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Reconstruction ofmulti-material interfaces
from moment data

VadimDyadechko∗† Mikhail Shashkov†

Draft ofDecember 12,2007;the first draft is datedAugust 11,2006.

Abstract

The Moment-of-Fluid(MoF)methodis an extension ofpopular Volume-of-
Fluid(VoF)techniquefor trackingmaterialinterfaceinmulti-materialfluidflows.
VoFmethods trackthe cell-wise material volumes anduse these data for recon-
structingtheinterfacesinmixedcell. TheMoFmethodgoes one stepfurther and,
in additional to the volumes,keeps trackofthe cell-wise material centroids;this
approachprovides sufficientlymore information for the interface reconstruction
algorithm.
The MoFalgorithm reconstructs interfaces in volume-conservative manner,

byminimizingthe defect ofthe 1st moment in eachmixedcell. In case oftwo
materials,this strategyallows to construct the linear interface in a mixedcell
usingno material volume data from the neighboringcells. Comparedto the VoF
interface reconstruction techniques,the MoFalgorithm shows higher accuracy
andbetter resolution,allows uniformprocessingofinternal andboundarycells.
In thispaperwe showhowthe samegoverningprinciple(minimization ofthe

1st-moment defect)can be usedto reconstruct the interfaces in case ofmultiple
materials.

1 Introduction

Volume-of-Fluid(VoF)methodis apopular techniquefor trackingmaterial inter-
faces in multi-material fluidflows. OriginallyVoFwas developedfor Eulerian

∗correspondingauthor;e-mail:vdyadechko@gmail.com
†Mathematical ModelingandAnalysis (T-7)Groupat the Los Alamos National Laboratory
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min

Ω

ω

x
c
(ω)

x
∗

Figure 1. MoF algorithm for constructing a linear interface in a two-material mixed
cell Ω: among all the subcells ω with a linear interface and the prescribed
volume, find the one whose centroid xc(ω) is closest to the given centroid x

∗
.

The algorithm uses no data from outside the cell.

simulation of incompressible fluid flows with free boundaries[12]. The popular-
ity of VoF methods is due to simple treatment of the interface topology changes
and rigorous enforcement of mass conservation of each fluid component. Ex-
cellent reviews of the VoF methods and, in particular, interface reconstruction
techniques can be found in the following papers [19, 7, 16, 21, 20]. We just want
to remind some important details.
On each time step, a typical VoF method:

• updates thematerial content of the cells, usually by computing fluxes through
the cell boundaries,

• reconstructs thematerial interfaces in themixed cells from the cell-wise ma-
terial volumes.

The interface reconstruction is done in volume-conservative manner, which, along
with fluxing, guarantees themass conservation for incompressible fluids. All VoF
interface reconstruction algorithms are formulated for two materials, i.e. split a
mixed cell into two subcells. The most common interface approximation consists
of a single linear interface in each mixed cell. This class of interface reconstruc-
tions is commonly calledPiecewise-Linear Interface Calculation (PLIC). Since the
material volumes are preserved by the reconstruction, the location of the inter-
face is uniquely determined by the direction of the interface normal. There are
many different algorithms to derive the interface normal in the VoF context (i.e.
from the material volumes for details refer to [8, 13, 24, 22, 17, 18, 14, 3, 7, 16]).
All of them rely on the material volume data from the neighboring cells, which
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Ωi

Ωi,k-1

Ωi

Ωi

x
∗

i

x
∗

i,k-1

1)tracethecellonestep 2)findthematerialcontent 3)movethecentroidforward
back intime ofthecellpreimage alongthestreamline

Figure 2. The cell-wise material volumes and centroids required for the MoF inter-
face reconstruction can be consistently updated by the means of Lagrangian
remap.

prohibits them from resolving small (2–3 cell sizes and less) interface details.
In order to improve the resolution of small details, a new volume-conservative

interface tracking method was proposed [9]. The central idea of the Moment-of-
Fluid(MoF)approach is to supplement the VoF interface reconstruction input
data set with the cell-wise material centroids. The material volumes and cen-
troids form a natural input data set for the interface reconstruction, which con-
tains the essential information about the amount and the average location of each
material in a mixed cell.
Similar to the VoF, the two-materialMoF interface reconstruction algorithm [9]

uses linear interface to separate the materials in a mixed cell. The volume and
centroid, or, equivalently, the first two moments of the material provide suffi-
cient amount of information to construct such a linear interface without anydata
fromtheadjacent cells. The direction of the interface normal is determined through
minimization of the discrepancy between the actual and the prescribed centroids,
subject to matching the prescribed volume exactly (Figure 1). The results of the
MoF reconstruction is thevolume-preservingmixed-cellpartitionthat minimizes the
defectofthefirstmoment. If the true interface is twice-differentiable, theMoF recon-
struction is 2nd-order accurate; if the true interface is linear, the reconstruction
is exact. The numerical experiments [9] show that the moment-based interface
reconstruction demonstrates superior resolution and always results in smaller
absolute error, than traditional volume-based techniques.
Since the interface reconstruction is intended for multi-material fluid flow

simulations, it is important to have the interface reconstruction input composed
of quantities that can be accurately advanced in time. The fact that the ma-

