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Raphaël Loubèrea, Pierre-Henri Maireb, Mikhail Shashkovc
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b Commisariat à l’Energie Atomique CEA-CESTA, 33114, Le Barp France
c Los Alamos National Laboratory, T-5, Los Alamos, NM, 87545, U.S.A

Abstract

This paper deals with the extension to the cylindrical geometry of the re-

cently introduced Reconnection algorithm for Arbitrary-Lagrangian-Eulerian

(ReALE) framework. The main elements in standard ALE methods are an

explicit Lagrangian phase, a rezoning phase, and a remapping phase. Usu-

ally the new mesh provided by the rezone phase is obtained by moving grid

nodes without changing connectivity of the underlying mesh. Such rezone

strategy has its limitation due to the fixed topology of the mesh. In ReALE

we allow connectivity of the mesh to change in rezone phase, which leads

to general polygonal mesh and permits to follow Lagrangian features much

better than for standard ALE methods. Rezone strategy with reconnection

is based on using Voronoi tesselation machinery. In this work we focus on the

extension of each phase of ReALE to cylindrical geometry. The Lagrangian,

rezone with reconnection and remap phases are revamped to take into ac-

count the cylindrical geometry. We demonstrate the efficiency of our ReALE

in cylindrical geometry on series of numerical examples.
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1. Introduction

A new reconnection-based Arbitrary Lagrangian Eulerian (ALE) frame-

work called ReALE (Reconnection ALE) has been recently introduced in [1].

The main elements in standard ALE methods are an explicit Lagrangian

phase, a rezoning phase, and a remapping phase. Usually the new mesh pro-

vided by the rezone phase is obtained by moving grid nodes without changing

connectivity of the underlying mesh. Such rezone strategy has its limitation

due to the fixed topology of the mesh and may lead to stagnation of the mesh

in certain situations [1]. Contrarily to classical ALE framework, the rezone

part of ReALE allows topological mesh reconnection using the machinery of

Voronoi tesselation [2]. The new feature of this technique is an underlying set

of generators moving with the fluid as “pseudo-Lagrangian particles”. The

new generator position is a combination between its Lagrangian new position

and the displaced Lagrangian cell centroid. These generators, as particles,

can change neighbors especially when shear or vortex motions occur. The

Voronoi machinery is then used on this set of generators to define the rezone

mesh: Each generator is associated to the same Voronoi cell which, accord-

ingly, may have changed its neighborhood. This Voronoi mesh is the rezone

mesh onto which the physical variables are further remapped. Consequently

as the Lagrangian and rezone meshes are a priori different, the conservative

remap phase must be modified to handle polygonal meshes possibly with
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different connectivity.

In [1] the 2D Cartesian geometry was only considered as to prove the fea-

sibility of this ALE with reconnection approach. Contrarily in this work

we investigate the extension of ReALE to cylindrical geometry. Although

staggered and cell-centered Lagrangian schemes were considered in [1] to

prove the generality of ReALE, in this work we focus on Lagrangian cell-

centered discretization because the presentation and implementation are sim-

pler. However there is no theoretical limitation in using a staggered place-

ment of variable for ReALE in cylindrical geometry. High-order cell-centered

discretization of the Lagrangian hydrodynamics equations has been described

[3]; all conserved quantities, including momentum, and hence cell velocity are

cell-centered. Extension to cylindrical geometry has also been studied in [4]

in a control volume or area-weighted discretization. The control volume

scheme conserves momentum, total energy and satisfies a local entropy in-

equality in its first-order semi-discrete form. The main difference between

these approaches relies on the problem of preserving spherical symmetry in

two-dimensional cylindrical geometry. Being given a one-dimensional spher-

ical flow on a polar grid, equally spaced in angle, Maire [4] analyzed the

ability of the schemes to maintain spherical symmetry. It turns out that the

control volume formulation does not preserve symmetry whereas the area-

weighted formulation does similarly to staggered Lagrangian schemes [5]. In

the context of ReALE the preservation of symmetric polar grid is not a goal

as we are dealing with polygonal meshes by nature. We leave this issue for

later investigation. However this cylindrical geometry extension of ReALE is

motivated since in many application problems, such as inertial confinement
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problems, physical domains have axisymmetric features. This paper is orga-

nized as follows; we first recall some notion of cylindrical geometry, then in

a second section we derive the cell-centered Lagrangian scheme. In the third

section the rezone and remap parts are extended to cylindrical geometry.

Numerical test case are provided in the fourth section where comparisons to

exact solution and/or experimental solution are proposed. Finally conclu-

sions and perspectives are drawn.

