this freedom and, for every element E, we set the
origin in center of mass of E, which simplifies the construction of the matrix ME . Thus,
Assumption (S2) can be replaced by the following one.

(S2′) For every element E with center of mass at the origin, for each i = 1, 2, 3, and for
each s = 1, . . . , `E , the `E × `E matrix ME satisfies,

`E∑

r=1

ME,s,r{(K∇xi)
I}r =

∫

eα(s)

xi a
(s) · nE dΣ, (3.4)

where (x1, x2, x3) are the Cartesian coordinates.

We continue by pointing out the Gauss-Green formula for linear functions xi and xj:
∫

∂E

(K∇xi) · nE xj dΣ =

∫

E

K∇xi · ∇xj dV = |E|Ki,j . (3.5)

If we further introduce the `E × 3 matrices R and D by

Rs,i =

∫

eα(s)

a(s) · nE xi dΣ and Ds,i = {(K∇xi)
I}s, (3.6)

where s = 1, 2, . . . , `E and i = 1, 2, 3, then the identity (3.5) becomes

RT D = |E|K, (3.7)

implying, among other things, that both matrices D and R have full rank 3. Using (3.6),
Assumption (S2′) thus becomes

MED = R. (3.8)

Next, we shall construct ME as the sum of two positive symmetric semi-definite matrices,
ME = M0 + M1, where M0 satisfies (3.8) and M1D = 0.
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Lemma 3.1 Let R be given by (3.6). Then, the symmetric and positive semi-definite
matrix

M0 ≡
1

|E|RK−1RT (3.9)

satisfies (3.8).

Proof. From (3.7) and (3.8) we have M0D =
1

|E|RK−1RT D = R. �

Since the matrix M0 is only positive semi-definite, assumption (S1) does not hold.
The following result shows how M0 can be completed to meet the positive definiteness
requirement.

Theorem 3.2 Let C be an `E × (`E − 3) matrix whose `E − 3 columns span the null space
of the full rank matrix DT , so that DT C = 0. Then, for every (`E −3)× (`E −3) symmetric
positive definite matrix U, the following symmetric matrix

ME = M0 + C U CT (3.10)

satisfies (3.8) and is positive definite.

Proof. By construction, MED = M0D, and therefore by Lemma 3.1, the matrix ME

satisfies (3.8). Moreover, again by construction, ME is symmetric and positive semi-definite.
We show that it is nonsingular. Let us assume that there exists a non-zero vector v such
that ME v = 0. Then we must have

‖ 1

|E|1/2
K−1/2RTv‖2 + ‖U1/2CTv‖2 = 0, (3.11)

which in turn implies that RTv = 0 and CTv = 0. Hence (v, Cu) = 0 for any vector u in
<`E , and therefore we get

v ∈ {im(C)}⊥ = {ker(DT )}⊥ = im(D),

so that RTv = RT Dw = 0 for some w ∈ <3. Now the identity (3.7) implies that w = 0,
so that v = 0, and the non singularity of ME follows. �

Since U has size `E − 3, a general symmetric positive definite matrix of this size has
(`E−2)(`E−3)/2 free parameters, yielding a family of matrices with the required properties.
The liberty of choosing U within this family could be used to tackle other computational
problems, e.g., enforcement the discrete maximum principle.

One of the efficient ways for solving the discrete problem (2.11) is based on the KKT
theory of constrained minimization (see e.g. [13, Chapter 16]) where the constraints are
given by (2.4) and (2.5). The solution of the KKT system is reduced to the solution of a
sparse system for Lagrange multipliers with a symmetric positive definite matrix. This is
what in the Finite Element context is often called hybridization and is usually attributed
to Fraeijs de Veubeke [8] (see also [1], or [3] pag. 178–181). The procedure requires the
inversion of matrix ME. More precisely, during the whole procedure we only need the
matrix M−1

E , while the explicit knowledge of the matrix ME is not required. We show that
we can directly compute a matrix WE, the inverse of an inner product matrix, with the
required properties.
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Theorem 3.3 Let Q be a `E × (`E −3) matrix whose `E −3 columns span the null space of
the full rank matrix RT , so that RT Q = 0. Then, for every (`E − 3) × (`E − 3) symmetric

positive definite matrix Ũ, the following symmetric matrix

WE :=
1

|E|DK−1
E DT + Q Ũ QT (3.12)

satisfies WER = D and is positive definite.