3
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terial centroids in the incompressible flow move similarly to Lagrangian parti-
cles (see Appendix) makes them a perfect choice for the interface reconstruction
input. One can consistently update the cell-wise material volume and centroids
by means of Lagrangian remap: track the cell vertices back in time to find the
Lagrangian preimage of the cell, find all the intersections of the preimage with
the pure-material subcells from the previous time step, and then assign all the
content of the preimage to the cell; the centroids of the material enclosed in the
preimage are advected forth in time along the streamlines (Figure 2).
In this paper we would like to show how the Moment-of-fluid technique is

applied to the multi-material case. Since the Lagrangian remap has no limitation
on the number of material advected, there is no need to discuss the update the
moment data, and we can concentrate on a stand-alone interface reconstruction
problem.
The mixed-cell cell partitioning can be a real problem in the case of multi-

ple materials. Here we demonstrate how the two-material MoF interface recon-
struction algorithm can be used to perform a polygonal partitioning of a mixed
cell withM > 3 materials. Basically, we follow the strategy of the multi-material
Volume-of-Fluid (VoF) method and use the two-material interface reconstruction
algorithm for extracting materials from the mixture one by one. There is an es-
sential difference though: the MoF interface reconstruction does not require the
user to specify the material order explicitly. The right order is determined automati-
cally by trying allM ! possible material orders and finding the one that results in
the minimal defect of the first moment.
The search of the best mixed-cell partition does not limit the choice of par-

titioning scheme in any way. Therefore, in order to achieve a lower defect of
the first moment, one can expand the family of the trial partitions at will. For
instance, instead of extracting materials from the mixture in series, one can sep-
arate them according to the “divide-and-conquer”principle: choose an arbitrary
m < M, separate the mixture of materials 1, . . . ,m from m+1, . . . ,M , and then
recursively apply this algorithm to each submixture. This procedure allows to
generateM !(M-1)!B-tree partitions to choose from, which significantly increases
the chances of finding an approximate partition that fits given moment data best.
After introducing the basic notations and formulating the problem, we review

the multi-material interface reconstruction schemes used in the VoF context, and
then describe and test the Multi-Material MoF algorithm with the two types of
the mixed-cell partitionings: the serial and the B-tree partitionings (more than 3
materials).

4
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∗

p,2

ω
∗

p,3

ω
∗

p,4

(a) true partition of a mixed cell (b) its polygonal approximation

Figure 3. Example of the volume-conservative interface reconstruction.

2 Problemformulation

Consider a polygonΩ that represents a mixed cell containingM > 3 different ma-
terials. Let ωm be a subset of Ω that specifies the space occupied by the m-th
material, m = 1, . . . ,M . Since {ωm}M

m=1 represents a partition, i.e. the cell frac-
tions (subcells) occupied by different materials do not overlap and there is no void,
then

M∑

m=1

|ωm| = |Ω|, (1)

where |ω| denotes the volume (area) of a plane set ω ⊂ R
2.

If all the materials have polygonal shapes, the whole partition is referred to
as polygonal; in this case we equip each subcell symbol with an extra “p” sub-
script: ωp,m.
Suppose that partition {ω∗

m}M
m=1

specifies a true distribution of materials in
themixed cell. The objective of the volume-conservative interface reconstruction (Fig-
ure 3) is to find an approximate polygonal partition {ω∗

p,m}M
m=1 of Ω that preserves the

volumes of all materials:

|ω∗

p,m| = |ω∗

m|, m = 1, . . . ,M.

The first question onewould ask is how to measure the proximity of the partitions?
Clearly, two partition are only as close to each other as their respective material
fractions. We introduce three different measures of the proximity between the
true subcells and their reconstructed counterparts (Figure 4):

5
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• the defect of the first moment:

∆M1 = ||M1(ω
∗

p,m) − M1(ω
∗

m)|| = |ω∗

m| ||xc(ω
∗

p,m) − xc(ω
∗

m)||,

where

M1(ω) =

∫

ω

xdx ∈ R
2

is the first moment of a plane set ω ⊂ Ω,

xc(ω) = M1(ω)/|ω|

is the respective centroid (subject |ω| > 0), and ||x|| denotes the Euclidean
norm of x ∈ R

2;

• the area of the symmetric difference between the true and reconstructed subcells
(the area between the true and reconstructed interfaces):

∆ω = |ω∗

p,m4ω∗

m| = |ω∗

p,m \ ω∗

m| + |ω∗

p,m \ ω∗

m| = 2 (|ω∗

m| − |ω∗

m ∩ ω∗

p,m|);

• the (Hausdorff) distance between the subcell boundaries:

∆Γ = dist(∂ ω∗

p,m, ∂ ω∗

m) ≡ max
{

max
x∈∂ ω∗

p,m

min
y∈∂ω∗

m

||x−y||; max
x∈∂ω∗

m

min
y∈∂ω∗

p,m

||x−y||
}

.

The reasonsforconsideringthree differentsubcellapproximation errorsare the
following.The defectofthe 1stmoment∆M1 isthe errorthatisexplicitlymini-
mizedin moment-basedreconstruction.The symmetricdifference area ∆ωgives
the sense ofthe average distance between the true andreconstructedboundaries;
we also finditconvenienttomeasuredirectly.Andthe ∆Γ error,whichshowsthe
maximumdeviation ofthe reconstructedinterface fromthe true one,isa standard
choice ofthereconstruction error.
Thepartition approximation errorscan be definedasthevector-normcombi-

nationsoftherespective subcellapproximation errors:

• the cumulative defect ofthe first moment:

∆M1 =
{

M
∑

m= 1

||M1(ω
∗

p ,m) − M1(ω
∗

m)||2
}1/2

;

• the cumulative symmetric-difference area:

∆ω =
{

M
∑

m= 1

|ω∗

p ,m4ω
∗

m|2
}1/2

;

6
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x
∗

x
∗

p
∆
x

Γ(
ω ∗

)

Γ(
ω ∗
p )

∆
Γ

∆
ω Ω

Figure 4. The reconstruction errors illustrated. Ω is a hexagonal mixed cell, Γ(ω∗) and
Γ(ω∗

p) are the true and reconstructed material interfaces respectively. ∆Γ is
the maximum deviation of the true interface Γ(ω∗) from the reconstructed one
Γ(ω∗

p); ∆ω is the area of the symmetric difference between the true and recon-
structed subcells (in darkgrey); the defect of the first moment ∆M1 is propor-
tionalto thedistance∆xbetweenthetrueandreconstructedcentroids(x∗and
x
∗

p
respectively).

• the maximum distance between the boundaries:

∆Γ = max
1 6 m 6 M

dist(∂ω∗

m,∂ω∗

pm).

