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1 Introduction

Multi-material Lagrangian hydrodynamics of strength-freematerials continues to present
numerous open issues, even in one dimension. We focus on the problem of closing a sys-
tem of equations for a two-material cell under the assumption of a single velocity model.
We treat the constituents in these multi-material cells as distinct, i.e., we do not consider
so-called “mixture”models, often associatedwithmulti-phase flow, in which the individ-
ual species in a computational zone are modeled as fully or partially intermingled. The
multi-material cells we consider invariably arise in multi-material Arbitrary Lagrangian-
Eulerian (ALE) methods [13, 22], where the results of Lagrangian hydrodynamics are
projected onto a new mesh during the remap phase, thereby making a Lagrangian step
with a mixed cell a necessity. We consider three main design principles that govern clo-
sure models of interest. The first principle is preservation of contacts; this implies that if
all materials in a mixed cell are initially at the same pressure, then that pressure does not
change due to the closure model. The second principle is that of pressure equilibration;
that is, after some transition time (possibly but not necessarily a single timestep), all pres-
sures in the mixed cell equilibrate. The third principle is the exact conservation of total
energy. We assume that a separate set of material properties is maintained for each ma-
terial in every multi-material cell, together with the materials’ volume fractions, which
can be used to reconstruct material interfaces inside a mixed cell. The main challenge
is to accurately assign the thermodynamic states of the individual material components
together with the nodal forces that such a zone generates, pursuant to our design princi-
ples and despite a lack of detailed information about the velocity distributionwithin such
cells. In particular, for the calculation of both the equation of state (EOS) and the resulting
pressure forces, it is important that the calculation of the internal energy be accurate.

There are several existing models for this problem. In one class of methods (see, e.g.,
Barlow [4], Delov & Sadchikov [9], Goncharov & Yanilkin [11]), one estimates the velocity
normal to the interface between materials and then approximates the change in the vol-
ume for each material, with internal energy updated separately for each material from
its own pdV equation. A common pressure for a mixed cell, which is used in the mo-
mentum equation, is computed using the equation of total energy conservation. Delov &
Sadchikov [9] and Goncharov & Yanilkin [11] introduce an exchange of internal energy
between the materials inside a mixed cell, thereby allowing some freedom in the defini-
tion of the common pressure. Other multi-material models impose either instantaneous
pressure equilibration (such as that of Lagoutière [17] and Després & Lagoutière [10]) or
ascribe an implicit mechanism for pressure relaxation (such as described by Tipton [29]
and summarized by Shashkov [27]).

We restrict our attention to the approach inwhich the change in heat in the constituent
materials in the mixed cell is posited to be equal, following Lagoutière [17] and Després
& Lagoutière [10]. Under this assumption, the mixed-cell model can be cast as four equa-
tions in four unknowns, consisting of the updated values of the specific internal energy
and the specific volume for each of the two materials in the mixed cell. A solution to this
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set of nonlinear equations can be obtained, e.g., with Newton’s method, which forms one
element of an overall predictor-corrector scheme for solving the governing conservation
laws.

An unsatisfactory aspect of this model, however, is the imposition of instantaneous
pressure equilibration among the mixed-cell constituents. We break this assumption us-
ing a sub-cell dynamics model based on a local Riemann problem. Specifically, the unique
contribution of our work is the development of this physics-inspired, geometry-based
approach, using an optimization framework, both (i) to break instantaneous pressure
equilibration by relaxing the individual sub-cell pressures to equilibrium and (ii) to de-
termine the single updated value of the relaxing-toward-equilibrium pressure assigned
to the overall mixed cell. This approach couples the problem of assigning a single mixed-
cell pressure to the physics associated with the local dynamical evolution. We discuss
several test problems, using either ideal-gas or stiffened-gas equations of state, on which
we exercise this method, providing complete details of the setup for each problem to-
gether with qualitative and quantitative results of our approach on these problems.

This paper is structured as follows. Section 2 describes the basic 1-D Lagrangian
hydrodynamics equations and the predictor-corrector scheme we employ to obtain solu-
tions. We describe details of the two-material model, based on thework of Lagoutière [17]
and Després & Lagoutière [10], in §3. Extensions of this model to account for relaxation
through the dynamics of a sub-cell Riemann problem are discussed in §4, which also con-
tains a brief description of Tipton’s method. A specification of test problems and results
for this method is provided in §5, which also contains comparisons with results for Tip-
ton’s method and pure-material calculations. We summarize our findings and conclude
in §6.

2 One-dimensional Lagrangian hydrodynamics

In this section, we describe the basic predictor-corrector algorithm that we use to obtain
numerical solutions to the governing equations discussed in the previous section. We
first restrict our attention to the single-material case, then discuss where modifications
for multi-material cells are required.

The partial differential equations governing the conservation of momentum and in-
ternal energy, written in the Lagrangian frame of reference, are (discussed, e.g., by Cara-
mana et al. [7]):

ρ
du

dt
+∇P = 0, (2.1)

ρ
dε

dt
+P∇·u = 0. (2.2)

In these equations, u is the velocity and P=P(τ,ε) is the thermodynamic pressure, where
ε is the specific internal energy (SIE) and τ is the specific volume, which is given by the
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inverse of the mass density ρ of the fluid. In standard Lagrangian methods, the mass of
a fluid parcel is constant, so that τ can be expressed as the volume of that parcel divided
by its mass. In this section, subscripts denote spatial position and superscripts indicate
temporal indexing. In our staggered-mesh discretization, cell-centers (at index i+1/2)
are associated with cell masses Mi+1/2, cell volumes Vi+1/2, and thermodynamic state
variables of the cell, such as density ρi+1/2, specific volume τi+1/2, SIE ε i+1/2, pressure
pi+1/2, and sound speed csi+1/2. The vertices of cell i are associated with edge positions
xi and xi+1, edge velocities ui and ui+1, and node-centered control volume massesmi and
mi+1. The volumes are determined from the edge positions, which evolve according to
the trajectory equation,

dxi
dt

=ui . (2.3)

We assume that we have all the necessary information to completely specify the val-
ues of all state variables at time tn and seek to update the solution to time tn+1≡ tn+δt,
where δt is the timestep chosen to satisfy necessary stability requirements (e.g., the CFL
condition). The following set of coupled, implicit equations captures the dynamics of the
one-dimensional conservation equations by linking the updated values of the flow field
with the current state:

mi
un+1
i −un

i

δt
= −∆

(

pni +pn+1
i

2

)

, (2.4)

un+1/2
i =

1

2

(

un
i +un+1

i

)

, (2.5)

xn+1
i = xni +δt·un+1/2

i , (2.6)

Vn+1
i+1/2 = xn+1

i+1 −xn+1
i , (2.7)

τn+1
i+1/2 = Vn+1

i+1/2

/

Mi+1/2 , (2.8)

Mi+1/2

εn+1
i+1/2−εni+1/2

δt
= −

(

pni+1/2+pn+1
i+1/2

2

)

∆∗un+1/2
i+1/2 , (2.9)

pn+1
i+1/2 = P(τn+1

i+1/2,ε
n+1
i+1/2). (2.10)

Here, P is the relation that gives the pressure as a function of the density and SIE. Also,
the operator ∆ and its adjoint ∆∗ are defined on the appropriate discrete function spaces
as:

∆ξi ≡ ξi+1/2−ξi−1/2 , (2.11)

∆∗ηi+1/2 ≡ ηi+1−ηi . (2.12)

We propose the following iterative scheme by which to obtain a solution for the variables
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at tn+1 in Eqs. (2.4)–(2.10):

Set pn+1,0
i+1/2 := pni+1/2 and iterate for s=1,.. . : (2.13)

mi
un+1,s
i −un

i

δt
= −∆

(

pni +pn+1,s−1
i

2

)

, (2.14)

un+1/2,s
i =

1

2

(

un
i +un+1,s

i

)

, (2.15)

xn+1,s
i = xni +δt·un+1/2,s

i , (2.16)

Vn+1,s
i+1/2 = xn+1,s

i+1 −xn+1,s
i , (2.17)

τn+1,s
i+1/2 = Vn+1,s

i+1/2

/

Mi+1/2 , (2.18)

Mi+1/2

εn+1,s
i+1/2−εni+1/2

δt
= −

(

pni+1/2+pn+1,s−1
i+1/2

2

)

∆∗un+1/2,s
i+1/2 , (2.19)

pn+1,s
i+1/2 = P(τn+1,s

i+1/2,ε
n+1,s
i+1/2). (2.20)

As shown by Bauer et al. [5], this iteration is stable under the usual constraints, e.g., CFL
number between zero and one. Moreover, this scheme is nominally second order accurate
in both space and time for sufficiently smooth initial conditions and sufficiently short
times; the method invariably degenerates to first order as discontinuous flow features
develop.

One can interpret the first two iterations of this algorithm as a predictor-corrector
method. Indeed, each of these steps conserves momentum and total energy. We write the
resulting numerical scheme as follows:

Predictor

mi
un+1,⋆
i −un

i

δt
= −∆pni , (2.21)

⇒ un+1,⋆
i = un

i −
δt

mi

(

pni+1/2−pni−1/2
)

, (2.22)

un+1/2,⋆
i =

1

2

(

un
i +un+1,⋆

i

)

, (2.23)

xn+1,⋆
i = xni +δt·un+1/2,⋆

i , (2.24)

Vn+1,⋆
i+1/2 = xn+1,⋆

i+1 −xn+1,⋆
i , (2.25)

τn+1,⋆
i+1/2 = Vn+1,⋆

i+1/2

/

Mi+1/2 , (2.26)

Mi+1/2

εn+1,⋆
i+1/2−εni+1/2

δt
= −pni+1/2 ∆∗un+1/2,⋆

i+1/2 , (2.27)

⇒ εn+1,⋆
i+1/2 = εni+1/2−

δt

Mi+1/2
pni+1/2

(

un+1/2,⋆
i+1 −un+1/2,⋆

i

)

, (2.28)

pn+1,⋆
i+1/2 = P(τn+1,⋆

i+1/2 ,ε
n+1,⋆
i+1/2). (2.29)
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Corrector

mi
un+1
i −un

i

δt
= −∆

(

pni +pn+1,⋆
i

2

)

, (2.30)

⇒ un+1
i = un

i −
1

2

δt

mi

(

pni+1/2+pn+1,⋆
i+1/2−pni−1/2−pn+1,⋆

i−1/2

)

, (2.31)

un+1/2
i =

1

2

(

un
i +un+1

i

)

, (2.32)

xn+1
i = xni +δt·un+1/2

i , (2.33)

Vn+1
i+1/2 = xn+1

i+1 −xn+1
i , (2.34)

τn+1
i+1/2 = Vn+1

i+1/2

/

Mi+1/2 , (2.35)

Mi+1/2

εn+1
i+1/2−εni+1/2

δt
= −

(

pni+1/2+pn+1,⋆
i+1/2

2

)

∆∗un+1/2
i+1/2 , (2.36)

⇒ εn+1
i+1/2 = εni+1/2−

1

2

δt

Mi+1/2

(

pni+1/2+pn+1,⋆
i+1/2

)

×
(

un+1/2
i+1 −un+1/2

i

)

, (2.37)

pn+1
i+1/2 = P(τn+1

i+1/2,ε
n+1
i+1/2). (2.38)

This predictor-corrector scheme can be made more efficient and equally as accurate
(at least formally) by replacing the EOS call in Eq. (2.29) with a predictor pressure assign-
ment based on an adiabatic relation among pressure, density, and SIE. In this case, we
replace Eq. (2.29) by:

pn+1,⋆
i+1/2= pni+1/2−

(csni+1/2)
2

τn
i+1/2

δVn+1,⋆
i+1/2

Vn
i+1/2

, (2.39)

where δVn+1,⋆
i+1/2 ≡Vn+1,⋆

i+1/2−V
n
i+1/2. One must, however, retain the full EOS call in the cor-

rector step of Eq. (2.38), to ensure thermodynamic consistency and conservation at the
updated time.

To decrease non-physical results for problemswith nominally C0 solutions (e.g., shock-
waves), the pressure in these expressions can be augmented by an artificial viscosity
to provide additional numerical dissipation. In practice, we modify each occurrence
of the pressure p in the above approach by adding an additional term q: notionally,
pi+1/2← pi+1/2+qi+1/2 in Eqs. (2.4), (2.9), etc. For example, to calculate the artificial
viscosity qni+1/2 at cell centers at t

n, used in Eqs. (2.22) and (2.28), the classical linear-plus-
quadratic model of von Neumann & Richtmyer [23] (see also Landshoff [18]), active only
in compression, is evaluated as:

qni+1/2=

{

0, if un
i+1−un

i ≥0,
−ν1ρni+1/2cs

n
i+1/2(u

n
i+1−un

i )+ν2ρni+1/2(u
n
i+1−un

i )
2 , otherwise,

(2.40)
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where ν1 (numerically, nominally ∼1) and ν2 (∼0.1) are the coefficients of the linear and
quadratic contributions, respectively, and ρni+1/2≡ 1/τn

i+1/2 . Similar expressions apply
to predictor values of artificial viscosity, used, e.g., in Eqs. (2.31) and (2.37). While more
sophisticated artificial viscosity models are available (as described, e.g., by Campbell &
Shashkov [6]), the simple linear-plus-quadratic model is sufficient to demonstrate the
efficacy of the numerical methods for the 1-D gasdynamics problems discussed here.