The proof of this result follows the proofs of Lemma 3.1 and Theorem 3.2 ; therefore,
it is omitted. Note that the matrix D contains the material properties and thus the first
term in (3.12) is scaled properly.

Since, in practice, we are interested only in the matrix M−1
E , we could define M−1

E := WE .
Indeed, the matrix ME defined in this way will be symmetric positive definite, and will
satisfy (3.8). Moreover, it is not difficult to see that the matrix ME := WE

−1 can still be
written in the form (3.10), where the choice of the matrices U and C obviously depends

on the choice of Ũ and Q. In Section 3.3 we explicitly derive a matrix Q that satisfies the
hypotheses of Theorem 3.3, and we provide the computational costs associated with the
use of WE .

3.2 Spectral analysis

Assumption (S1) imposes some restrictions on the choice of the parameter matrix U in

Theorem 3.2 (or on Ũ in Theorem 3.3), and requires fixing some further hypotheses on
the shape-regularity of the mesh elements formulated in [4, 5]. They hold for basically all
meshes which are not totally unreasonable, thus making our discretization methodology
appealing in practical applications. For instance, they allow degenerate and non-convex
elements. Let hE denote a diameter of E and let the following assumptions hold.

(M2) There exist a positive integer Ne such that every element E has at most Ne faces.

(M3) There exist a positive number γ∗ such that, for every generalized polyhedron E,
there exist a polyhedron E0 (with planar faces e0,s) and a radial map Φ with center
at a point cE and such that Φ(E0) = E, Φ(e0,s) = es,

‖J (Φ)‖ ≤ γ∗, and ‖J (Φ−1)‖ ≤ γ∗, (3.13)

where J denotes the Jacobi matrix.

(M4) There exists a positive number τ∗ such that every element E and the corresponding
polyhedron E0 are star-shaped with respect to every point of a common sphere of
radius τ∗ hE centered at the point cE.

Before entering the discussion on Assumption (S1), we re-scale the matrices D and R

and prove a technical lemma. Let us define

D̃ := DK−1 and R̃ :=
1

|E|R, (3.14)
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so that
R̃T D̃ = D̃T R̃ = I3. (3.15)

It is not difficult to see that the r-th row of the matrix D̃ is (a
(r)
E )T . Let Ds be the 3 × 3

matrix whose rows are the orthonormal vectors aes,1, aes,2, and aes,3
E of the face es and

D = diag{D1, . . . , DkE
}. Then,

DsD
T
s = DT

s Ds = I3 and DDT = DTD = I`E
. (3.16)

If we further introduce the `E × 3 matrix N by

Ns,i =

∫

eα(s)

∇xβ(s) · nE xi dΣ,

where s = 1, . . . , `E and i = 1, 2, 3, then

R = DN and D̃ =




D1

D2
...

DkE


 . (3.17)

With the notation above, the following bounds hold.