Amongthesethreetypes ofthepartitionapproximationerror, ∆M1 is theweak-
est, and∆Γ is thestrongest one(convergencein∆Γ implies convergencein∆ω,
andconvergencein∆ω implies convergencein∆M1).Bydefault thereconstruc-
tionerror is measuredinterms of∆Γ.Thus, areconstructionis knownto be
k-th-order accurate, ifit results in∆Γ = O(hk) for allsufficientlysmallh (the
sizeofthecell).Sinceboththetrueandtheapproximateinterfaces areconfined
withinthecell, an arbitrarypartitioningis at least 1st-orderaccurate.Followingthe
commonpractice, wespecifytheorder ofaccuracyofareconstructionalgorithm
interms of∆Γ.Thereis asimpleruleto reckontheorder ofaccuracyofatwo-
materialinterfacereconstructionalgorithm:ifit canreproduceanylinear inter-
faceexactly, thealgorithm is 2ndorder accurate, otherwiseit is only1st order
accurate.Incaseofmultiplematerials onecanuseasimilar rule:ifthealgorithm
reconstructs anypolygonalpartitionofagiveninterfacetopologyexactly, it can
reconstructanypartitionofthesameinterfacetopologywithtwice-differentiable

7
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interfaces with 2nd-order accuracy; otherwise the algorithm is just 1st order ac-
curate (with respect to the partitions of the given topology).
The second question would be: what kind of approximate mixed-cell partitions

are of interest to us?We are looking for the solution {ω∗

p,m}M
m=1 in the class of

the polygonal partitions that can be obtained from Ω with a series of successive
dissections (like the one shown on Figure 3b). The main reason for this choice is
that all known volume-conservative interface reconstruction methods are formu-
lated in terms of two materials, i.e. are able to divide a mixed cell into two part
(most commonly, with a linear interface). Therefore the dissection is the simplest
(and usually the only) basic operation available for constructing a multi-material
partition.

3 Volume-of-fluid legacy

The Volume-of-fluid (VoF) methods perform the volume-conservative interface
reconstruction based on the cell-wise material volume data only. As we have
mentioned in the introduction, all VoF interface reconstruction algorithms rely on
the the material volume data from the direct neighbors of the mixed cell. There-
fore in the course of this section we always assume that Ω is surrounded by other
cells that provide the data for the evaluation of the interface normals.

3.1 Thepartitioningscheme choices

We were able to identify four different partitioning schemes based of the two-
material interface reconstruction (Figure 5). Since there is no established name
convention for the multi-material interface reconstruction schemes, we took the
liberty to come up with our own.

Partitioning scheme 1(Independent Dissections (ID), mentioned in [5])). In a
completely independent manner calculate M linear interfaces inside Ω,such that the
m-th interface,m = 1, . . . ,M, separates them-th material from the rest.
Them-th material occupies the space ω∗

p,m behind them-th interface,m = 1, . . . ,M .

Since the reconstruction preserves the material volumes, the cell fractions
{ω∗

p,m}M
m=1 obtained with the Independent Dissections inevitably overlap, leav-

ing the room for a void. The resulting material distribution in a mixed cell is
completely unphysical ({ω∗

p,m}M
m=1 is not a valid partition of Ω), but still may

be considered acceptable by those who perform the reconstruction in hydrody-
namic simulations just to decrease the diffusion of the interfaces. WithM 6 3 at
least one subcell in any polygonal partition has a non-linear interface (it could be

8
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several separate linear segments, one or several separated polylines); one can’t
reproduce it exactly with a single linear segment. Therefore, this algorithm is al-
ways 1st-order accurate. On the positive side, allM interfaces can be calculated
in parallel.

Partitioning scheme 2 (Parallel Dissections (PD), commonly referred to as the
“onion-skin” model [23, 5]). Given a particular material order, in a completely inde-
pendent manner calculate M-1 linear interfaces inside Ω, such that the m-th inter-
face, m = 1, . . . ,M-1, separates the mixture of the firstm materials from the rest.
If the m-th interface is located behind the (m+1)-th one for all m = 1, . . . ,M-2,

then the partitioning can be completed successfully, otherwise the partitioning fails. In
the former case the resulting interfaces do not intersect (are “parallel”), and therefore the
materials can be placed as follows:

1)the 1st material occupies the space ω∗

p,1 behind the 1st interface,

2)the 2nd material occupies the space ω∗

p,2 between the 1st and the 2nd interfaces,...
m)the m-th material occupies the space ω∗

p,m between the (m-1)-th and the m-th in-
terfaces,

...
M)at last, theM -th material occupies the space ω∗

p,M in front of the (M-1)-th interface.

All the PD interfaces can be calculated in parallel, but a posteriori one has
to check whether they define a valid partition, i.e. whether the m-th interface is
actually located behind the (m+1)-th interface,m = 1, . . . ,M-2.
The Parallel Dissections can successfully resolve the layered material struc-

ture, but it is impossible to guarantee the success of the Parallel Dissections in a
more general case.
Under the assumptions that:

1) the true partition is C2-parallel (i.e. the interfaces do not intersect and are
C2-differentiable),

2) the right material order is given,

3) the (two-material) interface reconstruction algorithm used is 2nd-order ac-
curate,

the Parallel Dissections are 2nd-order accurate; this follows from the obvious
fact that any polygonal parallel partition under the conditions 2) and 3) will be
reconstructed by the Parallel Dissections exactly. Note that, for any C2-parallel
partition there exist two (mutually reversed) material orders that yield a 2nd-
order accurate result with the Parallel Dissections.

9



ACCEPTED MANUSCRIPT 
 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Partitioning scheme 3 (Nested Dissections (ND) [11]). Given a particular material
order, in a completely independent manner calculate the normals of all M-1 Parallel
Dissections interfaces (the actual locations of the PDinterfaces are irrelevant).
The materials are separated from the bulk one by one as follows:

1) The 1st material ω∗

p,1 is separated from the cell Ω with the linear interface that has
the same normal as the 1st PDinterface. The remaining part of the cell

ωp,2+ ≡ Ω \ ω∗

p1

is further divided between the materials 2 throughM .