3 Two-Material Instantaneous EquilibriumModel

We now examine a specific instantaneous pressure equilibrium model for a two-material
mixed cell. We make the fundamental assumption that the fluids are not intermingled;
that is, we assume that there is a scale on which the two fluids are separated. We first
review the model based on the work of Lagoutière [17] and Després & Lagoutière [10], in
which the overall specific volume and SIE in a mixed cell are distributed to the separate
materials, and discuss how to use this model with the above algorithm.

A schematic of the mixed cell is shown in Fig. 1, which indicates material 1 to the left
of an idealized (massless) interface, which separates it from material 2 to the right. In
the following discussion, we largely suppress the subscript index of the mixed cell, imix;
instead, subscripts refer to the two materials in the multi-material cell. In keeping with
the single-material algorithm discussed in the previous section, assume that we have the
following quantities, consistently updated to time tn+1:

1. τn+1: the updated value of the overall specific volume of the mixed cell, from
Eqs. (2.26) and (2.35); and

2. εn+1: the updated value of the overall SIE of the mixed cell, from Eqs. (2.28) and
(2.37).

We also know a common pressure at the previous timestep, pn, for the mixed cell; we dis-
cuss later how to update this common pressure from the constituent materials’ updated
pressures. In addition to those values, we know the specific volume and SIE of the mixed
cell’s constituent materials at the previous timestep, i.e., τn

1 , τn
2 , εn1, εn2.

The quantities that we seek are the updated values of these properties, viz.,

1. τn+1
1 , τn+1

2 : the updated specific volumes of materials 1 and 2, and

2. εn+1
1 , εn+1

2 : the updated SIEs of materials 1 and 2,

to be apportioned in some conservative fashion. With these values, the individual mate-
rials’ EOSs define the associated thermodynamic variables. In the mixed cell, denote the
mass fractions (“concentrations”) by c1 and c2 for materials 1 and 2, respectively:

c1=m1/Mimix
and c2=m2/Mimix

, (3.1)
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where in the mixed cell

m1=mass of material 1 , m2=mass of material 2, (3.2)

Mimix
= total mass=m1+m2 . (3.3)

Since themasses in the Lagrangian cells are fixed, themass fractions c1 and c2 do not vary
with time.

The governing equations of the closure model discussed by Lagoutière [17] and De-
sprés & Lagoutière [10] are the following.

• Conservation of mass (expressed with the specific volume):

c1τn+1
1 +c2τn+1

2 =τn+1 . (3.4)

• Conservation of internal energy (expressed with the SIE):

c1εn+1
1 +c2εn+1

2 = εn+1 . (3.5)

• Equality of change in heat of the two materials: with dQk=dεk+PkdVk, this require-
ment implies:

εn+1
1 −εn1+P1(τn+1

1 −τn
1 )= εn+1

2 −εn2+P2(τn+1
2 −τn

2 ). (3.6)

• Equality of thermodynamic pressure Pk(τ,ε) of the two materials (k=1,2):†

p= pn+1
1 = pn+1

2 ⇒ P1(τn+1
1 ,εn+1

1 )−P2(τn+1
2 ,εn+1

2 )=0. (3.7)

The four relations (3.4), (3.5),‡ (3.6), and (3.7) form a set of four nonlinear equations in
four unknowns: τn+1

1 , εn+1
1 , τn+1

2 , and εn+1
2 .

A choice must be made in how to model the pressure in Eq. (3.6). Among the obvious
options are the following (where k=1,2 for the two materials):

• “Fully Implicit”: Pk = pn+1
k , the pressure at the updated time;

• “Fully Explicit”: Pk= pnk , the pressure at the previous time; or

• “Thermodynamically Consistent”: Pk = 1
2

(

pnk +pn+1
k

)

, the arithmetic mean of the

previous-time and updated-time pressures.

For a polytropic gas, closed-form solutions of this set of equations can be obtained in each
of these three cases. Kamm & Shashkov [16] provide explicit expressions for these solu-
tions, which, though algebraically complicated, can be used to verify the software imple-
mentation of this algorithm. For general EOSs, Eqs. (3.4)–(3.7) do not admit a closed-form
solution, whether one considers the fully implicit, fully explicit, or thermodynamically
consistent closure models. In this case, Newton’smethod can be used to obtain numerical
solution to this set of coupled nonlinear equations.

†This relation explicitly specifies the common pressure of the mixed cell.
‡As explained by Després & Lagoutière [10], Eqs. (3.4) and (3.5) are consistent with the assumption that the
fluids are separated at some scale.
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4 Two-Material Riemann Problem/Pressure Relaxation Model

The model of the previous section provides an approach in which the pressures of the
constituents of a two-material cell are equilibrated at the end of each timestep. In this
section, we describe a sub-cell dynamics model that leads to schemes by which to relax
the constituent pressures to equilibrium. That is, given an initial state with a discrep-
ancy between the pressures of material 1 and material 2, we seek a model with which to
update material pressures pn+1

1 and pn+1
2 such that the difference between these values

approaches zero as time increases.§ We do so with a purely dynamical model that does
not appeal to any explicit dissipation terms, per se.

Conceptually, we posit a relaxation operatorR that takes as input the thermodynamic
states of the constituent materials at time tn together with values for the overall specific
volume and SIE at time tn+1. On output, this operator returns the thermodynamic states
of the individual materials updated to time tn+1 and an estimate of an updated common
cell pressure. Schematically, we write this as:

R
(

τn
1 ,ε

n
1,τ

n
2 ,ε

n
2;τ

n+1,εn+1
)

=
{

τn+1
1 ,εn+1

1 ,τn+1
2 ,εn+1

2 ;pn+1
}

. (4.1)

In this section we describe in detail the relaxation operatorR.

4.1 Two-Material Riemann-Problem/Relaxation Model: Equations

The foundation of this approach is to consider the evolution of the multi-material cell
over one timestep to be related to a local Riemann problem. This cell is identified by
the index imix, with the states of the two materials assumed to be available at time tn.
The location of the interface between the materials at this time determined by the local
volume fraction of, say, material 1, given by f1:

xnintfc= xnimix
+ f1(x

n
imix+1−xnimix

)∈
[

xnimix
,xnimix+1

]

. (4.2)

In higher dimensions, the interface configuration must be estimated with an interface
reconstruction technique. Specifically, the two states in this cell at tn are given by:

(ρ,e,p,u)=

{

(ρ1,e1,p1,u1) , if xnimix
< x< xnintfc ,

(ρ2,e2,p2,u2) , if xnintfc< x< xnimix+1 .
(4.3)

There is an obvious choice for the velocities in 1-D, viz.,

u1=uimix
and u2=uimix+1 . (4.4)

§This idealized picture is for the special case of stationary flow, i.e., in the absence of external flow per-
turbations. More generally, when there are persistent external flow effects one should not expect pressure
equilibration in a mixed cell to necessarily obtain.
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More sophisticated models that involve spatial variation of the velocity could be used,
but we use this piecewise-constant assumption in the following. The solution to this one-
cell Riemann problem problem at time tn+1 can be computed for polytropic gases accord-
ing to the method of Gottlieb & Groth [12], for stiffened gases following Plohr [24], and
for more general equations of state as described by Colella & Glaz [8] and Quartapelle et
al. [25].

A schematic of the initial conditions and idealized solution to this problem is shown
in Fig. 2, which depicts the pressure for the mixed cell at tn on the bottom and at tn+1 on
the top, in the particular case of a rarefaction-contact-shock configuration. In this figure,
the top (tn+1) diagram exhibits, from left to right, the left tn state, the leading left-most
Riemann wave (WL), the contact discontinuity (W∗), the leading right-most Riemann
wave (WR), and the right tn state. The states outside of the leading waves are unchanged
from their values at tn during the timestep δt. If the left- or right-most wave is a shock,
then the precise location of this wave is unambiguous; if this wave is a rarefaction, how-
ever, thenwe do not use the exact solution but instead choose either the head or tail of the
rarefaction as defining the location of this wave (as in Fig. 2). In the domains delimited
by these waves, i.e., between the left-most wave and the contact, and between the contact
and the right-most wave, we assume the Riemann-problem pressure is constant in space
at time tn+1; outside these waves, we assume that the pressure retains its initial (i.e., at tn)
values. Depending on the initial conditions of the Riemann problem, these assumptions
may not be strictly valid (e.g., when rarefactions are present); nonetheless, they can be
used in the optimization method that we describe below.¶

Let the region to the left of the contact contain two sets Ω1 and Ω2, defined as

Ω1≡
{

x : xn+1
imix

< x< xRPleft

}

and Ω2≡
{

x : xRPleft < x< xRPcont

}

, (4.5)

where xRPleft is the position of the left-most wave WL and xRPcont is the contact position,
both determined from the solution to the Riemann problem (identified by the superscript
“RP”). Denote similar subsets to the right of the contact as Ω3 and Ω4:

Ω3≡
{

x : xRPcont < x< xRPright

}

and Ω4≡
{

x : xRPright < x< xn+1
imix+1

}

, (4.6)

where xRPright is the position of the right-most waveWR of the Riemann problem solution.

The key assumption of our approach is the following: we seek a single updated pres-
sure values for each material (i.e., on each side of the contact) that minimizes the dis-
crepancy between that value and the pressure given by the Riemann problem solution
in that domain. A mathematical expression of this statement replaces the instantaneous
pressure equilibration equation (i.e., Eq. (3.7)) while the other constraints of the model
(Eqs. (3.4)–(3.6)) still apply.

¶One could utilize the entire non-piecewise-constant solution pressure when a rarefaction fan is present.
Such a model introduces additional complexity to the relaxation model presented below.
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We express this relation mathematically as the following optimization problem:

min
{

τn+1
1 ,εn+1

1 ,τn+1
2 ,εn+1

2

}

(

||pn+1
1 −pRP1 ||

2+||pn+1
2 −pRP2 ||

2
)

(4.7)

subject to the constraints given by Eqs. (3.4)–(3.6):

f1 ≡ c1τn+1
1 +c2τn+1

2 −τn+1=0, (4.8)

f2 ≡ c1εn+1
1 +c2εn+1

2 −εn+1=0, (4.9)

f3 ≡ εn+1
1 −εn1+P1(τn+1

1 −τn
1 )

−
[

εn+1
2 −εn2+P2(τn+1

2 −τn
2 )
]

=0. (4.10)

In Eq. (4.7), pRP1 and pRP2 are the solutions of the Riemann problem for the pressure in
materials 1 and 2, respectively. These quantities may vary as a function of position in
each of the these materials.

Using the L2 norm, the components of the expression in Eq. (4.7) can be written in
terms of the locally constant pressure values in each domain:

||pn+1
1 −pRP1 ||

2 = Ω̃1

(

pn+1
1 −pRP1

)2
+Ω̃2

(

pn+1
1 −pRP1

)2
and (4.11)

||pn+1
2 −pRP2 ||

2 = Ω̃3

(

pn+1
2 −pRP2

)2
+Ω̃4

(

pn+1
2 −pRP2

)2
. (4.12)

Here, the nondimensional quantity Ω̃j equals the measure of the set Ωj divided by the

entire cell length, δxn+1:

Ω̃j=

(

max
x∈Ωj

x − min
x∈Ωj

x

)

/(

xn+1
imix+1 − xn+1

imix

)

; (4.13)

with this definition,

Ω̃j≥0, ∀j, and
4

∑
j=1

Ω̃j=1. (4.14)

Outside of the leading waves, i.e., on sets Ω1 and Ω4, the Riemann problem pressure
equals the pressure at the start of the timestep:

pRP1 = pn1 for x∈Ω1 and pRP2 = pn2 for x∈Ω4 . (4.15)

Between the contact and these waves, we assign the pressure to be the so-called “star-
state” pressure of the Riemann problem solution, described, e.g., by Toro [30] and LeV-
eque [19]:

pRP1 = p∗ for x∈Ω2 and pRP2 = p∗ for x∈Ω3 . (4.16)
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Therefore, Eqs. (4.11) and (4.12) imply the following relations:

||pn+1
1 −pRP1 ||

2 = Ω̃1

(

pn+1
1 −pn1

)2
+Ω̃2

(

pn+1
1 −p∗

)2
and (4.17)

||pn+1
2 −pRP2 ||

2 = Ω̃3

(

pn+1
2 −p∗

)2
+Ω̃4

(

pn+1
2 −pn2

)2
. (4.18)

We recast this constrainedminimization problem as simple minimization through the
use of Lagrange multipliers. Specifically, to the expression to be minimized we add each
of the constraint terms multiplied by an unknown parameter (the Lagrange multiplier)
and then seek to minimize that composite function. The overall minimization statement
then becomes the following:

min
{

τn+1
1 ,εn+1

1 ,τn+1
2 ,εn+1

2 ,λ1,λ2,λ3

} G(τn+1
1 ,εn+1

1 ,τn+1
2 ,εn+1

2 ,λ1,λ2,λ3) (4.19)

where G≡||pn+1
1 −pRP1 ||

2+||pn+1
2 −pRP2 ||

2+λ1 f1+λ2 f2+λ3 f3 . (4.20)

A possible extremum of the function G is obtained by finding a solution that corresponds
to a zero of the coupled set of nonlinear equations given by:

∂G/∂Xi =0, i=1,.. . ,7, where X≡
[

τn+1
1 ,εn+1

1 ,τn+1
2 ,εn+1

2 ,λ1,λ2,λ3

]T
. (4.21)

Since the derivative of G with respect to a Lagrange multipliers is just the corresponding
constraint equation, parameter values that satisfy ∂G/∂Xi=0 perforce obey the constraint
equations. Numerical solutions to this problem can be sought with Newton’s method for
the system of equations given in Eq. (4.21).