Lemma 3.4 Assume that (M3) and (M4) hold. Then for every element E we have the
following bounds:

‖D̃w‖ =
√

kE‖w‖ and
1√
kE

≤ ‖R̃w‖
‖w‖ ≤ 3γ2

∗

τ∗
, ∀w 6= 0. (3.18)

Proof. Using (3.17), for every w ∈ <3 we have ‖D̃w‖2 = wT D̃T D̃w = kEwTw, which proves

the equality in (3.18). To estimate the norm of R̃, we note that

|E|2‖R̃w‖2 = ‖Nw‖2 =

kE∑

s=1

∥∥∥∥
∫

es

nE(w · x) dΣ

∥∥∥∥
2

. (3.19)

Recall that we put the origin in the center of mass of E, so that ‖x‖ ≤ hE for any x in E.
Thus

|E|2‖R̃w‖2 ≤ ‖w‖2

kE∑

s=1

|es|
∫

es

‖x‖2 dΣ ≤ ‖w‖2h2
E

(
kE∑

s=1

|es|
)2

. (3.20)

Now, we consider the pyramids P0,s having e0,s as bases, and the point cE from Assumption
(M3) as common vertex. Assumption (M4) implies that the height, h0,s, of the pyramid
P0,s is bigger than τ∗hE. Assumption (M3) implies that the volume of E is bounded by
the volume of E0. More precisely, we have

|E| ≥ 1

γ∗

|E0| =
1

γ∗

kE∑

s=1

|P0,s| =
1

3γ∗

kE∑

s=1

|e0,s|h0,s ≥
τ∗hE

3γ∗

kE∑

s=1

|e0,s| ≥
τ∗hE

3γ2
∗

kE∑

s=1

|es|.
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Inserting this in (3.20), we have

‖R̃w‖2 ≤ 9γ4
∗

τ 2
∗

‖w‖2. (3.21)

The proof of the lower bound follows from the Gauss-Green formula
∫

∂E

nE,i(w · x) dΣ =

∫

E

∇xi · w dV = wi|E|.

Applying this result to (3.19), we get

|E|2‖R̃w‖2 ≥ 1

kE

3∑

i=1

(
kE∑

s=1

∫

es

nE,i(w · x) dΣ

)2

≥ 1

kE

3∑

i=1

|E|2w2
i =

|E|2
kE

‖w‖2.

This proves the assertion of the lemma. �

From Lemma 3.4 we may easily obtain estimates for the unscaled matrices R and N and
their products with the tensor K. In particular, using Assumption (M2), we may prove
that

1

(Ne κ∗)1/2
|E| ≤ ‖K−1/2RTw‖

‖w‖ ≤ 3 γ2
∗

κ
1/2
∗ τ∗

|E|, ∀w 6= 0. (3.22)

It is obvious that the matrix ME will satisfy Assumption (S1) if and only if its inverse
matrix satisfies it. Hence, in what follows, we discuss only the case of the matrix ME . If one
decides to follow the path of Theorem 3.3 (constructing directly the matrix WE = M−1

E ),
the same arguments will hold for WE as well.

Theorem 3.5 Let the assumptions of Theorem 3.2 and Lemma 3.4 hold. Assume further
that there exist two positive constants s∗U and S∗

U , independent of E, such that

s∗U |E| ‖v‖2 ≤ ‖U1/2CTv‖2 ∀v ∈ im(C) (3.23)

and
‖U1/2CTv‖2 ≤ S∗

U |E| ‖v‖2 ∀v ∈ <`E−3. (3.24)

Then, the matrix ME constructed as in (3.10) satisfies Assumption (S1). In particular, we
have

min

{
1

2
s∗U , σ∗

}
|E|‖v‖2 ≤ ‖M

1/2
E v‖2 ≤ max {S∗

U , σ∗} |E|‖v‖2, (3.25)

where

σ∗ =
κ∗τ

2
∗ s∗U

Neκ∗(18γ4
∗ + s∗Uκ∗τ 2

∗ )
and σ∗ =

9γ4
∗

κ∗τ 2
∗

.

The proof of this theorem follows closely the proof of Theorem 3.6 in [6]; therefore, it is
omitted.