2) The 2nd material ω∗

p,2 is separated from ωp,2+ with the linear interface that has the
same normal as the 2nd PDinterface. The remaining part of ωp,2+

ωp,3+ ≡ ωp,2+ \ ω∗

p2

is further divided between the materials 3throughM .
...
m) The m-th material ω∗

p,m is separated from ωp,m+ with the linear interface that has
the same normal as them-th PDinterface. The remaining part of ωp,m+

ωp,(m+1)+ ≡ ωp,m+ \ ω∗

pm

is further divided between the materials m+1 throughM .
...
M) Finally, the remaining space ω∗

p,M is intended to theM -th material.

The construction of the interfaces in this case can not be parallelized com-
pletely: although the evaluation of the normals can be carried out in parallel,
their actual locations can be identified only in series.
The Nested Dissections scheme can be viewed as a robust modification of the

Parallel Dissections. Indeed,

• it always results in a valid partition,

• the ND and PD interface normals are always identical, and

• the ND and PD partitions are also identical, unless the Parallel Dissections
fail.

Contrary to the Parallel Dissections, the Nested Dissections scheme does not re-
quire the materials to be layered to get a valid partition. The result of the ND
partitioning can be classified as a polygonal serial partition. A mixed-cell partition
is called C2-serial, if all the materials can be separated from the bulk one by one
with C2-differentiable interfaces. If the separating interfaces are linear, then the

10
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C2-serial partition is polygonal. Parallel partition, introduced above, is a serial
partition with non-intersecting interfaces.
One may think that it is possible to get a 2nd-order accurate ND reconstruc-

tion of any C2-serial partition. Unfortunately, it is not true: the Nested Dissec-
tions are 2nd-order accurate only under the same conditions as the Parallel Dis-
sections are. The ND approximation to the C2-serial partition with intersecting
interfaces is only 1st-order accurate. This statement can be explained with a sim-
ple T-junction example (Figure 5, bottom row) The true interface bounding the
group of the first two materials (the right order is assumed) is non-smooth, and
therefore its PD approximation is only 1st-order accurate, which automatically
prohibits the accuracy order of the ND reconstruction to be higher than 1.
We couldn’t find any description of the Nested Dissections in literature; our

knowledge of this partitioning scheme comes fromR. Garimella [11].

Partitioning scheme 4 (Serial Dissections (SD)). Given a particular material order,
separate materials from the bulk one by one as follows:

1) Construct the linear interface that separates the 1st material ω∗

p,1 from the cell Ω.
The remaining part of the cell

ωp,2+ ≡ Ω \ ω∗

p1

is further divided between the materials 2 throughM .

2) Construct the linear interface that separates the 2nd material from ωp,2+. The re-
maining part of ωp,2+

ωp,3+ ≡ Ω \ ω∗

p2

is further divided between the materials 3 throughM ....
m) Construct the linear interface that separates the m-th material from ωp,m+. The
remaining part of ωp,m+

ωp,(m+1)+ ≡ Ω \ ω∗

pm

is further divided between the materials m+1 throughM ....
M) Finally, the remaining space ω∗

p,M is intended for theM -th material.

The construction of the individual interfaces by this partitioning scheme is
completely serial. When evaluating an interface normal, the Serial Dissections,
unlike the Nested Dissections, take into account the fact that some fraction of the
cell interior has already been occupied by the higher-priority materials; this gives
a chance to calculate the interface normal with higher accuracy.
In order to get a 2nd-order accurate SD reconstruction of a C2-serial partition,

it is absolutely essential to separate the materials in adjacent multi-material cells

11
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synchronously. This requirement is explained by the need to use the material
volume data from the direct neighbors of the mixed cell for the evaluation of the
interface normal; in order to construct a 2nd-order accurate interface approxima-
tion, it is important to eliminated from consideration the space already occupied
by all the preceding materials not only inside the mixed cell, but also inside its
direct neighbors. Therefore, a 2nd-order accurate SD reconstruction is feasible
only for an isolated cluster of adjacent multi-material cells that share a common
material order.
When it comes to reconstructing a layered material structure, the Serial Dis-

sections are more tolerant to the material order choice than the Parallel Dissec-
tions: for any C2-serial partition there exist 2M−1 different material orders that
yield a 2nd-order accurate result with the Serial Dissections.
The requirement to construct the interfaces in adjacent mixed cells in sync

makes the Serial Dissections implementation in the VoF context cumbersome.
We couldn’t find any description of the Serial Dissections in literature, but there
is an evidence that this partitioning scheme is in use in LLNL [1].
After reviewing the partitioning schemes used with VoF, one may conclude

that themulti-material interfaces reconstructed from the volume data can be 2nd-
order accurate only for the layered and, conditionally, for the serial material
structure (all the interface between adjacent materials must be twice differen-
tiable).

3.2 The material ordering choices

All themulti-material partitioning schemes presented (save the IndependentDis-
sections, which is not a valid partitioning scheme per se) rely on the user-defined
material order. Since the right choice of the material order is crucial for the ac-
curate reconstruction, a robust strategy for prioritizing the materials is of high
importance.
A convenient way to avoid this problem is to delegate the responsibility to de-

termine the material order to the end user. Nobody expects the user to intervene
each time a multi-material interface reconstruction routine is called; but the user
can be helpful defining a fixed material order. For many problems in impact and
penetration, where the materials are known to keep the initial layer structure,
the fixed order works well, but there are simple interface configurations (like the
∆-junction shown on Figure 15c or the “parquet”configuration from Figure 20),
for which no fixed material order will work.
We are aware of three dynamic priority systems that can be used in static in-