2. Cylindrical geometry

We are interested in discretizing the equations of the 2D Lagrangian hy-

drodynamics in cylindrical geometry, taking into account under the same

form both Cartesian and cylindrical geometry. To this end, we re-use the

notations introduced by Dukowicz in [6]. In the Lagrangian formalism the

rates of change of mass, volume, momentum and total energy are computed

assuming that the computational volumes follow the material motion. This

representation leads to the following set of equations for an arbitrary moving

control volume V (t)

d

dt

∫

V (t)

ρ dV = 0, (1a)

d

dt

∫

V (t)

dV −
∫

V (t)

∇ ·U dV = 0, (1b)

d

dt

∫

V (t)

ρU dV +

∫

V (t)

∇P dV = 0, (1c)

d

dt

∫

V (t)

ρE dV +

∫

V (t)

∇ · (PU ) dV = 0. (1d)

where d
dt

denotes the material, or Lagrangian, time derivative. Here, ρ, U , P ,

E respectively denote the mass density, velocity, pressure and specific total
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energy of the fluid. Equations (1a), (1c), (1d) express the conservation of

mass, momentum and total energy. The thermodynamic closure is obtained

by adding the Equation Of State (EOS) of the form P = P (ρ, ε), where

the specific internal energy, ε, is related to the specific total energy by ε =

E− 1
2
‖U‖2. We note that volume variation equation (1b) which is also named

Geometric Conservation Law (GCL), is equivalent to the local kinematic

equation
d

dt
X = U (X(t), t), X(0) = x, (2)

where X is a point located on the control volume surface, S(t), at time

t > 0 and x corresponds to its initial position. We note that the case of

Cartesian or cylindrical geometry can be combined by introducing the pseudo

Cartesian frame (O,X, Y ), equipped with the orthonormal basis (eX ,eY ),

through the use of the pseudo radius R(Y ) = 1 − α + αY, where α = 1

for cylindrical geometry and α = 0 for Cartesian geometry. We remark

that Y corresponds to the radial coordinate in the cylindrical case meaning

that we assume rotational symmetry about X axis, refer to Fig. 1. We

note that if we refer to standard cylindrical coordinates, (Z,R), then X

corresponds to Z and Y to R. In this framework, the volume V is obtained

by rotating the area A about the X axis. Thus, the volume element, dV ,

writes dV = R dA, where dA = dXdY is the area element in the pseudo

Cartesian coordinates. Note that we have omitted the factor 2π due to the

integration in the azimuthal direction, namely we consider all integrated

quantities to be defined per unit radian. The surface S, which bounds the

volume V , is obtained by rotating, L, the boundary of the area A, about the

X axis. Thus, the surface element, dS, writes dS = R dL, where dL is the
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O
X

Y

eX

eY

A(t)
L(t)

N

R

V (t) =

∫

A(t)
R dA

S(t) =

∫

L(t)
R dL

Figure 1: Notation related to the pseudo Cartesian geometry.

line element along the perimeter of A.

In view of subsequent spatial discretization, we shall express the volume

integrals associated with the divergence and gradient operators using the

Green formula. We recall that, in the pseudo Cartesian frame, the divergence

operator writes

∇ ·U =
∂u

∂X
+

1

R
∂

∂Y
(Rv) =

∂u

∂X
+
∂v

∂Y
+ α

v

R =
1

R

[

∂

∂X
(Ru) +

∂

∂Y
(Rv)

]

where (u, v) are the components of the vector U . The gradient operator

writes as usual

∇P =
∂P

∂X
eX +

∂P

∂Y
eY .

By replacing the volume integral form of the divergence operator by its sur-

face integral form and by employing the previous notations one deduces the
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Green formula in the pseudo Cartesian framework as
∫

V

∇ ·U dV =

∫

L

U ·NR dL. (3)

where N is the unit outward normal associated with the contour L. To

derive the surface integral form of the gradient operator, we use the vector

identity U ·∇P = ∇ · (PU )− P∇ ·U , which holds for any vector U . The

integration of this identity over the volume V leads to
∫

V

U ·∇P dV =

∫

L

PU ·NR dL−
∫

A

P∇ ·UR dA.

Assuming a constant U vector, we finally get
∫

V

∇P dV =

∫

L

PNR dL− αeY

∫

A

P dA, (4)

since for a constant U vector, we have ∇ ·U = α
R

U · eY . We have expressed

the volume integral of the gradient operator as a function of a surface in-

tegral plus a source term, which ensures the compatibility with the surface

integral form of the divergence operator. This approach leads to a discretiza-

tion which is known as Control Volume formulation (CV). An alternative

approach to define the surface integral form of the gradient operator is ob-

tained by setting
∫

V

∇P dV =

∫

A

∇PR dA = R̄
∫

A

∇P dA.

Here, we have used the mean value theorem, hence R̄ is defined as the aver-

aged pseudo radius R̄ = 1
|A|

∫

A

R dA, where | A | is the surface of the area

A. We remark that in the case of Cartesian geometry R̄ = 1 since α = 0.

Finally, applying the Green formula, we get
∫

V

∇P dV = R̄
∫

L

PN dL. (5)
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We recover the Cartesian definition of the gradient operator weighted by

the averaged pseudo radius. This alternative approach leads to the so-called

Area-Weighted formulation (AW). We point out that, in this case, the com-

patibility between the surface integrals of the divergence and gradient oper-

ators is lost. Finally let us remark that formulae (5) and (4) coincide in the

case of the Cartesian geometry since α = 0 and R̄ = 1.