In practice, the terms in the objective function G are nondimensionalized by local
representative values, so that the contributions to G are roughly comparable. One such
nondimensionalization is:

G ≡ Ω̃1

(

pn+1
1 −pn1

)2
/ p̄2+Ω̃2

(

pn+1
1 −p∗

)2
/ p̄2

+ Ω̃3

(

pn+1
2 −p∗

)2
/ p̄2+Ω̃4

(

pn+1
2 −pn2

)2
/ p̄2

+ λ1

[

(c1τn+1
1 +c2τn+1

2 )−τn+1
]

/τ̄

+ λ2

[

(c1εn+1
1 +c2εn+1

2 )−εn+1
]

/ε̄

+ λ3

{[

εn+1
1 −εn1+P1(τn+1

1 −τn
1 )
]

−
[

εn+1
2 −εn2+P2(τn+1

2 −τn
2 )
]}

/ε̄, (4.22)

where p̄, τ̄, and ε̄ are representative (non-zero) values of the pressure, specific volume,
and SIE, respectively, of the entire zone at tn (e.g., pnimix

, etc.). The properties of the

individual constituents that result from this minimization process are used to define the
common cell pressure, which we discuss in the next section.
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4.2 Relaxation to a single pressure

Unlike the instantaneous pressure equilibration model, this approach does not imply an
unambiguous value for the pressure of the mixed cell. Consistent with the solution of the
set of coupled model equations, one could assign the overall mixed-cell pressure value
as a spatial average of the two updated pressures:

pn+1
imix

= p=(Ω̃1+Ω̃2)p
n+1
1 +(Ω̃3+Ω̃4)p

n+1
2 . (4.23)

Alternatively, one could use the information from the sub-cell dynamical evolutionmodel
to assign a single pressure to the mixed cell pressure based on the extent of the wave
propagation in the associated Riemann problem:

pn+1
imix

= p̃= Ω̃1 p
n
1+(Ω̃2+Ω̃3)p

∗+Ω̃4 p
n
2 . (4.24)

These values enter into the overall algorithm in Eqs. (2.22), (2.28), (2.31), and (2.37). In
the results of §5, the common pressure given in Eq. (4.23) is used. For the test problems
examined, the difference in results between these two definitions of the common pressure
is minor.

To motivate heuristically why this approach leads to pressure equilibration with in-
creasing time, we consider the structure of the Riemann problem solutions. For poly-
tropic gases, the four non-degenerate Riemann problem solution configurations can be
denoted, following Gottlieb & Groth [12], as RCS, RCR, SCR, and SCS, where the order
corresponds to the wave family from left to right, and the letter identifies the particu-
lar wave: “R” means a rarefaction fan, “C” denotes a contact (across which the pressure
equals the star-state value and is continuous), and “S” indicates a shock.‖ There are two
cases: (1) the star-state pressure, p∗, is bounded by the pressures on the left and right
(as happens, e.g, in the case of equal polytropic indices for the RCS and SCR solutions
with no initial velocity) and (2) p∗ exceeds the extremal left and right pressures (i.e., p∗ is
either less than the minimum pressure or greater than the maximum pressure, e.g., in the
case of equal polytropic indices for the RCR and SCS solutions with no initial velocity).

Consider the first case and assume that pn1 < p∗ < pn2 (the case with pn1 > p∗ > pn2 is
similar). For material 1, the result of the minimization process, pn+1

1 , must be bounded

by pn1 and p∗: if it were not, then one could always find a value p̃n+1
1 that would give a

smaller value of the convex combination in Eq. (4.17). An analogous argument holds for
material 2. Thus, at the end of the timestep we have the ordering, pn1 < pn+1

1 < p∗< pn+1
2 <

pn2 . Therefore, the pressure difference at the end of the timestep, |pn+1
1 −pn+1

2 |, is less than
the pressure difference at the start of the timestep, |pn1−pn2 |, i.e., the pressures are relaxing
toward equilibrium.

‖We ignore the vacuum boundary case. Additionally, the fifth case of the polytropic gas Riemann solutions
is the degenerate situation in which a vacuum region develops between the opposing rarefaction waves, i.e.,
RCVCR, in the above notation. The consequences of this situation with respect to pressure equilibration are
comparable to those of the RCR case.
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Consider now the second case and assume, without loss of generality, that p∗ < pn1 ,
pn2 ; for the sake of argument, further assume that pn1 < pn2 . In material 1, the result of
the minimization process, pn+1

1 , must again be bounded by pn1 and p∗, and similarly for

material 2: p∗< pn+1
1 < pn1 and p∗< pn+1

2 < pn2 . Considering possible values of the positive
numbers Ω̃j in Eqs. (4.17) and (4.18), it is conceivable that the pressure difference could
increase during the timestep (not accounting for the effect of the other constraints). This
analysis leads us to conclude that these inequalities alone are insufficient to ensure that
the pressures necessarily tend toward equlibrium, i.e., one cannot immediately infer that
|pn+1

1 −pn+1
2 |<|pn1−pn2 |. Additional special cases are those of a uniformly translating con-

tact and a uniformly propagating shock. The former perforce obeys pressure equilibrium
from tn to tn+1, while the latter necessarily maintains pressure non-equlibrium through
the timestep.

Therefore, while it is plausible that some initial (i.e., tn) mixed-cell conditions lead
to a decrease in pressure difference over the course of a timestep with our model (i.e.,
relax toward pressure equlibrium), other initial conditions in the mixed-cell lead to the
pressure difference betweenmaterials 1 and 2 increasing, at least temporarily. This (local)
increase in the pressure difference between materials 1 and 2 is evident in some of the
mixed-cell pressure time history results of §5; see, e.g., Fig. 24. All of the test problems
we consider in §5, however, lead to pressure equilibrium in the multi-material cell at late
times. We speculate that the constituent pressures are driven, at late time, to the star-
state pressure of a Riemann problem toward which the mixed cell evolves over many
cycles. This speculation assumes that there are no other perturbations that enter the cell
and drive it from equilibrium (such as occurs, e.g., in the problem of §5.4 and evident in
Fig. 32). In future work, we plan to perform more rigorous tests of this hypothesis.

4.3 2-Material Riemann-Problem/Relaxation Model: Numerical Implementa-
tion

The (single) pressure of a (two-material) mixed cell, pnimix
, where imix is the index of the

mixed cell, enters into the overall algorithm, influencing the updated velocities at the
edges of the mixed cell. Therefore, the manner in which an overall pressure for the multi-
material mixed cell is assigned will have a direct impact on the overall results. In the

predictor phase, this value enters in the evaluation of the predictor velocity un+1,⋆
i in

Eq. (2.22), which influences the cell edges positions in Eq. (2.24), cell volumes in Eq. (2.25),
etc., as well as in the predictor SIE in Eq. (2.28). Similarly, in the corrector phase, the cell
velocities, edges, volumes, etc., are affected by the predictor value of the sole mixed-cell
pressure in Eqs. (2.31)–(2.37). The pressures of the individual constituents in a multi-
material cell are used to generate a single, overall pressure for the entire cell. In addition
to this value, the updated values of the state of the two materials (viz., the specific vol-
umes and SIEs) must be carried along into the next computational cycle.

We now describe an algorithmic implementation of the mixed cell model. As men-
tioned earlier, assume that we have, at time tn, a common pressure value, pnimix

, for the
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mixed cell as well as the thermodynamic variables for the individual constituents, τn
1 ,

εn1, τn
2 , εn2. In the predictor phase, the steps listed in Eqs. (2.21)–(2.28) are followed ex-

actly, where the common pressure value from the previous timestep, pnimix
, is used for the

mixed cell. After the step in Eq. (2.28), predictor values for the overall mixed cell specific
volume and SIE are generated. Instead of the single-material pressure evaluation given
in Eq. (2.29), one invokes the mixed-cell model.

The full evaluation of the predictor values for the mixed cell is as follows.

1. Starting with the initial conditions specified by the mixed-cell state at tn, solve the
mixed-cell predictor Riemann problem over the timestep δt, which we represent
notionally as ℜ(τn

1 ,ε
n
1,τ

n
2 ,ε

n
2;δt).

2. Use those results to determine the the star-state pressure and the extent of wave
propagation: ℜ(τn

1 ,ε
n
1,τ

n
2 ,ε

n
2;δt)⇒ p∗ and Ω̃j, j=1,.. . ,4 (see Eq. (4.13)); these quan-

tities are used in the evaluation of the pressure-difference expressions in Eqs. (4.17)
and (4.18).

3. Obtain a solution of the associated minimization problem, given in Eqs. (4.19) and
(4.20), for predictor values of the thermodynamic state of the individual constituents,

τn+1,⋆
1 , εn+1,⋆

1 , τn+1,⋆
2 , εn+1,⋆

2 , using the values at tn as an initial guess.

4. Evaluate the predictor component pressureswith EOS calls: pn+1,⋆
k =P(τn+1,⋆

k ,εn+1,⋆
k ),

k=1, 2.

5. Evaluate the predictor common pressure, pn+1,⋆, according to either Eq. (4.23) or
Eq. (4.24).

For the corrector phase, the steps listed in Eqs. (2.30)–(2.37) are followed, where the
predictor common pressure value, pn+1,⋆, is now used for the mixed cell. Instead of the
single-material pressure evaluation given in Eq. (2.38), the corrector phase of the mixed-
cell model is evaluated.

1. Starting with the initial conditions specified by the mixed-cell state at tn, solve the
mixed-cell Riemann problem over the timestep δt: ℜ(τn

1 ,ε
n
1,τ

n
2 ,ε

n
2;δt).

2. Use the results of this problem to determine the star-state pressure and the extent of
wave propagation: ℜ(τn

1 ,ε
n
1,τ

n
2 ,ε

n
2;δt) ⇒ p∗ and Ω̃j, j=1,.. . ,4 (see Eq. (4.13)), with

which one can evaluate terms of the pressure-difference expressions in Eqs. (4.17)
and (4.18).

3. Solve the associated minimization problem, given in Eqs. (4.19) and (4.20), for up-
dated values of the thermodynamic state of the individual constituents, τn+1

1 , εn+1
1 ,

τn+1
2 , εn+1

2 ; here, the predictor values of these quantities can be used as an initial
guess.
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4. Evaluate the corrector component pressures with EOS calls: pn+1
k =P(τn+1

k ,εn+1
k ),

k=1, 2.

5. Model the final common pressure, pn+1, according to either Eq. (4.23) or Eq. (4.24).

4.4 Tipton’s method for pressure relaxation

In this section, we describe the assumptions and implementation of Tipton’s method for
pressure relaxation [27, 29]. In §5 we compare the results of our approach with those
based on Tipton’s method. The underlying integrator for our implementation of Tipton’s
approach is based on a two-step method, in which certain quantities are first updated to
the half-timestep level, and then all flow field quantities are updated to the final time.
More specifically, half-timestep updates are made for node positions (using the trajectory
equation), as well as cell volumes and cell densities (both based on updated node po-
sitions); the half-timestep pressure is evaluated using an adiabatic approximation. The
final timestep updates begin with the velocity (updated from the momentum equation
using the half-timestep pressures), followed by the position (using the trajectory equa-
tion with time-centered velocities), cell volumes and densities (using updated node po-
sitions), and the SIE (using the updated pdV work); for consistency, the final pressure is
obtained with a full EOS call.

Specifically, this algorithm can be written as follows for pure material cells.