12
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true Independent Parallel Nested Serial
layout Dissections Dissections Dissections Dissections

fi
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t
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T
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1

n1

n
2

Figure 5. Two different material layouts on the left: a filament and a T-junction; and
their reconstructions obtained with various partitioning schemes. The true in-
terfaces have no curvature and extend linearly to the direct neighbors. The
material order used for reconstruction is specified on the true layouts. Inde-
pendent Dissections (second column) always result is material overlaps and
form a void. There is no difference between the Parallel, Nested, and Serial
Dissections in reconstructing a layered material structure (top row), but their
reconstructions of a T-junction (bottom row) are quite different: the Parallel
Dissections fail, because the interface bounding material 1, and the interface
bounding the mixture of materials 1 and 2 do intersect, the Nested Dissec-
tions deliver only 1st-order-accurate result, while the Serial Dissections are
2nd-order accurate (reconstruct polygonal partitioning exactly).

terface reconstruction 1):

• D. Bailey [2] defines the material priority as the number of the surrounding
cells containing the material. This tactics determines the right sequence of
the Serial Dissections (not the Parallel Dissections!) for a single filament co-
aligned with the grid lines (Figure 6a), but not for a diagonal filament (Fig-
ure 6b).

• S.Mosso and S. Clancy [15] developed the systembased on the approximate
material centroids. They consider a 3x3 cell block that includes a mixed
cell with all its direct neighbors and calculate the approximate centroids of

1) We discuss here neither the CTH-code priority systems by J.M. McGlaun (mentioned in [5]) and
by R.L. Bell and E.S. Hertel [4], nor the priority system for simulations with background material by
D. Benson [6, 7]: the systems used in the CTHcode can not be used in static interface reconstruction,
since their heuristics depend on the direction of the fluid flow, and the background-material priority
system is not entirely dynamic, since the background material is assigned the fixed priority.

13
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3 1

(a) Bailey’s system (b) Bailey’s system
succeeds fails

Figure 6. (a) The Bailey’s system correctly assigns the lowest priority to the filament
material, if the filament is co-aligned with the grid lines; (b) it erroneously as-
signs the highest priority to filament material, if the filament is the dominantly
diagonal. The numerical labels above specify the sequence number (reversed
priority) of the material.

the materials inside the block {x̃m}M
m=1 from the material volume data; for

this purpose the cell-wise material centroids are approximated by the cell
centers:

x̃m =
{

9
∑

i=1

|ωm,i|
}

−1
9

∑

i=1

xc(Ωi)|ωm,i|, m = 1, . . . ,M ;

here index i is used to specify a cell withing the 3x3 cluster. After all the
centroids are evaluated, the materials are arranged in the ascending order
of their centroid distances from the origin; the origin is located at the north-
west corner of the 3x3 block, if the set of the centroids has a dominantly
negative slope (Figure 7a), and at the south-west corner otherwise.

The Mosso-Clancy system correctly determines the material order for a sin-
gle filament (Figure 7a), but may give a wrong answer for a T-junction or
for the layered materials of number 4 and more.

Figure 7b shows an example of the T-junction, for which the Mosso-Clancy
system assigns the priorities incorrectly: the dark material on the right, al-
though has to be separated the first, is assigned the lowest priority. We
would like to point out that there is some ambiguity in the origin location
for this particular configuration. The rule for estimating the slope of the
centroid set is not deterministic in this case, and, depending on the choice
of the centroid to start with, may place the origin at either the north-west
or south-west corner. Neither choice of the origin location helps the Mosso-

14
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1

2

3

origin origin

2

1
3

(5/6, 5/6)

(13/6, 3/2)2.32

1.18
2.64

(13/6, 5/6)

origin

1
4?

?

(a) Mosso-Clancy (b) Mosso-Clancy (c) Mosso-Clancy
priority system succeeds priority system fails priority system fails

Figure 7. (a) The Mosso-Clancy system assigns higher priority to the material, whose
approximate centroid is located closer to the origin (the north-west or south-
west corner of the 3x3 cluster). (b) An example of the T-junction, for which
the Mosso-Clancy priority system assigns the lowest priority to the material
that has to be separated first. (c) An example of the layered material structure
with coinciding approximate centroids, for which the Mosso-Clancy system
can not assign the priorities correctly.

Clancy system determine the right material order for this T-junction.

Figure 7c shows an example of the 4-material parallel partition, for which
the approximate centroids of two materials coincide. The Mosso-Clancy
system does not have a recipe for this case. To make the situation even
worse, one can break the symmetry of this configuration by rotating the in-
terface between the filaments around the cell center. If the interface rotates
counterclockwise, the approximate centroid of the right filament moves up,
and the approximate centroid of the left filament moves down. For all suf-
ficiently small rotation angles the origin location stays at the north-west
corner, and, according to Mosso and Clancy, the right-filament material has
higher priority over the left-filament material, which is not correct.

• Another priority system that relies on the material centroids was developed
by D. Benson [6]. He does not derive the centroid locations from the volume
data, like S. Mosso and J. Clancy do, but considers the material centroids to
be independent parameters of the systemand keeps track of them explicitly;
strictly speaking, this feature prohibits the Benson’s priority system from
being classified as volume-based (VoF).

The material order is given by the order of the centroid projections on the
line determined by the least square fit to the set of the centroids. This strat-
egy successfully recovers the order of the layered materials even when their

15
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1

3

2

1

3

2 1

22

3 1 3

(a) (b)

Figure 8. The Benson’s system assigns the priorities according to the order of the mate-
rial centroid projections on the line resulting from the least square fit to the set
of the centroids. There are two different material orders to choose from: the
forward (grey) and reverse (black). When the materials in the true partition
are layered, like on picture (b), it does not pose a problem: both orders are
equivalent for the partitioning purposes and result in the same approximate
partition. Otherwise, if the true interfaces form a junction, like on picture (c),
these two orders are not equivalent, and at least one of them is wrong.

number is high.

Note that the line to project the centroids on does not have a fixed posi-
tive direction. Depending on the choice of the positive direction (which is
completely arbitrary), one may get either the forward or the reverse mate-
rial order (see Figure 8). For the layered material structure (Figure 8a) these
two orders are equivalent: the Parallel Dissections will result in the same
partition anyway. But if the true interfaces form a junction (Figure 8b), at
least one of the orders is wrong. Unfortunately, there is no way to distin-
guish between the right and the wrong orders in this case.