3. Compatible cell-centered Lagrangian scheme

We develop a sub-cell force-based discretization over a domain D which

is paved using a collection of polygonal cells without gap or overlaps. Such

discretization has been introduced in [7] and [8]. Using the previous results

and particularly the gradient operator definition given by (4), we rewrite

the set of equations (1) in the control volume formulation over the moving

polygonal cell Ωc(t) as

mc
d

dt

(

1

ρc

)

−
∫

∂Ωc(t)

U ·NR dL = 0, (6a)

mc
d

dt
Uc +

∫

∂Ωc(t)

PNR dL = αAcPceY , (6b)

mc
d

dt
Ec +

∫

∂Ωc(t)

PU ·NR dL = 0. (6c)

Here, Ac is the area of the cell Ωc(t) and mc its constant mass. For any fluid

variable φ, φc denotes its mass density average, i.e. φc = 1
mc

∫

Ωc(t)

ρφ dV .

The area-weighted formulation is obtained using (5) for the gradient opera-

tor definition. In comparison to the control volume formulation, the previous

system only differs in the momentum equation. Using the notations previ-

ously introduced, the area-weighted formulation of the momentum equation
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writes

mc
d

dt
Uc + R̄c

∫

∂Ωc(t)

PN dL = 0, (7)

where the cell averaged pseudo radius is R̄c = 1
Ac

∫

Ac

R dA. We point out

that, in the case of Cartesian geometry R̄c = 1 for all c, therefore the area-

weighted formulation coincides with the control volume formulation. More-

over recalling that mc = Vc ρc and R̄c = Vc/Ac implies that (7) can be

rewritten as

µc
d

dt
Uc +

∫

∂Ωc(t)

PN dL = 0, (8)

where µc = Ac ρc = mc R̄c denotes the Cartesian inertia. Consequently (8)

has the same form as the momentum equation written in Cartesian geometry

although the Cartesian inertia is not a Lagrangian mass (i.e it is not constant

in time).

We have written a set of semi-discrete evolution equations for the cell-centered

variables ( 1
ρc
,Uc, Ec), whose thermodynamic closure is given by the EOS,

Pc = P (ρc, εc) where εc = Ec− 1
2
‖Uc‖2. The motion of the grid is ruled by the

discrete trajectory equation written at each point:
d

dt
Xp = Up(Xp(t), t), Xp(0) =

xp, where Xp denotes the position vector of point p and Up its velocity. Let

us note that by setting α = 0 in the previous set of equations we recover the

same system as in Cartesian geometry [3]. In the following we determine the

numerical fluxes and the nodal velocity used to move the grid.

3.1. Geometric Conservation Law

Introducing Vc =

∫

Ωc(t)

R dA the measure of the volume obtained by

rotation of the polygonal cell Ωc about X axis, equation (6a) writes as the
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Ω c
Ωpc

Lpc
+

O

p

p

p

+

Lpc
−

−

pc NpcA

pc
−N

pc
+N

Figure 2: Polygonal cell Ωc in cylindrical geometry. Given the half-edge outward normals

L±
pcN

±
pc at point p and two consecutive points p−, p+ one defines the cylindrical corner

area vector as ApcNpc =
R

p−
+2Rp

3
L−

pcN
−
pc +

R
p++2Rp

3
L+

pcN
+
pc. The partition into sub-cells

Ωpc is shown.
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GCL
d

dt
Vc −

∫

∂Ωc(t)

U ·NR dL = 0. (9)

Likewise in the case of Cartesian geometry, we use the fact that Vc is a

function of the position vector Xp of point p ∈ P(c) where P(c) denotes the

set of points of the Lagrangian cell Ωc. The cylindrical corner area vector,

refer to Fig. 2 is given by

ApcNpc =
1

2

[Rp− + 2Rp

3
(Xp −Xp−) +

Rp+ + 2Rp

3
(Xp+ −Xp)

]

× ez

where Apc is the corner area that can be computed knowing that N
2
pc =

1. Noticing that the half-edge outward normals are given by L±
pcN

±
pc =

±1
2
(Xp± −Xp)× ez, we rewrite the previous equation as

ApcNpc =
Rp− + 2Rp

3
L−
pcN

−
pc +

Rp+ + 2Rp

3
L+
pcN

+
pc. (10)

As noticed by Whalen in [9], the corner area vector is the fundamental geo-

metric object that uniquely defines the time rate of change of the cell volume

as
d

dt
Vc =

∑

p∈P(c)

ApcNpc ·Up. (11)

This last result yields the definition of the discrete divergence operator over

cell Ωc as follows

(∇ ·U )c =
1

Vc

d

dt
Vc =

1

Vc

∑

p∈P(c)

ApcNpc ·Up. (12)

We claim that we have completely defined the volume flux in terms of the cor-

ner area vector and the nodal velocity, moreover this derivation is compatible

with the mesh motion.
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3.2. Sub-cell force-based discretization

Let us discretize momentum and total energy equations by means of sub-

cell forces. To this end we use the partition of each polygonal cell Ωc into

sub-cells Ωpc where p ∈ P(c) (see Fig.2). The sub-cell force that acts from

sub-cell onto point is defined as

Fpc =

∫

∂Ωpc∩∂Ωc

PNR dL. (13)

We also use the sub-cell based partition to approximate the total energy flux

as

∫

∂Ωc

PU ·NR dL =
∑

p∈P(c)

(

∫

∂Ωpc∩∂Ωc

PNR dL

)

·Up =
∑

p∈P(c)

Fpc ·Up.