Half-timestep Update

xn+1/2
i = xni +(δt/2)un

i , (4.25)

Vn+1/2
i+1/2 = xn+1/2

i+1 − xn+1/2
i , (4.26)

τn+1/2
i+1/2 = Vn+1/2

i+1/2

/

Mi+1/2 , (4.27)

pn+1/2
i+1/2 = pni+1/2−

(csni+1/2)
2

τn
i+1/2

δVn+1/2
i+1/2

Vn
i+1/2

. (4.28)

Full-timestep Update

mi
un+1
i −un

i

δt
= −∆

(

pn+1/2
i

)

, (4.29)

⇒ un+1
i = un

i −
δt

mi

(

pn+1/2
i+1/2 −pn+1/2

i−1/2

)

, (4.30)

un+1/2
i =

1

2

(

un
i +un+1

i

)

, (4.31)

xn+1
i = xni +δt·un+1/2

i , (4.32)

Vn+1
i+1/2 = xn+1

i+1 − xn+1
i , (4.33)

τn+1
i+1/2 = Vn+1

i+1/2

/

Mi+1/2 , (4.34)
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Mi+1/2

(

εn+1
i+1/2−εni+1/2

)

= −pn+1/2
i+1/2 δVn+1

i+1/2 (4.35)

⇒ εn+1
i+1/2 = εni+1/2−pn+1/2

i+1/2 δVn+1
i+1/2/Mi+1/2 (4.36)

pn+1
i+1/2 = P(τn+1

i+1/2,ε
n+1
i+1/2), (4.37)

where δV
n+j
i+1/2≡V

n+j
i+1/2−V

n
i+1/2 with j=1/2 or 1.

Tipton’s multi-material model is based on this two-step scheme. In the following
presentation of the multi-material model, subscripts indicate the material identifier, not
the cell index. For this algorithm with k materials, there are k+1 unknowns, the first k
of which consist of the volume changes of the kth materials in the mixed cell at the half-

timestep, δVn+1/2
k . The next assumption of the model introduces the k+1st unknown

as the overall half-timestep pressure, pn+1/2, which is the same for all materials and is
assumed equal to the sum of the half-timestep pressure for each material and a half-
timestep relaxation term for that material:

pn+1/2= pn+1/2
k +Rn+1/2

k , ∀k. (4.38)

The first term on the RHS of this equation, the half-timestep pressure of the kth mate-
rial, is evaluated with an adiabatic approximation (as in the pure-material half-timestep
update of Eq. (4.28)) that includes this material’s unknown volume change:

pn+1/2
k = pnk−

(csnk )
2

τn
k

δVn+1/2
k

Vn
k

. (4.39)

The second term on the RHS of Eq.(4.38), the relaxation term for the kth material, is
posited to be of a form evocative of a traditional linear artificial viscosity that also is
based this material’s unknown volume change:

Rn+1/2
k =−

csnk
τn
k

Ln

δt

δVn+1/2
k

Vn
k

, (4.40)

where Ln is a characteristic length for the mixed cell (typically the overall cell size). To
close this model, one enforces that the sum of the (unknown) volume changes of all ma-
terials must equal the overall volume change of the mixed cell, Vn+1/2, which is known
from a standard the half-timestep update (using the expression in Eq. (4.26) and the over-
all volume at tn):

∑
k

δVn+1/2
k =δVn+1/2 . (4.41)

As was done for the single-material cells in the rest of the half-timestep update, the
new volumes and corresponding volume changes can now be computed for each mate-
rial. To achieve this for a multiple-material cell, one combines the above expressions and
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writes the governing relations for the mixed cell as the following set of linear equations

in the unknowns δVn+1/2
k and pn+1/2:

pnk− B̃n
k

(

δVn+1/2
k /Vn

k

)

= pn+1/2 , ∑
k

δVn+1/2
k =δVn+1/2 , (4.42)

where
B̃n
k ≡ρni

[

(csnk )
2/τn

k

]

[1+Ln/(csnk δt)] . (4.43)

This linear system of equations has the solution:

pn+1/2= p̄n− B̄n δVn+1/2

Vn
and δVn+1/2

k =
Vn
k

B̃n
k

[

(pnk− p̄n)+ B̄n δVn+1/2

Vn

]

, (4.44)

where the barred values are the volume-fraction-averaged quantities given by:

p̄n≡∑
k

(

f nk p
n
k

B̃n
k

)

/

∑
k

(

f nk
B̃n
k

)

and B̄n≡

[

∑
k

(

f nk
B̃n
k

)]−1

, (4.45)

with fk≡Vk/V representing the volume fraction of the kth material. Equation (4.44) for

δVn+1/2
k indicates that two factors contribute to the volume change in the k-th material.

The first component is the difference between the pressure in the k-th material and the
“averaged” pressure given by p̄n, while the second factor is related to the overall volume
change of the entire mixed cell.

The volume of the kth material is related to the overall cell volume V via the volume
fraction fk, i.e., Vk = fkV. Thus, one can derive the following equation for the change in
the volume fraction at the end of the half-timestep:

δ f n+1/2
k = f nk

[

(pnk− p̄n)/B̃n
k

]

+ f nk
[(

B̄n/B̃n
k

)

−1
]

(

δVn+1/2/Vn
)

. (4.46)

These relations provide the necessary information at the half-timestep to update val-
ues to the end of the timestep. To do so, we invoke the last assumption of this model,
namely, that the individual materials’ volume changes at tn+1 = tn+δt = tn+2·(δt/2)
equal twice the half-timestep values:

δ f n+1
k =2δ f n+1/2

k . (4.47)

The individual volume fractions are updated according to:

f n+1
k = f nk +δ f n+1

k . (4.48)

Using these values, the corresponding volumes of each material in the mixed cell are
evaluated (using the updated overall cell volume from Eq. (4.33)) :

Vn+1
k = f n+1

k Vn+1 , (4.49)
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along with each material’s density and volume change:

ρn+1
k =Mk/V

n+1
k and δVn+1

k =Vn+1
k −Vn

k . (4.50)

As in the overall cell case, the SIE for each material is obtained from the updated pdV
work:

εn+1
k = εnk−pn+1/2δVn+1

k /Mk . (4.51)

Lastly, the individual pressures are consistently evaluated with full EOS calls:

pn+1
k =Pk(τn+1

k ,εn+1
k ). (4.52)

In the actual implementation, one adds an artificial viscosity term (e.g., to Eq. (4.30)),
the specific form of which will affect the computed results. Furthermore, one can con-
ceive of modifications to this method, e.g., by altering the relative contribution of the
terms in Eq. (4.46) in order to account, say, for the sub-cell interaction of materials having
disparate properties (e.g., small volume fractions). Such modifications may change the
results for Tipton’s method on the test problems, to which we now turn.

5 Test Problems and Results

We examine several different test problems found in the compressible flow literature in
order to evaluate the methods described above. We focus on problems with exact so-
lutions, so that we can rigorously compare the quantitative errors associated with dif-
ferent methods. While several test problems exist and are used by the single-material
compressible flow algorithm development community (see, e.g., the overview by Liska
& Wendroff [20]), fewer problems are available for code verification of multifluid com-
pressible flow.

For results of both the Riemann-relaxation and Tipton’s methods on the test prob-
lems consider, the mesh consists of Nx zones, each of identical dimension 1/(Nx+1),
with the exception of a single multi-material zone, which is of width 2/(Nx+1). In that
multi-material zone, the mass and volume fractions are assigned to be consistent with
the initial conditions; also, the initial volume fractions are assigned to be consistent with
the initial interface between the twomaterials being located at the geometric center of the
cell. We also compare with a pure-material calculation, i.e., with no mixed cell, in which
all cells are initially the same width; these calculations contain one more cell than the
multi-material calculations, so that for pure-material calculations with Nx+1 zones, each
zone is of width 1/(Nx+1), with the multi-material zone of the other methods effectively
split into two pure-material zones of equal dimension. All problems were run with the
same value of CFL constant, equal to 0.25. When Newton’s method is used, we imposed
an absolute L1 convergence tolerance of at least 10−10 in the nondimensional test cases
and 10−7 in the dimensional water-air shock tube problem of §5.5. For the results pre-
sented here, we assign the single mixed-cell pressure as the spatially averaged value of
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the two sub-cell pressures of the constituent materials, i.e., as that given in Eq. (4.23). We
present graphical results consisting of snapshots of the computed and exact flow fields at
the final time along with time-histories of the material state properties of the two materi-
als in the multi-material cell or, in the pure-material calculation, adjacent to the interface.
Additionally, we quantify the error between the computed results and the exact solution.

5.1 The Sod Shock Tube

The Sod shock tube problem [28] is defined as the behavior of a polytropic gas with the
following non-dimensional initial conditions:

(γ,ρ,e,p,u)=

{

(1.4, 1, 2.5, 1, 0) , if 0 < x<0.5 ,

(1.4, 0.125, 2, 0.1, 0) , if 0.5< x<1 ,
(5.1)

with a final time of t f inal =0.2. This single-material problem is run to verify our basic im-
plementation of the two-material algorithms. We refer to the material to the left of x=0.5
(“the interface”) as “material 1” and the material to the right as “material 2.” The initial
condition of the mixed cell, centered at x=0.5, consists of these two disparate states. The
developing structure consists of a rarefaction wave moving to the left, a contact discon-
tinuity (corresponding to the initial discontinuity between the two states) moving right,
and a shockwave moving right (faster than the contact). The exact solution to this prob-
lem is evaluated and used to quantify the error in the computed solution.

Results of our method on this problem are shown in Figs. 3–10. Shown in Fig. 3 are,
clockwise from the upper left, plots of the mass density, pressure, velocity, and SIE at
the final time. These plots contain the computed values (solid line) and exact solution
(dashed line) plotted against the left ordinate and the signed difference between the ex-
act and computed results (dotted line) plotted against the right ordinate. The values
corresponding to the individual material in the mixed cell are indicated with the sym-
bol •. Errors are present at the usual locations, e.g., at the head and tail of the rarefaction
and at the shock, together with overshoots and undershoots at the contact. The SIE in
Fig. 3(c) exhibits obvious overshoot on the rarefaction-side of the contact. Correspond-
ing plots of results for the mixed-cell method of Tipton and the pure-cell calculation are
given in Figs. 4 and 5. Comparison of the three methods’ results (without the errors) for
the mass density, pressure, and SIE is provided in Fig. (6), which shows that the results
for all methods exhibit slight diffferences: the tail of the rarefaction is less accurate with
Tipton’s method, which also undershoots density and overshoots SIE at the contact most
significantly. Table 1 catalogues the L1 norm of the error between the computed results
and the exact solution for the same flow variables, for each of the three methods on all
meshes. Also included in that table is the outcome of fitting these results to the error
ansatz,

||ycomputed−yexact||1 =A ∆xσ , (5.2)
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where ∆x is the initial, uniform mesh spacing of the problem (in all but the mixed cell).
These values are depicted graphically in Fig. 7. These results suggest overall first-order
convergence of the methods in all cases.

Figure 8 contains time-history plots for the new method of the (from left to right)
pressure, the mass density, and SIE of the two materials in the mixed cell, for the (from
top to bottom) 99-, 199-, 399-, and 799-cell calculations. In these figures, the solid line
indicates the left material (material 1) and a dotted line represents the right material (ma-
terial 2). It is clear from these results that pressure equilibrium obtains for this problem
by this method. Note that relaxation to pressure equilibrium is not monotonic in time.
Moreover, the zoning study shows that the effective relaxation effect is proportional to
the mesh spacing. Figure 9 contains plots of these time-histories on the coarsest grid
for the three methods. The relaxation time is comparable for all methods, with Tipton’s
method perhaps slightly slower. The approach to equilibrium differs among the meth-
ods, however, with the final values of the newmethod closer to those of the pure-material
calculation than to those of Tipton’s method. Table 2 gives the values adjacent to the ma-
terial interface at the final time on the finest grid, together with the exact solution at the
contact interface. The Tipton locations and pressures are slightly closer to exact values,
while the new method’s locations and pressures are closer to the pure-material calcula-
tion; additionally, the density and SIE of the new method are closer to both the exact and
pure-material values. Figure 10 shows the position of the material interface as a function
of time. The methods’ results vary slightly at early time (shown on the right), with the
results of the new method very similar to those of the pure-material calculation at late
time.

5.2 The Modified Sod Shock Tube

Various authors have proposed modifications to the standard Sod shock tube problem
discussed in the previous section. We consider the variant introduced by Barlow [4] and
described by Shashkov [27], with the following non-dimensional initial conditions:

(γ,ρ,e,p,u)=

{

(2, 1, 2, 2, 0) , if 0 < x<0.5 ,

(1.4, 0.125, 2, 0.1, 0) , if 0.5< x<1 ,
(5.3)

with a final time of t f inal = 0.2. As for the standard Sod case, the initial condition of the
mixed cell, again centered at x=0.5, contains both of these two distinct states; unlike the
that case, however, this is a genuine two-material problem. The solution structure is the
same as the standard Sod case; however, this modified problem allows one to test the
truly multi-material aspects of our algorithm.