In actual numerical computations (based on Theorem 3.2), we recommend to multiply
the matrix U by a characteristics value of K−1

E , for example, its trace. This will improve the
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spectral properties of the matrix ME with respect to material properties. The estimates
in (3.25) provide an illustration of the practical role of U in the conditioning of ME . As
long as the extreme eigenvalues of U are within those of K−1

E , the conditioning of ME is not

strongly affected by the choice of U. The same remark obviously applies to the matrix Ũ, if
we decide to use Theorem 3.3 to construct directly the matrix M−1

E . This latter approach
is what we have employed in our experiments.

3.3 Computational considerations

According to Theorem 3.3, the most computationally demanding part in building the matrix
M−1

E = WE is the construction of the matrix Q. For the particular choice U = uI, a
cheap algorithm was proposed in [6] to directly build a matrix Q̃ = QQT with Q having
orthonormal columns. The computation of Q̃ in [6] with our notation requires 3`2

E +O(`E)
floating point operations (flops). The same algorithm can be efficiently applied to the
present case as well.

Let mE be the number of internal degrees of freedom for FE and mE 6= 0. In this case,
only part of matrix WE has to be computed. After permutation of columns and rows,
matrices ME and WE may be written in a 2 × 2 block form:

ME =

(
M11

E M12
E

M21
E M22

E

)
and WE =

(
W11

E W12
E

W21
E W22

E

)
,

with the first diagonal blocks corresponding to internal degrees of freedom. The algorithms
of static condensation and subsequent hybridization require the inverse of the Schur com-
plement M22

E − M21
E [M11

E ]
−1

M12
E which is nothing but the matrix W22

E . The corresponding
block of Q̃ can be computed with 3(`E − mE)2 + O(`E) flops. If all faces of element E are
moderately curved, mE = 2kE and the above modification becomes essential.

In the rest of this subsection we present an alternative strategy for the explicit con-
struction of a matrix Q satisfying the hypotheses of Theorem 3.3, so that no restrictions
are posed on Ũ, and the full family of MFD methods can be generated.

Proposition 3.6 Let the matrix I be defined as follows:

I =




I3

−I3 I3

−I3
. . .
. . . I3

−I3




∈ <`E×(`E−3).

Then, the matrices C and Q given by

C = DI and Q = C − 1

|E|DK−1NTI, (3.26)

respectively, have full column rank and satisfy CT D = RT Q = 0. Moreover,

cond(Q) :=
σmax(Q)

σmin(Q)
≤ 1 + 3

√
`Eγ2

∗/τ∗
sin(π/(2kE))

,
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where σmax(Q), σmin(Q) are the largest and smallest non-zero singular values of Q, respec-
tively.

Proof. It is obvious that C has full column rank and spans the null space of DT . Let us
show that RT Q = 0. Since D is an orthogonal matrix, we have

RT Q = RT C − RT 1

|E|DK−1NTI

= RT C − NTI = NTDTDI − NTI = 0.

Let us show now that Q has full column rank. The definition (3.26) yields

Q = DI − 1

|E|D




I3
...
I3


NTI.

We use again property (3.16) and the simple fact that [I3, · · · , I3] I = 0 to show that

QT Q = ITI +
kE

|E|2I
T NNTI.

Since the matrix ITI has full rank equal to `E − 3 and matrix IT NNTI is symmetric and
positive semi-definite, the matrix QT Q is symmetric and positive definite and has full rank.
Therefore, the matrix Q has full column rank.

We next obtain bounds for the extreme singular values of Q. Straightforward calcu-
lations show that ITI is a tensor product of I3 and a tridiagonal matrix of size kE − 1
with 2 on the main diagonal and -1 on the off diagonals. Thus, λj(Q

T Q) ≥ λj(ITI) =
4 sin2(jπ/(2kE)) where j = 1, . . . , kE − 1. Therefore,

σmin(Q) = λmin(Q
T Q)1/2 ≥ 2 sin

(
π

2kE

)
.