Substituting the previous results into system (6) yields

mc
d

dt
(

1

ρc
)−

∑

p∈P(c)

ApcNpc ·Up = 0, (14a)

mc
d

dt
Uc +

∑

p∈P(c)

Fpc = αPcAceY , (14b)

mc
d

dt
Ec +

∑

p∈P(c)

Fpc ·Up = 0. (14c)

We have expressed the numerical fluxes in terms of the corner area vector, the

sub-cell force and the nodal velocity. The last two remain to be determined

to complete the discretization. This task is achieved by investigating the

thermodynamic consistency and the conservation of the sub-cell force-based

discretization [4]. To ensure a local entropy inequality, it is sufficient to

postulate the following form for the sub-cell force

Fpc = ApcPcNpc −Mpc(Up −Uc). (15)
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Here Mpc is a sub-cell based 2× 2 matrix such that: Mpc is symmetric, and,

Mpc is positive semi-definite. The physical dimension of Mpc corresponds to

an area times a density times a velocity. We remark that entropy production

within cell c is directly governed by the general form of the sub-cell matrix

Mpc and the velocity jump between the nodal and the cell-centered velocity,

∆Upc = Up−Uc. Finally total energy conservation is ensured provided that

for all point p
∑

c∈C(p)

Fpc = 0. (16)

We remark that this last equation is the same condition than the one obtained

in Cartesian geometry for any compatible cell-centered or staggered sub-cell

based discretization. Moreover under this condition, and, up to the boundary

terms and the radial source term contributions, momentum is conserved over

the entire domain. This result is remarkable in the sense that it is written

under the same form regardless the geometry.

The last unknowns of the scheme, namely the sub-cell matrix Mpc and the

node velocity Up, are obtained thanks to a node-centered Riemann solver.

3.3. Node-centered Riemann solver

The node-centered solver that provides the grid velocity is obtained as

a consequence of total energy conservation. Substituting the sub-cell force

(15) into (16) gives for all point p

MpUp =
∑

c∈C(p)

(ApcPcNpc + MpcUc) , (17)

where Mp is the sum of the corner matrices around node p, which is defined

as Mp =
∑

c∈C(p) Mpc. We construct the natural extension of the Cartesian
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cell-centered scheme [3] to cylindrical geometry by defining the corner matrix

as

Mpc = z−pcR−
pcL

−
pc(N

−
pc ⊗N

−
pc) + z+

pcR+
pcL

+
pc(N

+
pc ⊗N

+
pc), (18)

where R±
pc = 1

3
(Rp± +2Rp). We recall that z±pc are the generalized non-linear

corner impedances given by z±pc = ρc
[

ac + Γc | (Up −Uc) ·N±
pc |
]

, where ac is

the isentropic sound speed and Γc is a material dependent parameter, which

is given by γ+1
2

in case of a gamma gas law. Note that this formula is the

two-dimensional extension of the 2-shock swept mass flux defined for one-

dimensional approximate Riemann problem initially proposed by Dukowicz

[10] for shock wave. We also mention that we recover the acoustic approxi-

mation by setting Γc = 0. One can easily check that this definition leads to

a symmetric positive definite Mpc matrix. Therefore, Mp is also symmetric

positive definite and thus always invertible, which defines a unique nodal

velocity Up by inverting equations (17). Let us mention that this solver pre-

serves the spherical symmetry in the case of a one-dimensional spherical flow

computed on an equal angle polar grid.

The high-order extension of our control volume discretization, both in time

and space, is obtained by using the Generalized Riemann Problem (GRP)

methodology in the acoustic approximation (see [4] for the details). More-

over an extension of this cell-centered Lagrangian scheme in area-weighted

formulation is also available [4]. For multi-species computation one sim-

ply considers the iso-pressure, iso-temperature closure model. Each fluid is

characterized by its mass fraction Cf , and during the Lagrangian phase, the

concentration of each fluid evolves following the trivial equation d
dt
Cf = 0

(refer to [1]).
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4. Rezone and Remap in cylindrical geometry

As mentioned in [1] ReALE consists in modifying the rezone and remap

phases of an ALE code assuming that the Lagrangian scheme can handle

polygonal mesh. The cell-centered Lagrangian scheme previously described

in its control volume or area-weighted version is well suited for this pur-

pose. Therefore it is adopted as the first phase of our ReALE algorithm.

The extension of the rezone and remap phases is presented in the following

subsections.

4.1. Rezone phase through Voronoi machinery

In cylindrical geometry the simulation is performed on an actual 2D

mesh. Any notion of mesh symmetry is therefore to be considered in the

plane (Z,R). Consequently, the rezone phase is assumed to operate on this

plane behaving “as a Cartesian plane”. Therefore neither the generator dis-

placement nor the Voronoi machinery is modified compared to [1]. However

because ReALE cornerstone lays in the generator displacement and for the

sake of clarity we recall these steps.