Therefore, it is true to say that the material order can be confidently deter-
mined from the cell-wise material volume data only for the layered material
structure.
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4 Moment-of-Fluid perspective

In addition to material volumes {|ω∗

m|}M
m=1, the moment-based interface recon-

struction requires the material centroids {x∗

m}M
m=1, where x

∗

m ≡ xc(ω
∗

m), m =
1, . . . ,M . One can see that in 2D material the cell-wise material centroids and
volumes, provide 3 times more information than the volumes alone. This extra
information can definitely be used to improve the quality of the interface recon-
struction over the traditional volume-base methods.

4.1 The partitioning scheme choices

Each of the multi-material partitioning schemes described in the previous section
can be transparently combined with the two-material MoF algorithm. There is an
essential difference though. TheMoF reconstruction does not depend on the data
from the adjacent cells. This fact makes the Serial Dissections, so cumbersome
and restrictive with VoF, the most suitable partitioning scheme for MoF: there is
no need to synchronize the construction the interfaces in adjacent multi-material
mixed cells to get a 2nd-order accurate result.
With the right material order, the SD reconstruction of a C2-serial partition is

2nd-order accurate; the SD reconstruction of a polygonal serial partition is exact.

4.2 Automatic material ordering

The major advantage of the MoF approach over the VoF one is that it can derive
the right material order automatically. The governing principle of the moment-
based interface reconstruction is finding the volume-preserving mixed-cell partition
that minimizes the defect of the first moment. In the two-material case this principle is
used to determine the direction of the interface normal; in themulti-material case,
it can be used to find the right material order for the Serial Dissections. Strictly
speaking, the right material order is determined indirectly by performing the SD
partitioning for each possible material order and choosing the one that results in
the minimal defect of the first moment (see Figure 9).

Algorithm 1 (Multi-Material MoF). Given a partitioning scheme, generate all possible
trial partitions. For every trial partition {ωp,m}M

m=1 evaluate the cumulative defect of the
first moment

∆M1

(

{ωp,m}M
m=1

)

=
{ M

∑

m=1
||M1(ωp,m) −M1(ω

∗

m)||2
}1/2

=
{ M

∑

m=1
|ω∗

m| ||xc(ωp,m) − xc(ω
∗

m)||2
}1/2

.
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true partition SD approximations obtained with all possible material orders

1

23 3

1 2

3

2 1

(a) (b) ∆M1= 3.89e-3 (c) ∆M1= 7.74e-3 (d) ∆M1= 1.14e-2

1

32 2

1 3

2

3 1

(e) ∆M1= 3.89e-3 (f) ∆M1= 7.75e-3 (g) ∆M1= 1.14e-2

Figure 9. As an illustration of the Multi-Material MoF strategy, we present here
a C2-serial partition (a)andits SDapproximations obtainedwith all possible
orders (b–g);at the bottom of each approximate partition we specify the re-
spective(cumulative)defect of the first moment.Note that, as long as the cur-
vature of true interfaces is moderate (in our case the curvature radius R = h),
the order of the last twomaterials is not important.The approximate partition
obtainedwith the right material orders (b, e)result in the lowest defect.

Choose the partition{ω∗

p,m}M
m= 1
thatresults inthe minimaldefect.

Whenever usedincombinationwith the SerialDissections partitioning scheme,
the Multi-Material MoF algorithmwill be referredto as MoF-SD.Such an algo-
rithmhascombinatorialcomplexity in the number ofmaterials:to get the answer,
one has to try all M ! material orders.On the other hand, it is reasonable to ex-
pect only a limitednumber of the mixedcells in the whole computational gridto
contain more than 2materials.Therefore, for a moderateM , the computational
overhead, associatedwith the optimal order search, is not likely to be significant.
Also, the various material orders can be effectively triedin parallel.
The Multi-Material MoF algorithms tries to place the materials as close to

their true locations as possible.If the true partition is polygonal serial, then there
exists a material order, for which the Serial Dissections result in the exact recon-
struction.The exact reconstruction has zero defect of the first moment.And,
since the polygonalserialpartitionis uniquelyidentifiedbythe setofthe materialcen-
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filament T-junction Y-junction

R

R

(0.65,0.35)

(0.45, 0.55)

45

60
(0.5,0.5)

R

R

9090

R

R

R

120

120

120

(0.5,0.5)

Figure 10. Three types of the 3-material cell mixed-cell layouts. The filament and the
T-junction are examples of C2-serial partitions, but the Y -junction is not. The
coordinates of the points are given in h (size of the cell) units. All the inter-
faces have the same curvature 1/ R.

troids (the first moments), any other trial serial partition should have a non-zero
defect, i.e. can not be a minimizer. The last observation, along with the fact
that the first-moment defect continuously changes with the shape of the subcells,
suggests that the MoF-SD algorithm should guess the material order correctly
not only for a polygonal serial partition, but also for any C2-serial partition with
the sufficiently low interface curvature.
We claim that the MoF-SD algorithm results in the 2nd-order-accurate ap-

proximation to any C2-serial partition.

4.2.1 Numericaltests

To support our claim, we tested three different mixed-cell layouts (see Figure 10):

• a filament (no junction),

• a T-junction,

• and a Y-junction.