Noticing that ‖D‖ = 1 and ‖I‖ ≤ 2, and recalling (3.19) and (3.21), we obtain

σmax(Q) = ‖Q‖ ≤ ‖I − 1

|E|




I3
...
I3


NT‖ ‖I‖

≤ 2

(
1 +

1

|E|
√

`E‖N‖
)

≤ 2

(
1 +

√
`E

3γ2
∗

τ∗

)
.

Collecting the bounds for σmin(Q), σmax(Q) the final result follows. �

The shape regularity constant τ∗ makes usually bigger impact on the condition number
cond(Q) than γ∗. For a shape-regular element E, the condition number grows as `

3/2
E .

If cond(Q) becomes too large, the matrix Q ∈ <`E×(`E−3) can be orthogonalized by the
modified Gram-Schmidt process, with a computational cost of 2`E(`E − 3)2 flops [9]. This
approach may be advantageous when `E is not much greater than 3.
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4 Superlinear convergence

In [5], we proved the super-linear convergence of the pressure variable for the case in which
the inner product matrix ME is constructed as follows. For every element E, we define a
lifting operator R(GE) with values in (L2(E))3 and the following properties:

R(GE)
∣∣
∂E

≡ GE on ∂E,

divR(GE) ≡ (DIVh G)E in E
(4.27)

for all GE and
RE(GI

E) = ~G (4.28)

for all constant vector-valued functions ~G (where GI is constructed using ~G as in (3.1)).
Then, the choice

[F, G]E :=

∫

E

K−1 RE(FE) · RE(GE) dV (4.29)

allowed us to prove the second order convergence rate for the pressure variable. In practical
computations the matrix ME was constructed in a different way, essentially following The-
orem 3.2 or Theorem 3.3. However the numerical evidence still showed super-convergence
for the pressure. In order to obtain a theoretical justification of such numerical evidence, we
adopt the following strategy: For every matrix ME given by (3.10), find a lifting operator
RE such that the matrix ME coincides with the matrix induced by RE through (4.29).

Let us fix a p with 6/5 ≤ p < 2, and for every GE consider the following Stokes-like
problem: find η ∈ (W 1,p(E))3 and χ ∈ Lp(E) such that

−∆η + ∇χ = 0 in E,

div η = DIVhGE in E,

η = GE on ∂E.

(4.30)

We recall that for p ≥ 6/5, in three dimensions, we have W 1,p(E) ⊂ L2(E). It is clear that

the lifting operator R̃E defined by η =: R̃E(GE) satisfies properties (4.27) and (4.28).
We can now consider the space XE made by the restrictions of Xh to E, and the space

W obtained as W := R̃E(XE). The dimension of both spaces is equal to `E. It is clear
that the space W contains the constant vectors.

For notational convenience, we apply a change of basis in W, putting the three constant
vectors in the last three positions, and we apply the corresponding change of variables in
XE. Let ~W1, ..., ~W`E

be the new orthogonal basis in (L2(E))3, where ~W`E−2, ~W`E−1, and
~W`E

are constant vectors in E. The change of basis in XE results in an equivalency
transformation for the matrix ME. We denote the transformed matrix by M̃E. The matrix
obtained from the lifting operator R̃E using (4.29) will be given by

S̃s,r =

∫

E

K−1 ~Ws · ~Wr dV.

Let S be the representation of matrix S̃ in the original basis of XE.

13



We cannot expect that the matrix S̃ coincides with M̃E based on (3.10). We note
however that, due to our change of basis, the last three columns and the last three rows
of all possible transformed matrices M̃E obtained through (3.10) will coincide with the

corresponding columns and rows of S̃. This is due to the fact that all inner products
induced by all these matrices will be exact on constant vectors. The rigorous proof is based
on Assumption (S2) and properties (4.27) and (4.28):

0 =

∫

E

K−1 ~Wr · ~Ws dV =

∫

E

∇ϕ1
r · ~Ws dV =

∫

∂E

ϕ1
r
~Ws · nE dΣ = [(K∇ϕ1

r)
I
E, ( ~Ws)

I
E]E,

where 1 ≤ s ≤ `E, `E − 3 < r ≤ `E and we denoted by ϕ1
r a linear function such that

∇ϕ1
r = K−1 ~Wr.