Let Ωn
c and Ωn+1

c denotes the Lagrangian cells at time tn and tn+1 = tn + ∆t

where ∆t is the current time step. The position vector of the generator of

the Lagrangian cell Ωn
c is denoted G

n
c (see Fig.3). We will define the new

position of the generator at time tn+1. First, we compute a Lagrangian-like

displacement of the generator by setting

G
n+1,lag
c = G

n
c + ∆t Uc, (19)

where Uc is the “pseudo-Lagrangian” velocity of the generator within the

cell. This velocity is computed so that the generator remains located in the
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Figure 3: Examples of Voronoi tesselation with cell generators Gc (×) and cell centroids

Xc (◦).

new Lagrangian cell. To this end we define this velocity to be the average of

the velocities of the points of the cell, namely Uc = 1
|P(c)|

∑

p∈P(c)

U
n+ 1

2
p . Here

U
n+ 1

2
p is the time-centered velocity of point p between times tn and tn+1.

Any other formula could be used, as instance by weighting the point velocity

by the distance between G
n
c and X

n
c . Let us introduce the centroid of the

Lagrangian cell X
n+1
c = 1

|Ωn+1
c |

∫

Ωn+1
c

XdV, where | Ωn+1
c | denotes the volume

of the cell Ωn+1
c . The updated position of the generator is defined by mean

of a convex combination between the new Lagrangian-like position, G
n+1,lag
c

and the centroid X
n+1
c of the Lagrangian cell

G
n+1
c = G

n+1,lag
c + ωc

(

X
n+1
c −G

n+1,lag
c

)

, (20)

where ωc ∈ [0; 1] is a parameter that remains to determine. With this convex

combination, the updated generator lies in between its Lagrangian position
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at time tn+1 and the centroid of the Lagrangian cell Ωn+1
c . We note that for

ωc = 0 we get a Lagrangian-like motion of the generator whereas for ωc = 1

we obtain a centroidal-like motion, which tends to produce a smooth mesh1.

We compute ωc requiring that the generator displacement satisfies the prin-

ciple of material frame indifference, that is for pure uniform translation or

rotation we want ωc to be zero. To this end, we construct ωc using invari-

ants of the right Cauchy-Green strain tensor associated to the Lagrangian

cell Ωc between times tn and tn+1. Let us recall some general notions of

continuum mechanics to define this tensor. First, we define the Cartesian

deformation gradient tensor F = ∂Xn+1

∂Xn , where X
n+1 = (Xn+1, Y n+1)t de-

notes the vector position of a point at time tn+1 that was located at position

X
n = (Xn, Y n)t at time tn. The Cartesian deformation gradient tensor is

the Jacobian matrix of the map that connects the Lagrangian configurations

at time tn and tn+1. The right Cauchy-Green strain tensor, C = FtF, is a

2× 2 symmetric positive definite tensor. We notice that this tensor reduces

to the unitary tensor in case of uniform translation or rotation. It admits

two positive eigenvalues, λ1 and λ2 with the convention λ1 ≤ λ2. These can

be viewed as the rates of expansion in a given direction during the trans-

formation. To determine ωc, we first construct the cell-averaged value of

the deformation gradient tensor, Fc, and then the cell-averaged value of the

Cauchy-Green tensor by setting Cc = FtcFc. Noticing that the two rows of

the F matrix correspond to the gradient vectors of the X and Y coordinates,

we can set Ft = [∇nX
n+1,∇nY

n+1], where for any functions ψ = ψ(Xn), we

1This latter case is equivalent to perform one Lloyd iteration [11]
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have ∇nψ =
(

∂ψ
∂Xn ,

∂ψ
∂Y n

)t
. With these notations, one defines the cell-averaged

value of the gradient of the ψ function over the Lagrangian cell Ωn
c

(∇nψ)c =
1

| Ωn
c |

∫

Ωn
c

∇nψdV =
1

| Ωn
c |

∫

∂Ωn
c

ψNdS

≃ 1

| Ωn
c |

|P(c)|
∑

p=1

1

2

(

ψnp + ψnp+1

)

Lnp,p+1N
n
p,p+1 (21)

where ψnp ≡ ψ(Xn
p ) and Lnp,p+1N

n
p,p+1 is the unit outward normal to the

edge [Xn
p ,X

n+1
p ]. In the previous equation, we have first used the Green

formula then an approximation of the integral using the trapezoidal rule

on a polygonal cell. Applying (21) to ψ = Xn+1 and ψ = Y n+1 we get a

cell-averaged expression of the gradient tensor F and, consequently deduce

the cell-averaged value of the tensor Cc. Knowing this symmetric positive

definite tensor in each cell, we compute its real positive eigenvalues λ1,c, λ2,c

and define the parameter ωc = 1−αc

1−αmin
, where αc = λ1,c

λ2,c
and αmin = minc αc.