Results of our method on this problem are shown in Figs. 11–18. Shown in Fig. 11
are, clockwise from the upper left, plots of the mass density, pressure, velocity, and SIE
at the final time. These plots contain the computed values (solid line) and exact solution
(dashed line) plotted against the left ordinate and the signed difference between the exact
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and computed results (dotted line) plotted against the right ordinate. The values corre-
sponding to the individual material in themixed cell are indicatedwith the symbol •. The
stronger initial pressure difference of this problem leads to greater over- and undershoot
at the shock than the standard Sod problem; as in the standard Sod results, overshoot in
the rarefaction-side SIE is seen. Corresponding plots of results for the mixed-cell method
of Tipton and the pure-cell calculation are given in Figs. 12 and 13. Figure 14 contains re-
sults for all three methods. The results are similar to those for the standard Sod problem,
with the Tipton method results standing out by having the least accurate rarefaction tail
as well as the greatest density undershoot and SIE overshoot at the contact.

Table 3 shows the L1 norm of the error between the computed results and the exact
solution for these flow variables, for each of the three methods on all meshes, together
with the fit of those results to the ansatz in Eq. (5.2). The convergence results are slightly
more uniform for this problem than for the standard Sod problem. These values are
plotted in Fig. 15.

Figure 16 contains time-history plots of the (from left to right) pressure, the mass den-
sity, and SIE of the two materials in the mixed cell, for the (from top to bottom) 99-, 199-,
399-, and 799-cell results. In these figures, the solid line indicates the left material (mate-
rial 1) and a dotted line represents the right material (material 2). These results are qual-
itatively very similar to those of the standard Sod problem, with slight non-monotonic
behavior in the pressure difference, which ultimately goes to zero. Plots of time-histories
on the coarsest grid for all three methods are shown in Fig. 17. The nature of the pressure-
equilibration varies among the three methods. The final values of density and SIE differ
slightly among methods, with those of the new and pure-material calculation being more
similar to each other than to the Tipton values. Table 4 gives the values adjacent to the
material interface at the final time on the finest grid, together with the exact solution at
the contact interface. The results for the new method are, in general, closer to the corre-
sponding values for both the exact and pure-material calculations. Figure 18 shows the
position of the material interface as a function of time. These results are similar to the
standard Sod problem results, with the results of the new method similar to those of the
pure-material calculation at all but the earliest times.

5.3 Moving Shock Problem

Like the first Sod problem, the moving shock problem is a single-material test, but of a
fundamentally different phenomenon. This problem tests the steady propagation of a
shock wave in a uniformmaterial and is used to assesses the impact of the multi-material
algorithm on the otherwise uniform flow. The non-dimensional initial conditions are:

(γ,ρ,e,p,u)=

{

(5/3, 4, 0.5, 4/3, 1) , if −1< x<0 ,
(

5/3, 1, 10−4, 2/3×10−4, 0
)

, if 0< x<1 ,
(5.4)

with a final time of t f inal = 0.5. These initial conditions approximate an infinitely strong
shock wave moving into quiescent gas at speed us = 4/3. The default mesh for this
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problem contains 255 cells on−1≤x≤1. The mixed cell is initially centered at x=0.0 and
contains the two states indicated above.

Results of our method on this problem are shown in Figs. 19–26. Shown in Figure 19
are, clockwise from the upper left, plots of the mass density, pressure, velocity, and SIE
at the final time; again, the computed values (solid line) and exact solution (dashed line)
are plotted against the left ordinate and the signed differences between these values (dot-
ted line) are plotted against the right ordinate, with the mixed-cell values indicated by
the symbol •. The perturbation in the results to the right of the origin in these plots is
a residual of the start-up error associated with the initial shock location at the origin.∗∗

The additional discrepancies in the solutions are associated with the original interface
(at x= 0.5) and the shock (at x= 2/3), where, again, over- and under-shoots occur, with
the density overshoot being most pronounced. Corresponding plots of results for the
mixed-cell method of Tipton and the pure-cell calculation are given in Figs. 20 and 21.
Note that the pure-material case shows perturbations in both density and SIE near the
original interface. These features, related to the discontinuous initial conditions, mani-
fest the inability of the underlying hydro algorithm’s discretized equations to faithfully
represent the (approximately) uniformly propagating shock on the staggeredmesh. Both
closure models capture the shock nearly as well as the pure-material algorithm, with only
slightly greater error than the pure-material result at the shock and the initial interface.
Comparison of coarse-grid results for these quantities in Fig. 22 indicates that both the
new method and Tipton’s method produce the most significant discrepancies near the
contact in mass density and SIE. Table 5 shows the L1 norm of the error between the com-
puted results and the exact solution for these flow variables, for each of the threemethods
on all meshes, together with the fit of those results to the ansatz in Eq. (5.2). These val-
ues are depicted graphically in Fig. 23. These results again suggest overall first-order
convergence of the methods.

Figure 24 contains time-history plots of the (from left to right) pressure, the mass den-
sity, and SIE of the two materials in the mixed cell, for the (from top to bottom) 255-, 511-,
and 1023-cell results. In these figures, the solid line indicates the left material (material 1)
and a dotted line represents the right material (material 2). These results present clear
examples of the pressure difference decreasing at early time, increasing at intermediate
time, and then relaxing to zero at late times. The pressure histories for this problem sup-
port the contention posited in §4.2, that the pressures computed with this model do relax
to equillibrium, but in a possibly non-monotonic manner. Time-histories on the coarsest
grid for the three methods, given in Fig. 25, show notable differences in behavior. While
the pressure for each method equilibrates to approximately the same value, the time-
dependence of that relaxation clearly differs among the methods. The mass density and
SIE show notably different behavior: the newmethod and pure-material calculation give
final values that are more similar than the Tipton values, which are of reversed order. Ta-
ble 6 gives the values adjacent to the material interface at the final time on the finest grid,

∗∗Evocative of this phenomenon are post-shock oscillations, as discussed by Arora & Roe [2] and LeV-
eque [19] for Eulerian shock capturing schemes.
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together with the exact solution at the contact interface. For both Tipton and the pure-
material calculation, the interface is slightly to the left of (behind) where it should be;
however, the new method gives slightly greater (resp., smaller) point-wise error in mate-
rial 1 (resp., 2) than Tipton and the pure-material result. Figure 26 shows the position of
the material interface as a function of time. The methods’ results differ slightly, even at
early time (shown on the right): the pure-material calculation and Tipton’s method have
a similar time-history, with the interface slightly behind that of the new method at all
times.

5.4 Shock-Contact Problem

This problem tests the transmission and reflection of a Mach 2 shock through an initially
stationary contact discontinuity between two materials with disparate adiabatic indices.
This problem was used by Banks et al. [3] to evaluate high-resolution Godunov algo-
rithms for multi-material, compressible flow in the Eulerian frame. To three significant
figures, the non-dimensional initial conditions are given by:

(γ,ρ,e,p,u)=











(1.35, 2.76, 4.60, 4.45, 1.48) , if 0 < x<0.1 ,

(1.35, 1.0, 2.86, 1.0, 0.0) , if 0.1< x<0.5 ,

(5.0, 1.9, 0.132, 1.0, 0.0) , if 0.5< x<1 ,

(5.5)

with a final time of t f inal = 0.25. The default mesh for this problem has 274 cells on the
initial domain −0.37≤ x≤1. In the calculations we use high-precision initial conditions,
given in Table 7, corresponding to a Mach number of two with to a shock speed of us

.
=

2.32. The mixed cell is initially centered at x= 0.5 and contains the quiescent states of
the materials with differing adiabatic indices. The shock meets this material interface at
t
.
= 0.172. The numerical solution for the flow state at any time can be obtained using

standard shock relations (see, e.g., the report by Hurricane & Miller [14]); high-precision
results for the final time are given in Table 8.

Results of our method on this problem are shown in Figs. 27–34. Shown in Fig. 27
are, clockwise from the upper left, plots of the computed (solid line) and exact (dashed
line) mass density, pressure, velocity, and SIE at the final time, together with the signed
difference between these values (dashed lines), as well as the mixed-cell values (•). The
residual of the start-up error is evident near the origin. The reflected shock is somewhat
noisier in both density and SIE than the transmitted shock, while the contact exhibits a
notable undershoot in the constituent density. Corresponding results for the mixed-cell
method of Tipton and the pure-cell calculation are shown in Figs. 28 and 29. Compari-
son of coarse-grid results for all methods in Fig. 30 shows that, near the contact in this
problem, the new method has slightly greater undershoot in mass density than Tipton’s
method (the pure-material calculation has none). Also at the contact, the overshoot in
SIE of Tipton’s method is greater than either the new method or pure-material calcula-
tion. Table 9 catalogues the L1 norm of the error between the computed results and the
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exact solution for these same flow variables, for each of the three methods on all meshes,
together with the fit of those results to the ansatz in Eq. 5.2. These values are plotted
in Fig. 31. These results again suggest approximately first-order convergence overall for
this problem, although the convergence results for SIE are uniformly lower than for other
quantities.

Figure 32 contains time-history plots of (from left to right) close-ups of the pressure,
mass density, and SIE of the two materials in the mixed cell, for the (from top to bottom)
274-, 549-, 1099-, and 2199-cell results for the initial domain−0.37≤x≤1. In these figures,
the solid line indicates the left material (material 1) and a dotted line represents the right
material (material 2). The mixed cell, initially in pressure equilibrium, is disturbed by
the passing shock, leading to slight pressure non-equlibrium, which rapidly diminishes.
Figure 33 contains time-histories on the coarsest grid for all three methods. For all meth-
ods, the approach to equilibrium is roughly similar; however, the pressure equilibration
for the new method and pure-material calculation bear greater similarity to each other
than to Tipton’s method, which exhibits a longer relaxation time and notably different
time-dependence. Table 10 gives the values adjacent to the material interface at the final
time on the finest grid, together with the exact solution at the contact interface. For both
Tipton and the pure-material calculation, the interface is slightly to the right (ahead) of
where it should be; however, the new method gives slightly smaller (resp., larger) point-
wise error for density and SIE in material 1 (resp., 2) than Tipton and the pure-material
result. Figure 34 shows the position of the material interface as a function of time. The
results for all methods are similar, although, unlike the other problems, the pure-material
interface (dashed line) and that of Tipton’s method (dotted line) are slightly ahead of the
interface of the new method (solid line).

5.5 Water-Air Shock Tube

The water-air shock tube has become a standard test problem in the multi-material com-
pressible flow community, as it tests inherently compressible flow features, uses a slightly
more complicated and stiffer EOS than the standared polytropic gas, and possesses a di-
rectly computable solution. Variations of this problem have been evaluated by several
researchers, including, e.g., Andrianov [1], Johnson & Colonius [15], Luo et al. [21], and
Saurel & Abgrall [26].

The thermodynamic properties of water in this problem are given by the stiffened-gas
EOS:

p=(γ−1)ρe−γp∞ , (5.6)

for which the square of the sound speed is given by

cs2=γ(γ−1)

(

e−
p∞

ρ

)

=γ(p+p∞)/ρ. (5.7)
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The initial conditions for this problem, in mks units, are:

(γ,p∞,ρ,e,p,u)=

{

(

4.4, 6×108, 103, 1.07×106, 109, 0
)

, if 0 < x<0.7,
(

1.4, 0, 50, 5×104, 106, 0
)

, if 0.7< x<1,
(5.8)

with a final time of t f inal=2.2×10−4 s. Themulti-material cell is initially centered at x=0.7
and contains the two materials specified above. The exact solution we use here is based
on the solver described by Plohr [24].

Results of our method on this problem are shown in Figs. 35–42. Shown in Fig. 35 are,
clockwise from the upper left, plots of the computed (solid line) and exact (dashed line)
mass density, pressure, velocity, and SIE at the final time, together with the signed dif-
ference between these values (dashed lines), as well as the mixed-cell values (•). Notable
are the undershoot in density and overshoot in SIE at the contact; the strong rarefaction
is reasonably well captured. Corresponding plots of results for the mixed-cell method of
Tipton and the pure-cell calculation are given in Figs. 36 and 37. Figure 38 shows results
for all methods: the new method results are, again, closer to the pure-material calcula-
tion, while Tipton’s method has greater under- and overshoots at the contact in mass
density and SIE, respectively, together with a slight “bump” in pressure at the tail of the
rarefaction. Table 11 gives the L1 norm of the error between the computed results and
the exact solution for these flow variables, for each of the three methods on all meshes,
together with the fit of those results to the ansatz in Eq. (5.2). These values are depicted
graphically in Fig. 39, showing that the magnitude of the errors for Tipton’s method are
notably greater than the other two approaches. Overall, these results imply first-order
convergence of the methods for this problem.