Thus, the matrices S̃ and M̃E are block diagonal with two blocks of size `E − 3 and 3,
respectively. Moreover, in the new basis, im(D) is spanned by the last three columns of
either S or M̃E. We are going therefore to modify the first `E − 3 elements of the basis
~W1, ..., ~W`E

, and then use the new basis to construct a new lifting operator RE in such
a way that the matrix obtained from it by (4.29), coincides with the matrix M̃E based on
(3.10). This will not be feasible for all matrices M̃E, but, as we shall see, for many of them.

Lemma 4.1 The matrix ME given by (3.10) is induced by an inner product (4.29) if and
only if

‖M̃
1/2
E v‖ ≥ ‖S̃1/2v‖ ∀v ∈ im(M̃E − S̃).

Proof. Re-using the original idea from [2], we consider the space of vector-valued functions
~V satisfying

div ~V = 0 in E,

~V = 0 on ∂E,
∫

E

K−1 ~Ws · ~V dV = 0 s = 1, 2, ..., `E .

(4.31)

It is clear that such space is non empty, and actually is infinite dimensional. Then we choose
`E − 3 independent elements ~V1, ..., ~V`E−3 in this space, and consider the lifting functions

~W1 + ~V1, ~W2 + ~V2, ..., ~W`E−3 + ~V`E−3, ~W`E−2, ~W`E−1, ~W`E
.

We denote by T the matrix induced by (4.29). The orthogonality property gives:

T = S̃ + V, (4.32)

where V is the Gram matrix of functions ~Vs (s = 1, 2, ..., `E − 3), completed by zeroes in
the last three rows and columns. The matrix V is symmetric and positive semi-definite.
With an abuse of notation, we shall indicate by V the `E × `E matrix V as well as its
(`E −3)× (`E −3) principal diagonal block. We note that for any symmetric positive semi-

definite (`E − 3) × (`E − 3) matrix P, it is possible to find functions ~Vs that will generate
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this matrix. Indeed, if we choose `E − 3 orthonormal vectors ~V0,r satisfying (4.31) and a
matrix Z such that ZT Z = P, then taking

~Vs =

`E−3∑

r=1

Zs,r
~V0,r,

we easily obtain V = Z ZT = P.
Now, the assertion of the lemma can be rephrased as follows: Find necessary and suffi-

cient conditions for the transformed matrix M̃E (defined above) to be one of the matrices
T. It follows from (4.32) that M̃E = T if and only if

M̃E − S̃ = V ≥ 0

or
((M̃E − S)v, v) ≥ 0 ∀v ∈ <`E . (4.33)

This proves the assertion of the lemma. �

Corollary 4.2 The matrix ME given by (3.10) is induced by an inner product (4.29) if
and only if

‖M
1/2
E v‖ ≥ ‖S1/2v‖ ∀v ∈ im(C).

The proof of this corollary is based on deriving an explicit form for the equivalency trans-
formation mentioned above. We leave it as the exercise for the reader.

When C has orthonormal columns and U = uI, the above lemma requires u to be
sufficiently large. Indeed, since CCTv = v, we get

(MEv, v) = ‖ 1

|E|1/2
K−1/2RTv‖2 + u ‖v‖2 ≥ u ‖v‖2. (4.34)

On the other hand,
(Sv, v) ≤ λmax(S)‖v‖2, (4.35)

where λmax(S) is the maximum eigenvalue of S. Thus, it is sufficient to take u larger than
λmax(S) to satisfy (4.33) and hence, to guarantee superlinear convergence of the family of
MFD methods.

It is pertinent to note that the approach based on the lifting operator RE is only one of
the ways to prove the superconvergence result. Therefore, in practice, the superconvergence
may be observed for a wide range of parameters u.