We emphasize the fact that for uniform translation or rotation λ1,c = λ2,c = 1

and ωc = 0, therefore the motion of the generator is quasi Lagrangian and

we fulfill the material frame indifference requirement. For other cases, ωc

smoothly varies between 0 and 1. Once the new generator position G
n+1
c is

computed one constructs the corresponding Voronoi mesh using the Voronoi

machinery. This mesh needs a last treatment as this Voronoi mesh may have

arbitrary small edges. Such edges can drastically and artificially reduce the

time step, and, more important can lead to a lack of robustness. Even if in

theory such faces could be kept, we prefer to remove/clean them, see [1].
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4.2. Remap phase by exact-intersection

The remapping phase is a conservative interpolation of physical variables

from the Lagrangian polygonal mesh at the end of the Lagrangian step onto

the new polygonal mesh after the rezone step. The remapping phase must

provide valid physical variables to the Lagrangian scheme, and conservation

of mass, momentum and total energy must be ensured. Moreover at least

a second-order accuracy remapping has to be constructed. In ReALE the

rezoned mesh may have a different connectivity than the Lagrangian mesh.

Therefore the remapping phase of ReALE is based on exact intersection of

a priori two different polygonal meshes. Primary variables are cell-centered

density, velocity and specific total energy. Conservative quantities are cell-

centered mass, momentum and total energy. First piecewise linear represen-

tations of cell-centered variables ρc, ρcUc, ρcEc are constructed on the La-

grangian mesh. Then a slope limiting process [12] is performed to enforce

physically justified bounds. This phase does not change compared to the

Cartesian geometry. Then conservative quantities, namely mass, momen-

tum and total energy, are obtained by integration of these representations

in cylindrical geometry. Moreover for multi-species computation each mass

fraction is remapped.

4.2.1. Control volume based remap

In control volume formulation, volume integrations are performed using

the true cylindrical volume, V =

∫

Ω

R dA, that is to say the measure of

the volume obtained by rotation of the surface Ω about the Z axis. New

conservative quantities are calculated by integration over polygons of inter-

section of new (rezoned) and old (Lagrangian) meshes. Let us consider one
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non empty polygon resulting from the intersection between an old cell Ωold
c

and a new cell Ωnew
d namely Ωcd = Ωold

c

⋂

Ωnew
d . Then the mass embedded

into this polygon is obtained by integration over Ωcd of the piecewise linear

limited representation of cell-centered density ρc(X)

∆mcd =

∫

Ωcd

ρc(X)R dA. (22)

Due to the linear representation of ρc(X), the previous equation exhibits

the integrals of R,R2,RZ which are reduced by the Green theorem to the

boundary integrals, and subsequently evaluated from the coordinates of the

Ωcd region vertices. As a consequence the mass in any new cell Ωnew
d =

⋃

c Ωcd

is simply obtained by summation

mnew
d =

∫

Ωnew
d

ρ(X)R dA =

∫

S

c Ωcd

ρ(X)R dA =
∑

c \ Ωcd 6=∅

∆mcd. (23)

Momentum and total energy are calculated likewise. Finally, primary vari-

ables in Ωd are recovered by division by new volume V new
d (for density) or

new mass mnew
d (for momentum and energy).

To use the multi-species EOS, we need to remap the concentrations of the F

fluids from the Lagrangian grid onto the rezoned one. To this end, we first

compute the mass of fluid f in the Lagrangian cell Ωold
c , mf,c =

∫

Ωold
c
ρCR dA.

We note that mold
c =

∑F
f=1mf,c since

∑F
f=1Cf,c = 1. Then, the mass of

each fluid is conservatively interpolated onto the rezoned grid following the

methodology previously described. We denote its new value by mnew
f,c . At

this point we notice that mnew
c 6= ∑F

f=1m
new
f,c , this discrepancy comes from

the fact that our second-order remapping does not preserve linearity due to

the slope limiting. Hence, we define the new concentrations Cnew
f,c =

mf,cnew

mnew
c
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and impose the renormalization Cnew
f,c ←−

Cnew
f,c

PF
f=1 C

new
f,c

so that
∑F

f=1 Cnew
f,c = 1.

We point out that this renormalization does not affect the global mass con-

servation.

4.2.2. Area-weighted based remap

The difference between control-volume and area-weighted formulation

lays in the form of the momentum equation. As previously mentioned equa-

tion (7) has the same form as in Cartesian geometry modulo the presence of

the Cartesian inertia µc = mc R̄c. Consequently the remapping of the mo-

mentum equation in area-weighted cylindrical geometry is performed as in

Cartesian geometry. Then the momentum embedded into Ωcd = Ωold
c

⋂

Ωnew
d

is obtained by integration of the piecewise linear limited representation of

cell-centered momentum (ρU )c(X)

∆Wcd =

∫

Ωcd

(ρU )c(X)R dA = R̄c

∫

Ωcd

(ρU )c(X)dXdY,

where the integration is performed over the Cartesian volume dXdY . The

momentum in a new cell Ωnew
d is given by

W
new
d =

∫

Ωnew
d

(ρU )c(X)R dA =

∫

S

c Ωcd

(ρU )c(X)R dA

=
∑

c \ Ωcd 6=∅

∆Wcd.

The new velocity in cell Ωnew
d is finally given by

U
new
d =

W
new
d

µd
=

W
new
d

mnew
d

R̄d
new
,

where mnew
d has been remapped using the true cylindrical volume and R̄d

new

has been recomputed on the new area Anew
d .
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5. Numerical tests

In this section we present the numerical results obtained by the cylin-

drical cell-centered ReALE code based on CHIC code, [3]. Let us remind

that any vector is written in the (Z,R) space and that multi-species test

cases are run with concentration equations. The first test is the well-known

Sedov test case; it is used as a sanity check as no physical vorticity is ex-

pected to occur and therefore reconnection-based methods are not required.