Figure 40 contains time-history plots of the (from left to right) pressure, the mass den-
sity, and SIE of the two materials in the mixed cell, for the (from top to bottom) 249-, 499-,
and 999-cell results. In these figures, the solid line indicates the left material (material 1)
and a dotted line represents the rightmaterial (material 2). The pressure differencemono-
tonically relaxes to zero for this problem. Plots of time-histories for the three methods on
the coarsest grid are shown in Fig. 41. The new method equilibrates monotonically in all
quantities, while both Tipton’s method and the pure-material calculation exhibit pressure
undershoot (including negative pressure values) before equilibration. The new method
and pure-material calculation are monotonic in material 2 (air), while the Tipton results
are not. Also, the new method relaxes to final values that are closer to those of the pure-
material calculation than to those of Tipton’s method. Table 12 gives the values adjacent
to the material interface at the final time on the finest grid, together with the exact solu-
tion at the contact interface. These point-wise values for the new method are closer to
both the exact results and the pure-material calculations for all field quantities. Figure 42
shows the position of thematerial interface as a function of time. In this case, the position
of the material interface is very similar for all methods at all times.
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6 Summary and Conclusions

We have considered the problem of closing the system of equations for a two-material
cell under the single velocity, single pressure assumption in one dimensional Lagrangian
hydrodynamicswithmixed cells. We treat the constituents in thesemulti-material cells as
distinct, which presents the problem of how to assign the thermodynamic states of the in-
dividual material components together with the nodal forces that such a zone generates,
despite a lack of detailed information within such cells. Our approach is motivated by
the work of Lagoutière [17] and Després & Lagoutière [10], in which the change in heat in
the constituentmaterials in themixed cell is assumed to be equal. Their mixed-cell model
can be described by a set of four nonlinear equations in four unknowns consisting of the
updated values of the specific internal energy and the specific volume for each of the
two materials in the mixed cell. A solution to this set of nonlinear equations comprises
one part of an overall predictor-corrector scheme for solving the governing conservation
laws.

We break the assumption of instantaneous pressure equilibration among the mixed-
cell constituents in the work of Lagoutière [17] and Després & Lagoutière [10] by impos-
ing a sub-cell dynamics model that uses a minimization approach based on a local Rie-
mann problem. The unique contribution of our work is the use of this physics-inspired,
geometry-based approach both (i) to break instantaneous pressure equilibration by re-
laxing the individual sub-cell pressures to equilibrium and (ii) to determine the single
updated value of the relaxing-toward-equilibrium pressure assigned to the overall mixed
cell. We have provided the full equations for our method as well as a description of the
algorithmic implementation.

We present results of our method for several test problems, each having a directly
computable solution with either ideal-gas or stiffened-gas equations of state, together
with complete details of the initial conditions for each problem. These results are com-
pared with outcome of a pure-material (i.e., no mixed-cell) calculation (with two pure-
material cells in place of the single multi-material cell) and with the results based on a
standard implementation of Tipton’s method [27, 29]. Quantitative evaluation of the dif-
ference between our computed results and the exact solutions demonstrates very nearly
first-order convergence on each of these five problems. The mixed cell pressures in all
problems evolve smoothly—but not necessarily monotonically—toward equilibrium on
a timescale that decreases approximately linearly with mesh size. The mixed-cell solu-
tions exhibit slight over- or undershoots in density (most noticeable in the shock-contact
and water-air shocktube problems) and SIE (seen in the Sod, modified Sod, moving
shock, and water-air shock tube problems). Comparison of these results with those using
the Tipton’s method or with those corresponding to a pure-material calculation indicate
that the results of the new method are, overall, more similar to the pure-material cal-
culations than to those using Tipton’s method. While the overall L1 norm of the errors
are comparable on almost all problems, the challenging water-air shock tube problem
exhibits a notable difference among the methods, with the new method having notably
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smaller L1-error than the Tipton results and being qualitatively more similar to the pure-
material calculation.

There remain other tests of these methods, e.g., on problems for which the material
interface is not precisely in the center of the mixed cell; in particular, the case of a very
small initial volume fraction of one material poses a challenge for the class of methods
we have considered. Further analysis of our approach, compared with and contrasted
to a comparable analysis of Tipton’s method, may provide valuable insights by which
improved multi-material Lagrangian compressible flow algorithms can be developed.

Acknowledgments

This work was performed under the auspices of the United States Department of En-
ergy by Los Alamos National Security, LLC, at Los Alamos National Laboratory under
contract DE-AC52-06NA25396. The authors gratefully acknowledge the partial support
of the US Department of Energy Office of Science Advanced Scientific Computing Re-
search (ASCR) Program in Applied Mathematics Research and the partial support of the
US Department of Energy National Nuclear Security Administration Advanced Simula-
tion and Computing (ASC) Program. The authors also thank A. Barlow, Yu. Bondarenko,
D. Burton, B. Després, P.-H. Maire, L. Margolin, W. Rider, and Yu. Yanilkin for numerous
stimulating discussions on these topics.

References

[1] N. Andrianov, Analytical and numerical investigation of two-phase flows, Ph.D. disserta-
tion, Universität Magdeburg (2003).

[2] M. Arora and P.L. Roe, On postshock oscillations due to shock capturing schemes in un-
steady flows, J. Comput. Phys., 130 (1997), 25–40.

[3] J.W. Banks, D.W. Schwendeman, A.K. Kapila and W.D. Henshaw, A high-resolution Go-
dunovmethod for compressible multi-material flow on overlapping grids, J. Comput. Phys.,
223 (2007), 262–297.

[4] A. Barlow, A new Lagrangian scheme for multimaterial cells, in Proceedings of European
Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS
Computational Fluid Dynamics Conference, Swansea, Wales, U.K., 4–7 September 2001,
235–294.

[5] A.L. Bauer, D.E. Burton, E.J. Caramana, R. Loubère, M.J. Shashkov and P.P. Whalen, The
internal consistency, stability, and accuracy of the discrete, compatible formulation of La-
grangian hydrodynamics, J. Comput. Phys., 218 (2006), 572–593.

[6] J. Campbell and M. Shashkov, A tensor artificial viscosity using a mimetic finite difference
algorithm, J. Comput. Phys., 172 (2001), 739–765.

[7] E.J. Caramana, D.E. Burton, M.J. Shashkov and P.P. Whalen, The Construction of Compatible
Hydrodynamics Algorithms Utilizing Conservation of Total Energy, J. Comput. Phys., 146
(1999), 227–262.

[8] P. Colella and H.M. Glaz, Efficient solution algorithm for the Riemann problem for real
gases, J. Comput. Phys., 59 (1985), 264–289.



29

[9] V.I. Delov and V.V. Sadchikov, Comparison of several models for computation of thermody-
namical parameters for heterogeneous Lagrangian cells, VANT (Mathematical Modeling of
Physical Processes), 1 (2005), 57–70 (in Russian).

[10] B. Després and F. Lagoutière, Numerical resolution of a two-component compressible fluid
model with interfaces, Prog. Comput. Fluid Dyn., 7 (2007), 295–310.

[11] E.A. Goncharov and Yu. Yanilkin, Newmethod for computations of thermodynamical states
of the materials in the mixed cells, VANT (Mathematical Modeling of Physical Processes), 3
(2004), 16–30 (in Russian).

[12] J.J. Gottlieb and C.P.T. Groth, Assessment of Riemann solvers for unsteady one-dimensional
inviscid flows of perfect gases, J. Comput. Phys., 78 (1988), 437–458.

[13] C.W. Hirt, A.A. Amsden and J.L. Cook, An Arbitrary Lagrangian-Eulerian Computing
Method for All Flow Speeds, J. Comput. Phys., 14 (1974), 227–253.

[14] O.A. Hurricane and P.L. Miller, Shock Transmission and Reflection from aMaterial Interface
and Subsequent Reflection from a Hard Boundary, Lawrence Livermore National Labora-
tory report UCRL-ID-132586 (1998) (unpublished).

[15] E. Johnson and T. Colonius, Implementation of WENO schemes in compressible multicom-
ponent flow problems, J. Comput. Phys., 219 (2006), 715–732.

[16] J.R. Kamm and M.J. Shashkov, A Pressure Relaxation Closure Model for One-Dimensional,
Two-Material Lagrangian Hydrodynamics Based on the Riemann Problem, Los Alamos Na-
tional Laboratory report LA-UR-08-06045 (2008) (unpublished).
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NewMethod

99 199 399 799 A σ

p 8.62×10−3 4.32×10−3 2.19×10−3 1.09×10−3 0.83 0.99
ρ 8.56×10−3 4.30×10−3 2.16×10−3 1.09×10−3 0.83 0.99
e 2.48×10−2 1.27×10−2 6.21×10−3 3.12×10−3 2.52 1.00
u 2.30×10−2 1.16×10−2 5.32×10−3 2.71×10−3 2.75 1.04

Tipton’s Method

99 199 399 799 A σ

p 9.46×10−3 4.78×10−3 2.44×10−3 1.23×10−3 0.83 0.97
ρ 9.28×10−3 4.82×10−3 2.45×10−3 1.23×10−3 0.87 0.98
e 2.70×10−2 1.46×10−2 7.23×10−3 3.63×10−3 2.40 0.97
u 2.16×10−2 1.22×10−2 5.67×10−3 2.89×10−3 2.04 0.98

Pure Material

100 200 400 800 A σ

p 6.33×10−3 3.48×10−3 1.75×10−3 8.73×10−4 0.68 1.00
ρ 6.92×10−3 3.19×10−3 1.61×10−3 8.01×10−4 0.62 0.99
e 2.05×10−2 1.05×10−2 5.32×10−3 2.54×10−3 2.11 1.00
u 2.05×10−2 1.04×10−2 5.29×10−3 2.39×10−3 2.37 1.03

Table 1: L1 norms of the difference between exact and computed Sod problem results, computed pointwise at
t=0.2, for the given variables with the indicated number of points on the unit interval for, from top to bottom,
the new method, Tipton’s method, and the pure-material calculation. The prefactor A and convergence rate
σ are least-squares fits to the relation given in Eq. (5.2). The values of σ close to unity suggest first-order
convergence.
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Exact New Tipton Pure

x1 6.85491×10−1
6.83852×10−1 6.83688×10−1 6.83962×10−1

x2 6.85764×10−1 6.85635×10−1 6.85745×10−1

p1 3.03130×10−1 3.03123×10−1 3.03128×10−1 3.03119×10−1

p2 3.03130×10−1 3.03123×10−1 3.03128×10−1 3.03119×10−1

ρ1 4.26319×10−1 3.89645×10−1 3.89070×10−1 4.25102×10−1

ρ2 2.65574×10−1 2.53451×10−1 2.29711×10−1 2.49489×10−1

e1 1.77760 1.94487 1.94777 1.78263
e2 2.85354 2.98996 3.29902 3.03740

Table 2: Sod problem at t= 0.2: the top two rows give the contact location for the exact solution and the
material-centered positions adjacent to the interface for the computed results on the finest grid (new method
in the mixed cell, Tipton’s method in the mixed cell, and the pure-material calculation), while the subsequent
rows contain the corresponding flow field values for the various approaches.
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NewMethod

99 199 399 799 A σ

p 1.70×10−2 8.23×10−3 4.12×10−3 2.13×10−3 1.66 1.00
ρ 1.07×10−2 5.22×10−3 2.61×10−3 1.35×10−3 1.04 1.00
e 4.37×10−2 3.07×10−2 1.03×10−2 5.49×10−3 4.22 1.00
u 3.12×10−2 1.42×10−2 7.00×10−3 3.91×10−3 2.99 1.00

Tipton’s Method

99 199 399 799 A σ

p 1.98×10−2 9.82×10−3 4.93×10−3 2.54×10−3 1.86 0.99
ρ 1.18×10−2 5.82×10−3 2.92×10−3 1.51×10−3 1.11 0.99
e 4.31×10−2 2.09×10−2 1.04×10−2 5.56×10−3 3.98 0.99
u 3.37×10−2 1.58×10−2 7.80×10−3 4.32×10−3 3.11 0.99

Pure Material

100 200 400 800 A σ

p 1.17×10−2 5.84×10−3 2.93×10−3 1.47×10−3 1.15 1.00
ρ 5.92×10−3 2.98×10−3 1.50×10−3 7.49×10−4 0.58 0.99
e 2.33×10−2 1.21×10−2 6.01×10−3 2.95×10−3 2.32 1.00
u 2.11×10−2 1.13×10−2 5.55×10−3 2.67×10−3 2.15 1.00