The first two configurations are C2-serial partitions, the third one is not. The
examples of the moment-based reconstructions of these interface configurations
for R = h and R =64h are presented on Figures 11 and 12 respectively.
Each of the three setups above is described by two parameters: the size of

the cell h and the curvature 1/R of the interfaces, which allow a unique non-
dimensional combination h/R. The interface reconstruction errors ∆M1, ∆ω,
and ∆Γ, introduced in Section 2 (page 6), should also be the functions of these
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two parameters. It is clear that if the h/R ratio is fixed, then the interface recon-
struction errors scale according to their respective dimensions:

∆M1 = O(h3),

∆ω = O(h2),

∆Γ = O(h);

the expressions above may include the interface curvature only as a part of a
non-dimensional constant:

∆M1 = O((h/R)α1h3),

∆ω = O((h/R)α2h2),

∆Γ = O((h/R)α3h),

(2)

where the exponents α1, α2, α3 depend only on the type of the junction and can
be identified through the direct error measurements.
To find the exponents α1 and α2 for a particular type of the interface junction,

we fixed the size of the mixed cell h = 1 and measured the dependence of the
∆M1 and ∆ω errors on the interface curvature; the results are presented on Fig-
ures 13 and 14. By evaluating the slopes of the error graphs, one may conclude
that for the filament α1 = 2 , α2 = 1, for the T-junction α1 = α2 = 1, and for the
Y-junction α1 = α2 = 0.
Since the direct measurement of the maximum distance ∆Γ between the true

and the reconstructed interfaces is somewhat tricky, we decided to use geometri-
cal considerations to find α3. Let us take a look at the average deviation ∆Γ of the
reconstructed interface from the true one,which we define as

∆Γ = ∆ω/|Γ|,

where |Γ| = O(h) is the total length of the true interfaces inside the mixed cell.
Since the true interfaces in our experiments are piecewise-circular and the recon-
structed ones are polygonal,∆Γ and∆Γ are equivalent, i.e. for each particular type
of the interface junction there exist constants 0 < c1

6 c2 independent of both h
and R, such that

c1∆Γ 6 ∆Γ 6 c2∆Γ.

Therefore
∆Γ = O(∆Γ) = O(∆ω/|Γ|) = O(∆ω/h),

which along with (2) results in α3 = α2.
Table 1 summarizes the asymptotic behavior of the interface reconstruction

errors. The MoF-SD reconstruction is 2nd-order accurate, as long as the true
partition is C2-serial (the filament or the T-junction); for the Y-junction it is only
1st-order accurate.

20



ACCEPTED MANUSCRIPT 
 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

filament T-junction Y-junction

tr
u
e
pa
rt
it
io
n

(R
=

h
)

M
oF
-S
D

re
co
n
st
ru
ct
io
n

Figure 11. The test partitions (top row, the radius of the interface curvature R=h) and
their MoF reconstructions obtained with the Serial Dissections (bottom row).
The MoF algorithm tries to place the materials as close as possible to their
true locations, even when the structure of the true partition is beyond the
scope of the partitioning scheme (the Y-junction).

Table 1. The asymptotic (h � R) behavior of the interface reconstruction errors.

error filament T-junction Y-junction

∆M1 O(h5/ R 2) O(h4/ R ) O(h3)

∆ω O(h3/ R ) O(h3/ R ) O(h2)

∆Γ O(h2/ R ) O(h2/ R ) O(h)
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Figure 12. The test partitions (top row, the radius of the interface curvature R = 64h)
and their MoF-SD reconstructions (bottom row). As the interface curvature
vanishes, the MoF-SD reconstructions of the C2-serial layouts (the filament
and the T-junction) converges to their respective true partitions.
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Figure 13. The cumulative defect of the first moment∆M1 as a function of the interface
curvature 1/R (the size of the mixed cell is fixed h = 1).
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Figure 14. The cumulative symmetric-difference area∆ω as a function of the interface
curvature 1/R (the size of the mixed cell is fixed h = 1).
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4.3 Automatic material aggregation

The search of the best approximate mixed-cell partition, performed by the Multi-
Material MoF algorithm, does not limit the choice of partitioning scheme in any
way. Therefore, in order to achieve a lower defect of the first moment, one may
expand the family of trial partitions at will. When a mixed cell contains 4 or more
materials, the Serial Dissections partitioning scheme yields a simple but powerful
generalization: instead of separating materials from the mixed cell one by one,
one may recursively separate the groups of materials.

Partitioning scheme5(B-Tree Dissections (BTD)). Given a particular material order,
pickan arbitrary m between 1 and M-1 to construct the linear interface that separates
the firstmmaterials from the rest, and then recursively subdivide these two groups until
all the materials are completely separated. The input moments for separating a group of
materials are given by the sum of the respective moments of all the constitutive materials.

This “divide-and-conquer”partitioning algorithm generates (M-1)! different
partitions for a given material order, which comes to the total of M !(M-1)! trial
B-tree partitions, compared to the total ofM ! trial serial partitions. With a greater
number of trial partitions available, one can explore a more diverse family of the
interface layouts, and, therefore, has higher chances to attain a lower defect of
the first moment.
The price one have to pay for these virtues is the higher complexity (addi-

tional factor of M-1! compared to the MoF-SD) of the Multi-Material MoF algo-
rithm, which, in combination with the B-Tree Dissections partitioning scheme,
will be referred to as MoF-BTD. Once again we want to point out that it is rea-
sonable to expect only a limited number of mixed cells with more than 3 material
in the whole grid. Therefore, the computational overhead, associated with the
search algorithm, is unlikely to be significant. The growth of complexity can be
partially compensated by the parallel implementation: once the two groups are
separated, one can refine them further completely independently.
Note that the B-Tree Dissections partitioning scheme does not make much

sense in theVoF context, since it just complicates the choice of the right dissection
order, which is problematic even with the much simpler Serial Dissections.
The result of the B-Tree Dissections is a polygonal B-tree partition. A mixed-cell

partition of size M is called a C2-differentiable B-tree partition, if all the materials
can be separated from the rest withM-1 C2-differentiable interfaces (the separat-
ing interfaces may form junctions, but may not cross each other). If the separat-
ing interfaces are linear, then the C2-differentiable B-tree partition is polygonal.
Serial partition is a B-tree partition with fixed m = 1 (see the description of the
B-Tree Dissections above).
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Figure 15. Three types of the 4-material mixed-cell layouts. The coordinates of the
points are given in h (size of the cell) units. All the interfaces have the same
curvature 1/R.