The second is a helium bubble shock interaction in cylindrical geometry, it

is run in order to show the predictive capabilities of ReALE technique. This

test generates vorticity which is a classical cause of failure for Lagrangian

schemes. For a fixed-connectivity ALE code, it usually leads to a conflict

between the Lagrangian motion with a tendency to tangle the mesh and, the

mesh-regularization motion with a tendency to avoid bad quality cells. Such

a conflict produces a stagnation of the mesh that reconnection technique is

intended to cure [1]. Experimental results of the shock/bubble interaction

are compared to the simulations. The last test problem is the rise of a light

bubble under gravity for which the same type of vortex motion is expected.

As no mesh symmetry is supposed to be preserved, we run the code in its

control volume formulation for the last two test cases. Only the Sedov prob-

lem is run in area-weighted formulation to show the ability of the code to

handle this formulation.

5.1. Sedov problem

Let’s consider the Sedov blast wave problem with spherical symmetry.

This problem models an intense explosion in a perfect gas with a diverging
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shock wave. The computational domain is Ω = [0, 1.2]× [0, 1.2] . The initial

conditions are characterized by (ρ0, P0,U0) = (1, 10−6,0) for a perfect gas

with polytropic index set to γ = 7
5
. We set an initial delta-function energy

source at the origin prescribing the pressure in the cell containing the origin as

Por = (γ−1)ρ0
E0

Vor
, where Vor denotes the volume of the cell and E0 is the total

amount of released energy. Choosing E0 = 0.425536, the solution consists of

a diverging shock whose front is located at radius R = 1 at time t = 1.

The peak density reaches the value 6. Symmetry boundary conditions are

applied on the axis. The initial mesh is a degenerate Voronoi mesh obtained

from 50× 50 uniformly distributed generators and 4 more generators on the

corners of the domain. This test does not need ALE, and a fortiori ReALE,

technique; pure Lagrangian schemes usually perform well. However this is

used to assess the validity of ReALE approach. We present the density and

mesh in Fig. 4 left-panel. Moreover density is presented as a function of the

cell radius for any cell against the exact solution (straight line) in the right-

panel of Fig. 4. The final Lagrangian mesh presents expanded cells in the

rarefaction wave and compressed ones after the shock wave. On this sanity

check ReALE technique in cylindrical geometry is able to produce a smooth

mesh and accurate results.

5.2. Helium bubble shock interaction

The computational domain is Ω = [0; 0.65]× [0; 0.089] which represents a

cylinder of diameter 0.178 and initial length 0.65. The spherical helium

bubble is represented as a disk defined by the coordinates of its center

(Zc, Rc) = (0.320, 0) and its radius Rb = 0.0225 (see Fig. 5). We pre-

scribe wall boundary conditions at each boundary except at Z = 0.65, where
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we impose a piston-like boundary condition defined by the inward veloc-

ity V
⋆ = (u⋆, 0). The incident shock wave is defined by its Mach number,

Ms = 1.25. The bubble and the air are initially at rest. The initial data for

helium are (ρ1, P1) = (0.182, 105), its molar mass isM1 = 5.269 10−3 and its

polytropic index is γ1 = 1.648. The initial data for air are (ρ2, P2) = (1, 105),

its molar mass is M2 = 28.963 10−3 and its polytropic index is γ2 = 1.4.

Specific internal energies are ε1 = 8.4792 105 and ε2 = 2.5 105. Using the

Rankine-Hugoniot relations, we find that the velocity of the piston is given

by u⋆ = −140.312. The incident shock velocity is Dc = −467.707. The in-

cident shock wave hits the bubble at time ti = 657.463 10−6. The stopping

time for our computation is tend = ti+159410−6 = 2251.463 10−6. The mesh

is built with a set of 4856 generators designed to produce a Voronoi mesh that

has a mesh line which exactly matches the bubble boundary, see Fig. 5. In

all figures the top part is the actual computational domain that is mirrored

around the Z axis for visualization purposes. In Fig. 6 are displayed density

and mesh around the bubble for five intermediate times and the final time of

the simulation, namely ta = ti+20 10−6, tc = ti+145 10−6, td = ti+223 10−6,

tf = ti +600 10−6 and tg = ti +1594 10−6. These correspond to five shadow-

photographs of experimental results from [13] (Fig. 8 of page 53) that we

reproduced in Fig. 6 (right-panels). Let us note that the final time has a dif-

ferent color scale and that the visualization window follows the bubble. We

observe a quite good agreement with the experimental results even for this

coarse mesh; the timing of the shock waves and the shape of the deformed

bubble fit the shadow-graphs of the experimental results. Of great impor-

tance is the fact that the bubble detaches from the Z axis at tf and more
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clearly at tg, this can be also guessed from the experimental shadow-graphs.