Table 3: L1 norms of the difference between exact and computed modified Sod problem results, computed
pointwise at t= 0.2, for the given variables with the indicated number of points on the unit interval for, from
top to bottom, the new method, Tipton’s method, and the pure-material calculation. The prefactor A and
convergence rate σ are least-squares fits to the relation given in Eq. (5.2). The values of σ close to unity suggest
first-order convergence.
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Exact New Tipton Pure

x1 7.55142×10−1
7.53723×10−1 7.53528×10−1 7.53760×10−1

x2 7.55615×10−1 7.55485×10−1 7.55384×10−1

p1 4.30332×10−1 4.30325×10−1 4.30329×10−1 4.30323×10−1

p2 4.30332×10−1 4.30325×10−1 4.30329×10−1 4.30323×10−1

ρ1 4.63860×10−1 3.84173×10−1 3.79078×10−1 4.60497×10−1

ρ2 3.25380×10−1 2.94700×10−1 2.54108×10−1 2.92835×10−1

e1 9.27720×10−1 1.12013 1.13520 9.34476×10−1

e2 3.30638 3.65053 4.23372 3.67377

Table 4: Modified Sod problem at t= 0.2: the top two rows give the contact location for the exact solution
and the material-centered positions adjacent to the interface for the computed results on the finest grid (new
method in the mixed cell, Tipton’s method in the mixed cell, and the pure-material calculation), while the
subsequent rows contain the corresponding flow field values for the various approaches.
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NewMethod

255 511 1023 A σ

p 6.77×10−3 3.34×10−3 1.80×10−3 0.69 0.96
ρ 2.12×10−2 1.09×10−2 5.55×10−3 2.30 0.97
e 2.29×10−3 1.22×10−3 5.98×10−4 0.25 0.97
u 3.83×10−3 2.05×10−3 9.89×10−4 0.45 0.98

Tipton’s Method

255 511 1023 A σ

p 6.39×10−3 3.21×10−3 1.70×10−3 0.65 0.96
ρ 1.98×10−2 1.04×10−2 5.26×10−3 2.09 0.95
e 2.13×10−3 1.15×10−3 5.61×10−4 0.23 0.96
u 3.80×10−3 1.98×10−3 9.84×10−4 0.43 0.97

Pure Material

256 512 1024 A σ

p 9.93×10−3 6.99×10−3 2.59×10−3 1.22 0.97
ρ 2.56×10−2 1.67×10−2 6.73×10−3 2.98 0.96
e 2.53×10−3 2.03×10−3 6.69×10−4 0.31 0.96
u 4.70×10−3 2.62×10−3 1.20×10−3 0.58 0.99

Table 5: L1 norms of the difference between exact and computed moving shock problem results, computed
pointwise at t= 0.5, for the given variables with the indicated number of points on the unit interval for, from
top to bottom, the new method, Tipton’s method, and the pure-material calculation. The prefactor A and
convergence rate σ are least-squares fits to the relation given in Eq. (5.2). The values of σ close to unity suggest
first-order convergence.
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Exact New Tipton Pure

x1 4.99987×10−1
4.98560×10−1 4.98419×10−1 4.98302×10−1

x2 5.00058×10−1 4.99900×10−1 4.99676×10−1

p1 1.33341 1.33338 1.33338 1.33336
p2 1.33341 1.33338 1.33338 1.33336
ρ1 4.00014 3.10224 3.47524 3.50964
ρ2 3.99925 4.09120 2.73574 3.73359
e1 5.00012×10−1 6.44716×10−1 5.75520×10−1 5.69870×10−1

e2 5.00123×10−1 4.88870×10−1 7.31090×10−1 5.35687×10−1

Table 6: Moving shock problem at t= 0.5: the top two rows give the contact location for the exact solution
and the material-centered positions adjacent to the interface for the computed results on the finest grid (new
method in the mixed cell, Tipton’s method in the mixed cell, and the pure-material calculation), while the
subsequent rows contain the corresponding flow field values for the various approaches.
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0< x<0.1 0.1< x<0.5 0.5< x<1

γ 1.35 1.35 5.0
p 4.44680851064 1.0 1.0
ρ 2.76470588235 1.0 1.9
e 4.59548599884 2.85714285714 0.131578947368
u 1.48327021770 0.0 0.0

Table 7: High-precision initial conditions for the shock-contact problem. This configuration corresponds to a
Mach number of 2.0 and an initial shock speed of uS = 2.32379000772, so that the shock hits the material
interface at t=0.172132593165.
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0< x< xRS xRS< x< xC xC< x< xTS xTS< x<1

γ 1.35 1.35 5.0 5.0
p 4.44680851064 7.24980870307 7.24980870307 1.0
ρ 2.76470588235 3.95808583566 2.57856549437 1.9
e 4.59548599884 5.23327184191 0.702891658064 0.131578947368
u 1.48327021770 0.930386423194 0.930386423195 0.0

Table 8: High-precision solution for the shock-contact problem at t = 0.25. Here, the reflected shock po-
sition is xRS = 0.472708981241754, the contact position is xC = 0.572446778128859, and the transmitted
shock position is xTS = 0.775299530851478. The speed of the reflected shock in the laboratory frame is
uRS=−0.350480642253781, and the speed of the transmitted shock is uTS =3.53549118996649.
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NewMethod

274 549 1099 2199 A σ

p 6.89×10−2 3.09×10−2 1.61×10−2 8.05×10−3 15.0 1.02
ρ 1.97×10−2 1.05×10−2 5.85×10−3 2.71×10−3 2.97 0.94
e 1.43×10−2 6.76×10−3 4.84×10−3 1.99×10−3 1.66 0.80
u 1.22×10−2 7.01×10−3 3.71×10−3 1.74×10−3 1.79 0.93

Tipton’s Method

274 549 1099 2199 A σ

p 7.34×10−2 3.13×10−2 1.61×10−2 8.09×10−3 18.2 1.05
ρ 2.04×10−2 1.10×10−2 5.64×10−3 2.88×10−3 3.09 0.94
e 1.56×10−2 1.02×10−2 5.12×10−3 2.87×10−3 1.34 0.83
u 1.24×10−2 6.83×10−3 3.60×10−3 1.68×10−3 2.06 0.96

Pure Material

275 550 1100 2200 A σ

p 7.07×10−2 3.08×10−2 1.59×10−2 7.94×10−3 16.8 1.04
ρ 1.76×10−2 1.00×10−2 5.20×10−3 2.62×10−3 2.38 0.92
e 1.37×10−2 9.29×10−3 4.70×10−3 2.68×10−3 1.05 0.81
u 1.20×10−2 6.82×10−3 3.60×10−3 1.70×10−3 1.93 0.94

Table 9: L1 norms of the difference between exact and computed shock-contact problem results, computed
pointwise at t=0.25, for the given variables with the indicated number of points on the unit interval for, from
top to bottom, the new method, Tipton’s method, and the pure-material calculation. The prefactor A and
convergence rate σ are least-squares fits to the relation given in Eq. (5.2). The values of σ close to unity suggest
first-order convergence.
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Exact New Tipton Pure

x1 5.72280×10−1
5.72245×10−1 5.72284×10−1 5.72286×10−1

x2 5.72597×10−1 5.72623×10−1 5.72595×10−1

p1 7.24981 7.24972 7.24978 7.24969
p2 7.24981 7.24972 7.24978 7.24969
ρ1 3.95809 3.97299 3.53063 3.78162
ρ2 2.57857 2.16434 2.36322 2.61504
e1 5.23327 5.21358 5.86685 5.47739
e2 7.02892×10−1 8.37405×10−1 7.66939×10−1 6.93077×10−1

Table 10: Shock-contact problem at t=0.25: the top two rows give the contact location for the exact solution
and the material-centered positions adjacent to the interface for the computed results on the finest grid (new
method in the mixed cell, Tipton’s method in the mixed cell, and the pure-material calculation), while the
subsequent rows contain the corresponding flow field values for the various approaches.
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NewMethod

249 499 999 A (×10−2) σ

p (×10−6) 2.90 1.46 7.33×10−1 6.95 0.99
ρ 1.43 6.84 3.53×10−1 3.63 1.01
e (×10−3) 1.20 5.62 2.96×10−1 3.09 1.01
u 2.81 1.25 6.75×10−1 7.98 1.03

Tipton’s Method

249 499 999 A (×10−2) σ

p (×10−6) 4.77 2.42 1.23 10.7 0.98
ρ 3.47 1.68 8.65×10−1 8.67 1.00
e (×10−3) 3.72 1.83 9.31×10−1 9.17 1.00
u 6.23 2.93 1.53 16.4 1.01

Pure Material

250 500 1000 A (×10−2) σ

p (×10−6) 3.18 1.60 8.03×10−1 7.65 0.99
ρ 1.04 5.21×10−1 2.71×10−1 2.18 0.97
e (×10−3) 5.00×10−1 2.61×10−1 1.44×10−1 0.70 0.90
u 2.60 1.35 7.29×10−1 4.12 0.92

Table 11: L1 norms of the difference between exact and computed water-air problem results, computed pointwise
at t=2.2×10−4, for the given variables with the indicated number of points on the unit interval for, from top to
bottom, the new method, Tipton’s method, and the pure-material calculation. The prefactor A and convergence
rate σ are least-squares fits to the relation given in Eq. (5.2). The values of σ close to unity suggest first-order
convergence.
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Exact New Tipton Pure

x1 8.05906×10−1
8.05311×10−1 8.05284×10−1 8.05300×10−1

x2 8.06174×10−1 8.06390×10−1 8.06076×10−1

p1 1.59868×107 1.59876×107 1.59817×107 1.59867×107

p2 1.59868×107 1.59876×107 1.59834×107 1.59867×107

ρ1 8.04979×102 7.35249×102 7.31464×102 7.98342×102

ρ2 2.20407×102 1.36417×102 5.90643×101 1.66948×102

e1 9.70426×105 1.06246×106 1.06796×106 9.78494×105

e2 1.81333×105 2.92991×105 6.76523×105 2.39395×105

Table 12: Water-air shock tube problem at t= 2.2×10−4: the top two rows give the contact location for the
exact solution and the material-centered positions adjacent to the interface for the computed results on the
finest grid (new method in the mixed cell, Tipton’s method in the mixed cell, and the pure-material calculation),
while the subsequent rows contain the corresponding flow field values for the various approaches.
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Figure 1: Schematic of the idealized mixed cell, which has material 1 (to the left) separated from material 2
(to the right).
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Figure 2: Schematic of the pressure associated with the 1-D Riemann problem used to model the dynamics of
the two-material mixed cell. The bottom shows the initial pressure, i.e., at time tn, of materials 1 (left) and

2 (right), while the top figure is the updated solution, i.e., at time tn+1. The tn+1 state exhibits, from left to

right, the left tn value, the leading left-most Riemann wave (WL, in this case corresponding to a rarefaction