5 Numerical experiments

We shall consider diffusion problems with sufficiently smooth solutions, so that we may
expect the second order convergence rate for the scalar variable ph and the first order
convergence rate for the other primary variable Fh on generalized polyhedral meshes.
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We shall measure the accuracy of the discrete solution (ph, Fh) in the natural norms
induced by the scalar products (2.6) and (2.8). Let (pI , FI) be the interpolated solution
where pI is the vector of mean values of the solution p over the elements and FI is given
by (3.1). We define the following discrete L2 errors:

|||pI − ph||| = [pI − ph, pI − ph]
1/2
Q , |||FI − Fh||| = [FI − Fh, FI − Fh]

1/2
X .

For all meshes considered in this section, we have performed the following consistency
check. We have solved the Dirichlet boundary value problem with a constant tensor K and
an exact solution p1 given by p1 = x1 +2x2 +3x3. All non-planar mesh faces were classified
as strongly curved. As p1 is linear, it follows from Assumption (S2) that the errors should
be zero, and this is indeed observed in our experiments.

The discrete problem (for the Lagrange multipliers) was solved with the preconditioned
conjugate gradient (PCG) method. A V-cycle of the algebraic multigrid [16] was chosen
as the preconditioner. The stopping criterion for the PCG method was a reduction of the
Euclidean norm of the residual by a factor 10−12. In both experiments below, mesh faces
were classified on moderately and strongly curved using σ∗ = 0.2.

Example 1. We consider the Dirichlet boundary value problem (1.1) in the unit cube
[0, 1]3 with the identity tensor K and the exact solution

p(x, y, z) = x2y3z + 3x sin(yz).

We consider a sequence of generalized hexahedral meshes as shown in Fig. 1 where a
part of the unit cube was cut out to show the interior mesh. The meshes are generated by
moving each mesh point P (of an originally uniform mesh with mesh step h) to a random
position inside a cube C(P ) centered at the point. The sides of C(P ) are aligned with the
coordinate axes and their length equals to 0.8h.

For every element E, we define a scalar matrix Ũ = ũEI where ũE = trace(KE)/|E|.
The convergence graphs in Fig. 1 show the optimal convergence of the new MFD method
and the lack of convergence for the mixed finite element method with the lowest order
Raviart-Thomas elements and the old MFD method. Recall that the last two methods use
one degree of freedom per mesh face to approximate the flow field. Note that we have the
first order convergence rate for the flux variable and the second order convergence rate for
the pressure variable.

Example 2. Let us consider the Dirichlet boundary described in the previous example on
a different sequence of generalized polyhedral meshes (see Fig. 2 where we show only the
mesh trace). It is pertinent to note that 68% of interior mesh faces are strongly curved
according to definition (M1) with σ∗ = 0.2.

The mixed finite element method can not be used on such meshes. The old MFD
method lacks convergence for both primary variables. For the new MFD method, we have
again the first order convergence rate for the flux variable and the second order convergence
rate for the pressure variable.
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Figure 1: A logically cubic mesh with randomly perturbed interior points (left picture) and
the convergence graphs (right picture) showing optimal convergence rate for the new MFD
method (blue), and the lack of convergence for the mixed finite element (black) and the
old MFD (red) methods.
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Figure 2: The trace of the generalized polyhedral mesh (left picture) and convergence
graphs (right picture) showing the optimal convergence rates for the new MFD method
(blue) and lack of convergence for the old MFD method (red).

Conclusion

We gave a rigorous mathematical description of a family of mimetic finite difference methods
for diffusion problems on generalized polyhedral meshes. We developed an inexpensive and
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easy-to-implement numerical algorithm, analyzed it both theoretically and numerically,
and proved the super-convergence result for the scalar variable. With this new method,
discretizations of elliptic equations on generalized polyhedral meshes becomes as simple as
on tetrahedral meshes. The results were obtained for the full material tensor.
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