Finally in Fig.7 are displayed the density waves present in the full domain at

intermediate times tb = ti + 82 10−6, tc = ti + 145 10−6, td = ti + 223 10−6,

and te = ti + 1007 10−6. The dark zones are the inside bubble and the air

that has not been yet attained by the initial shock wave. Multiple reflections

and refractions can be observed in the density wave patterns.

5.3. Rise of a light bubble under gravity

This problem consists in the rise of a light bubble in a heavy gas bubble

under gravity [14]. The statement of the problem is sketched in Fig.8. The

computational domain is Ω = [−15, 20] × [0, 15]. This domain is split into

three regions filled with air (ideal gas EOS with γ = 1.4) at rest. One

defines for each point (Z,R) its radius R =
√
R2 + Z2 and angle θ so that

Z(R,θ) = R cos θ. The initial data are given in Zone I (inside the bubble),

Zone II (transition layer) and Zone III (exterior) by

Zone I Zone II Zone III

R ≤ R1 R1 < R < R2 R ≥ R2

ε1 = 3 103 ε2(R) ε3 = 15.6

p1 = 0.6 p2(R,θ) p3(R,θ) = 0.6e−Z(R,θ)/∆

R1 = 6.6 is the radius of the light bubble, R2 = 8.5 is the radius of the

transition layer towards the atmosphere, ∆ = 63.7 is the inhomogeneity pa-

rameter for the atmosphere. In Zone II a linear transition is applied between

the values of p and ε of Zone I and Zone III

p2(R,θ) = (1− α(R)) p1 + α(R) p3(R,θ),

ε2(R) = (1− α(R)) ε1 + α(R) ε3,
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√

R2 + Z2. Gravity is oriented in the Z

direction. The pressure and internal energy profiles are sketched in the right panel.

with α(R) = (R−R1)/(R2 −R1). Gravity is set downward the Z direction

with magnitude G = 9.8 10−2 see Fig.8. The bubble rises in the Z direction

because of the density gradients and velocity. In its motion it further deforms

into a classical mushroom shape. The final time is tfinal = 14. The initial mesh

is made of a total of 1901 cells split into roughly 1200 quadrangles outside

Zone II and 653 polygonal cells inside refer to Fig.9 top-middle panel. Walls

boundary conditions are assumed everywhere besides for the Z axis where

symmetry boundary condition is applied. In Fig.9 left column are plotted the

density and mesh for the time moments t0 = 0, t1 = 1, t2 = 8 and t3 = 14. As

for the bubble/shock problem the visualization is performed after reflection

against the Z axis. The colored vorticity and vector velocity fields are shown

in Figs.9 middle and right columns respectively. As expected the bubble rises

upwards the Z direction. It adopts a mushroom shape as can be seen in Fig.9

at t3 = 14. Time t1 = 1 shows how the ReALE technology starts to adapt
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the mesh while waves are emanating from the bubble. At time t2 = 8 the

bubble starts to deform while the cells ahead the tip of the bubble are highly

compressed; this process is pursued up to final time. Vorticity and velocity

vector plots confirm that the fluid undergoes a vortex like motion. Such a

vortex-like motion has a natural tendency to highly stretch cells in classical

ALE simulation without reconnection leading to inaccuracy or failure of the

simulation. Contrarily ReALE is able to undergo such motion while allowing

cells to change neighborhood. These ReALE results are in agreement with the

numerical results provided in [14]. In this paper the authors use a different

numerical method that leads to a non smooth polygonal mesh as shown in

Fig.4.19 of page 111. ReALE technique form this point of view seems superior

as our mesh keeps a general good geometrical quality.

6. Conclusion and perspectives

In this paper we investigate the extension to cylindrical geometry of the

recently developed Reconnection Arbitrary-Lagrangian-Eulerian (ReALE)

technology [1]. This extension is fairly obvious; indeed, the cell-centered La-

grangian scheme was already available in cylindrical geometry using a control

volume or area-weighted formulation. Moreover, the rezone technology using

Voronoi machinery with moving generators introduced in [1] can be used like-

wise. The last part of our ReALE code, namely the remapping part, is more

demanding as it must utilize a control volume based exact-intersection of a

priori two different polygonal meshes provided by the Lagrangian and rezone

phases. In the control volume formulation true volume integrals are used to

remap mass, momentum and total energy whereas in area-weighted formu-
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Left column: Density and mesh — Middle column: Vorticity and mesh — Right column:

veolcity vectors — Time t0 = 0, t1 = 1, t2 = 8, t3 = 14.
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lation the momentum is remapped as in Cartesian geometry. Multi-fluid is

treated with concentration equations that must be remapped likewise.

We show that the extension of ReALE to cylindrical geometry produces good

results on numerical test cases. First we run the Sedov problem as a sanity

check. Then we simulate an helium bubble shock interaction problem. We

compare our multi-species simulation against experimental shadow graphs

proving the validity and accuracy of the ReALE technology in cylindrical

geometry. The last problem is the rise of a light bubble under gravity that

presents vortex like motion. Unlike ReALE, a classical fixed-connectivity

ALE code usually presents difficulties to capture such a motion.

In the near future we plan to investigate the association of ReALE with in-

terface reconstruction in planar and cylindrical geometries. Moreover we will

investigate the possible extension of ReALE to 3D.
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