fan), the contact discontinuity (W∗), the leading right-most Riemann wave (WR, in this case corresponding to
a shock), and the right tn quantity.
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Figure 3: Computed results (solid line) for the Sod shock tube problem with the new method for 99 zones on
[0,1] at t=0.2. The difference (dotted line) between the computed and exact (dashed line) solutions is plotted
against the right ordinate. The values corresponding to the individual materials in the mixed cell are denoted
by the symbol •.
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Figure 4: Computed results (solid line) for the Sod shock tube problem with Tipton’s method for 99 zones on
[0,1] at t=0.2. The difference (dotted line) between the computed and exact (dashed line) solutions is plotted
against the right ordinate. The values corresponding to the individual materials in the mixed cell are denoted
by the symbol •.
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Figure 5: Computed results (solid line) for the Sod shock tube problem with pure cells for 100 zones on [0,1] at
t=0.2. The difference (dotted line) between the computed and exact (dashed line) solutions is plotted against
the right ordinate. The values for the individual materials adjacent to the interface are denoted by the symbol •.
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Figure 6: Results for the Sod shock tube problem on [0,1] at t= 0.2 for (from left to right) pressure, mass
density, and SIE, with (from top to bottom) the new method (99 zones), Tipton’s method (99 zones), and the
pure-cell calculation (100 zones). The computed results are the solid line and the exact solution is the dashed
line.
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Figure 7: Plot of the L1 norm of the difference between the computed results and exact solution on [0,1] at t=0.2
for the Sod shock tube problem with the new method (left), Tipton’s method (center) and the pure-material
calculations (right). The values of the norm for the 99-, 199-, 399-, and 799-zone multi-material calculations
and the 100-, 200-, 400- and 800-cell pure-material calculation are shown for the pressure (◦), density (2), SIE
(⋄), and velocity (△). The curve fit parameters corresponding to these data are given in Table 1.
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Figure 8: Time-history plots for the Sod shock tube problem on [0,1] with the new method of the (from left to
right) pressure, the mass density, and SIE of the two materials in the mixed cell, for the (from top to bottom)
99-, 199-, 399-, and 799-cell results. The solid line indicates the left material (material 1) and a dotted line
represents the right material (material 2).
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Figure 9: Time-history plots for the Sod shock tube problem on [0,1] of the (from left to right) pressure, the
mass density, and SIE, with (from top to bottom) the new method (99 zones), Tipton’s method (99 zones),
and the pure-cell calculation (100 zones): the top two rows are for the two materials in the mixed cell, while
the bottom row is for the cells immediately adjacent to the material interface. The solid line indicates the left
material (material 1), the dotted line represents the right material (material 2), and the bullets represent the
exact solution at the final time.
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Figure 10: Plot of the position of the material interface as a function of time for the Sod shock tube problem
on the coarsest mesh. The left plot shows the behavior for the entire simulation time, while the right plot shows
the early-time behavior. The solid line corresponds to the new method, the dashed line to Tipton’s method,
and the dotted line to the pure-material calculation.
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Figure 11: Computed results (solid line) for the modified Sod shock tube problem with the new method for 99
zones on [0,1] at t=0.2. The difference (dotted line) between the computed and exact (dashed line) solutions
is plotted against the right ordinate. The values corresponding to the individual materials in the mixed cell are
denoted by the symbol •.
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Figure 12: Computed results (solid line) for the modified Sod shock tube problem with Tipton’s method for 99
zones on [0,1] at t=0.2. The difference (dotted line) between the computed and exact (dashed line) solutions
is plotted against the right ordinate. The values corresponding to the individual materials in the mixed cell are
denoted by the symbol •.
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Figure 13: Computed results (solid line) for the modified Sod shock tube problem with pure cells for 100 zones
on [0,1] at t= 0.2. The difference (dotted line) between the computed and exact (dashed line) solutions is
plotted against the right ordinate. The values for the individual materials adjacent to the interface are denoted
by the symbol •.
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Figure 14: Results for the modified Sod shock tube problem on [0,1] at t=0.2 for (from left to right) pressure,
mass density, and SIE, with (from top to bottom) the new method (99 zones), Tipton’s method (99 zones),
and the pure-cell calculation (100 zones). The computed results are the solid line and the exact solution is the
dashed line.
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Figure 15: Plot of the L1 norm of the difference between the computed results and exact solution on [0,1] at
t=0.2 for the modified Sod shock tube problem with the new method (left), Tipton’s method (center) and the
pure-material calculations (right). The values of the norm for the 99-, 199-, 399-, and 799-zone multi-material
calculations and the 100-, 200-, 400- and 800-cell pure-material calculation are shown for the pressure (◦),
density (2), SIE (⋄), and velocity (△). The curve fit parameters corresponding to these data are given in
Table 3.
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Figure 16: Time-history plots for the modified Sod shock tube problem with the new method for the (from left
to right) pressure, the mass density, and SIE of the two materials in the mixed cell, for the (from top to bottom)
99-, 199-, 399-, and 799-cell results. The solid line indicates the left material (material 1) and a dotted line
represents the right material (material 2).
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Figure 17: Time-history plots for the modified Sod shock tube problem of the (from left to right) pressure, the
mass density, and SIE, with (from top to bottom) the new method (99 zones), Tipton’s method (99 zones),
and the pure-cell calculation (100 zones): the top two rows are for the two materials in the mixed cell, while
the bottom row is for the cells immediately adjacent to the material interface. The solid line indicates the left
material (material 1), the dotted line represents the right material (material 2), and the bullets represent the
exact solution at the final time.
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Figure 18: Plot of the position of the material interface as a function of time for the modified Sod shock tube
problem on the coarsest mesh. The left plot shows the behavior for the entire simulation time, while the right
plot shows the early-time behavior. The solid line corresponds to the new method, the dashed line to Tipton’s
method, and the dotted line to the pure-material calculation.
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Figure 19: Computed results (solid line) for the moving shock with the new method for 255 zones on [−1,1] at
t=0.5. The difference (dotted line) between the computed and exact (dashed line) solutions is plotted against
the right ordinate. The values corresponding to the individual materials in the mixed cell are denoted by the
symbol •.
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Figure 20: Computed results (solid line) for the moving shock with Tipton’s method for 255 zones on [−1,1] at
t=0.5. The difference (dotted line) between the computed and exact (dashed line) solutions is plotted against
the right ordinate. The values corresponding to the individual materials in the mixed cell are denoted by the
symbol •.
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Figure 21: Computed results (solid line) for the moving shock with pure cells for 256 zones on [−1,1] at t=0.5.
The difference (dotted line) between the computed and exact (dashed line) solutions is plotted against the right
ordinate. The values for the individual materials adjacent to the interface are denoted by the symbol •.
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Figure 22: Results for the moving shock problem on [−1,1] at t=0.5 with (from left to right) the new method
(255 zones), Tipton’s method (255 zones), and the pure-cell calculation (256 zones), for (from top to bottom)
density, pressure, SIE, and velocity. The computed results are the solid line and the exact solution is the dashed
line.
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Figure 23: Plot of the L1 norm of the difference between the computed results and exact solution for the moving
shock problem on [−1,1] at t=0.5 with the new method (left), Tipton’s method (center) and the pure-material
calculations (right). The values of the norm for the 255-, 511-, and 1023-zone multi-material calculations and
the 256-, 512-, and 1024-cell pure-material calculation are shown for the pressure (◦), density (2), SIE (⋄),
and velocity (△). The curve fit parameters corresponding to these data are given in Table 5.
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Figure 24: Time-history plots for the moving shock problem with the new method of (from left to right) pressure,
mass density, and SIE of the two materials in the mixed cell, for the (from top to bottom) 255-, 511-, and
1023-cell results. The solid line indicates the left material (material 1) and a dotted line represents the right
material (material 2).
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Figure 25: Time-history plots for the moving shock problem for (from left to right) pressure, mass density, and
SIE with (from top to bottom) the new method (255 zones), Tipton’s method (255 zones), and the pure-cell
calculation (256 zones). The solid line indicates the left material (material 1), the dotted line represents the
right material (material 2), and the bullets represent the exact solution at the final time.
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Figure 26: Plot of the position of the material interface as a function of time for the moving shock problem on
the coarsest mesh. The left plot shows the behavior for the entire simulation time, while the right plot shows
the early-time behavior. The solid line corresponds to the new method, the dashed line to Tipton’s method,
and the dotted line to the pure-material calculation.
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Figure 27: Computed results (solid line) for the shock-contact problem with the new method at t= 0.25 for
274 zones initially on [−0.37,1]. The difference (dotted line) between the computed and exact (dashed line)
solutions is plotted against the right ordinate. The values corresponding to the individual materials in the mixed
cell are denoted by the symbol •.
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Figure 28: Computed results (solid line) for the shock-contact problem with Tipton’s method at t= 0.25 for
274 zones initially on [−0.37,1]. The difference (dotted line) between the computed and exact (dashed line)
solutions is plotted against the right ordinate. The values corresponding to the individual materials in the mixed
cell are denoted by the symbol •.
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Figure 29: Computed results (solid line) for the shock-contact problem with pure cells at t=0.25 for 275 zones
initially on [−0.37,1]. The difference (dotted line) between the computed and exact (dashed line) solutions is
plotted against the right ordinate. The values for the individual materials adjacent to the interface are denoted
by the symbol •.
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Figure 30: Results for the shock-contact problem at t= 0.25 with (from left to right) the new method (274
zones), Tipton’s method (274 zones), and the pure-cell calculation (275 zones), for (from top to bottom)
density, pressure, SIE, and velocity. The computed results are the solid line and the exact solution is the dashed
line.
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Figure 31: Plot of the L1 norm of the difference between the computed results and exact solution at t= 0.25
for the shock-contact problem with the new method (left), Tipton’s method (center) and the pure-material
calculations (right). The values of the norm for the 274-, 549-, 1099-, and 2199-zone multi-material calculations
and the 275-, 550-, 1100-, and 2200-cell pure-material calculation are shown for the pressure (◦), density (2),
SIE (⋄), and velocity (△). The curve fit parameters corresponding to these data are given in Table 9.
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Figure 32: Close-up of time-history plots for the shock-contact problem with the new method of the (from left
to right) pressure, the mass density, and SIE of the two materials in the mixed cell, for the (from top to bottom)
274-, 549-, 1099-, and 2199-cell results. The solid line indicates the left material (material 1) and a dotted line
represents the right material (material 2).
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Figure 33: Close-up of time-history plots for the shock-contact problem for (from left to right) pressure, mass
density, and SIE with (from top to bottom) the new method (274 zones), Tipton’s method (274 zones), and
the pure-cell calculation (275 zones). The solid line indicates the left material (material 1), the dotted line
represents the right material (material 2), and the bullets represent the exact solution at the final time.
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Figure 34: Plot of the position of the material interface as a function of time for the shock-contact problem on
the coarsest mesh. The left plot shows the behavior for the entire simulation time, while the right plot shows
the early-time behavior. The solid line corresponds to the new method, the dashed line to Tipton’s method,
and the dotted line to the pure-material calculation.



77

0

300

600

900

1200

-100

0

100

200

0 0.2 0.4 0.6 0.8 1
x

D
e
n
s
it
y

-5 10
8

0

5 10
8

1 10
9

-6 10
7

0

6 10
7

1.2 10
8

0 0.2 0.4 0.6 0.8 1

x

P
re

s
s
u
re

(a) Density (b) Pressure

0

3 10
5

6 10
5

9 10
5

1.2 10
6

-9 10
4

-6 10
4

-3 10
4

0

3 10
4

0 0.2 0.4 0.6 0.8 1
x

S
p
e
c
if
ic

 I
n
te

rn
a
l 
E

n
e
rg

y

-100

0

100

200

300

400

500

-

-400

#$%%#&%%#'%%0

100

0 0.2 0.4 0.6 0.8 1

x

V
e
lo
c
it
y

(c) Specific Internal Energy (d) Velocity

Figure 35: Computed results (solid line) for the water-air shock tube problem with the new method for 249

zones on [0,1] at t= 2.2×10−4. The difference (dotted line) between the computed and exact (dashed line)
solutions is plotted against the right ordinate. The values corresponding to the individual materials in the mixed
cell are denoted by the symbol •.
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Figure 36: Computed results (solid line) for the water-air shock tube problem with Tipton’s method for 249

zones on [0,1] at t= 2.2×10−4. The difference (dotted line) between the computed and exact (dashed line)
solutions is plotted against the right ordinate. The values corresponding to the individual materials in the mixed
cell are denoted by the symbol •.



79

0

,--.--900

1200

-100

0

100

200

0 0.2 0.

x

D
e
n
s
it
y

-5 10
8

0

5 10
8

1 10
9

-6 10
7

0

6 10
7

1.2 10
8

0 0.2 0.4 0.6 0.8 1

x

P
re

s
s
u
re

(a) Density (b) Pressure

0

3 10

/0 12/3 12/1.2 10

4
-

4

-6 10
4

-3 10
4

0

3 10
4

0 0.2 0.4 0.6 0.8 1
x

S
p
e
c
if
ic

 I
n
te

rn
a
l 
E

n
e
rg

y

56770100
877300

400

500

59775:775;77587756770

100

0 0. <

V
e
lo
c
it
y

(c) Specific Internal Energy (d) Velocity

Figure 37: Computed results (solid line) for the water-air shock tube problem with pure cells for 250 zones on

[0,1] at t=2.2×10−4. The difference (dotted line) between the computed and exact (dashed line) solutions is
plotted against the right ordinate. The values for the individual materials adjacent to the interface are denoted
by the symbol •.
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Figure 38: Results for the water-air shock tube problem on [0,1] at t=2.2×10−4 for (from left to right) pressure,
mass density, and SIE with (from top to bottom) the new method (249 zones), Tipton’s method (249 zones),
and the pure-cell calculation (250 zones). The computed results are the solid line and the exact solution is the
dashed line.
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Figure 39: Plot of the L1 norm of the difference between the computed results and exact solution on [0,1] at

t=2.2×10−4 for the water-air shock tube problem with the new method (left), Tipton’s method (center) and
the pure-material calculations (right). The values of the norm for the 249-, 499-, and 999-zone multi-material
calculations and the 250-, 500-, and 1000-cell pure-material calculation are shown for the pressure (◦), density
(2), SIE (⋄), and velocity (△). The curve fit parameters corresponding to these data are given in Table 11.
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Figure 40: Time-history plots for the water-air shock tube problem on [0,1] with the new method of the (from
left to right) pressure, the mass density, and SIE of the two materials in the mixed cell, for the (from top to
bottom) 249-, 499-, and 999-cell results. The solid line indicates the left material (material 1) and a dotted
line represents the right material (material 2).
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Figure 41: Time-history plots for the water-air shock tube problem on [0,1] for (from left to right) pressure,
mass density, and SIE with (from top to bottom) the new method (249 zones), Tipton’s method (249 zones),
and the pure-cell calculation (250 zones). The solid line indicates the left material (material 1), the dotted line
represents the right material (material 2), and the bullets represent the exact solution at the final time.
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Figure 42: Plot of the position of the material interface as a function of time for the water-air shock tube
problem on the coarsest mesh. The left plot shows the behavior for the entire simulation time, while the right
plot shows the early-time behavior. The solid line corresponds to the new method, the dashed line to Tipton’s
method, and the dotted line to the pure-material calculation.