We claim that for any C2-differentiable B-tree partition the MoF-BTD algo-
rithm results in the 2nd-order-accurate approximation; if the B-tree partition is
polygonal, the result is exact.

4.3.1 Numerical tests

To support our claim and compare the accuracy of the MoF-BTD reconstruction
to the accuracy of the MoF-SD reconstruction, we tested three different mixed-
cell layouts (see Figure 15):

• an X-junction,

• an ℵ-junction,

• and a∆-junction.

The first two configurations are C2-differentiable B-tree partitions, but the
third one is not. Neither of the three partitions is C2-serial. The examples of the
moment-based reconstructions of these interface configurations for R = h and
R = 64h are presented on Figures 16 and 17 respectively.
For both algorithms we measured ∆M1 and ∆ω interface reconstruction er-

rors at various Rs to build the corresponding graphs (Figures 18 and 19 respec-
tively). By evaluating the slopes of the∆ω graphs one can find that the MoF-BTD
reconstruction of the X- and ℵ-junctions is 2nd-order accurate, and the MoF-BTD
reconstruction of the ∆-junction is only 1st-order accurate. The Serial Dissec-
tions can not reproduce the structure of either of the test layouts and therefore
their MoF-SD reconstructions are only 1st-order accurate. Table 2 summarizes
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Table 2. The asymptotic (h � R) behavior of the interface reconstruction errors.

Serial Dissections

error X-junction ℵ-junction ∆-junction

∆M1 O(h3) O(h3) O(h3)

∆ω O(h2) O(h2) O(h2)

∆Γ O(h) O(h) O(h)

B-Tree Dissections

error X-junction ℵ-junction ∆-junction

∆M1 O(h5/R2) O(h4/R) O(h3)

∆ω O(h3/R) O(h3/R) O(h2)

∆Γ O(h2/R) O(h2/R) O(h)

the asymptotic behavior of the MoF interface reconstruction errors for all three
test layouts.
At the end we would like to present four more configurations that can be

accurately reproduced by the Multi-Material MoF algorithm (Figure 20).
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Figure 16. The test partitions (top row, the radius of the interface curvatureR = h) and
their MoF reconstructions obtained with the B-TreeDissections (middle row)
and the Serial Dissections (bottom row). The MoF algorithm tries to put the
materials as close to their true locations as possible, even when the structure
of the true partition is beyond the scope of the partitioning scheme (the ∆-
junction layout is beyond the scope of the B-TreeDissections, all three layouts
are beyond the scope of the Serial Dissections).
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Figure 17. The test partitions (top row, the radius of the interface curvature R = 64h),
and their MoF reconstructions obtained with the B-Tree Dissections (middle
row) and the Serial Dissections (bottom row). As the curvature of the true
interfaces vanishes, the MoF-BTD reconstructions of the B-tree layouts (the
X-junction and the ℵ-junction) converge to their respective true partitions.
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Figure 18. The cumulative defect of the first moment∆M1 as a function of the interface
curvature 1/R (the size of the mixed cell is fixed h = 1).
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Figure 19. The cumulative symmetric-difference area∆ω as a function of the interface
curvature 1/R (the size of the mixed cell is fixed h = 1).
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“quilt” “CND”

“circles” “parquet”

Figure 20. These four examples demonstrate the capabilities of the multi-material MoF
technique. Although the true configurations are not shown here, one can
easily guess them, since their MoF reconstructions are very accurate; the
“quilt” and “parquet” reconstructions are exact. The top two examples re-
quire the employment of the B-Tree Dissections, while the bottom ones can
be obtained with the Serial Dissections. There is a fixed material order that
can be used for “circles”, but no fixed order will work for the “parquet” con-
figuration. We would also like to emphasize the exceptional resolution of the
MoF method: in case the “patchwork” and “parquet” configurations the size
of the color tiles is comparable to the size of the grid cells.
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5 Concluding remarks

We reviewed the multi-material VoF interface reconstruction strategies and pre-
sented a new Multi-Material MoF algorithm.
Following the VoF strategy, the MoF algorithm can construct a serial mixed-

cell partition by separating materials from the cell one by one. The major ad-
vantage of the MoF approach over the VoF approach is that the former provides
sufficient data to choose the best approximate partition (derive the material or-
der) automatically. Also, the Multi-Material MoF algorithm can go beyond the
traditional serial partitions and reconstruct an arbitrary C2-differentiable B-tree
mixed-cell partition with 2nd-order accuracy, which can hardly be achieved in
the VoF context.
Although our discussion evolved around 2D cases, it is clear that all the parti-

tioning and ordering strategies described are dimension-independent and there-
fore are applicable in 3D.
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AppendixA The centroid velocity

Let ω be a parcel of incompressible fluid that moves in the velocity field v(x).
Then the velocity of its centroid xc(ω) is

d
dt

xc(ω) =
1

|ω|

d

dt

∫

ω

x dω

=
1

|ω|

∫

ω

d

dt
x dω

=
1

|ω|

∫

ω

v dω

= . . .

If the velocity fieldistwice-differentiable, then

v(x) = v0 + G0(x − x0) + O(||x − x0||
2),

where v0 ≡ v(xc(ω)) isthe velocity at the parcel centroidx0 ≡ xc(ω), G0 ≡
[∇v](xc(ω)) isthe velocity gradient at the parcel centroid.

. . . =
1

|ω|

∫

ω

{

v0 + G0(x− x0) + O(d2)
}

dω

=
1

|ω|

{

v0|ω| + G0

(∫

ω

x dω − x0|ω|

︸ ︷ ︷ ︸

||

0

)

+ O(d2)|ω|
}

= v0 + O(d2),

where d isthe diameterof the parcel |ω|.
Aswesee, the centroidvelocity coincideswith the velocity at the centroidlo-

cationwith uptoO(d2). Also, wheneverv(x) islinear, theHessianof v vanishes,
andO(d2) ≡ 0.Therefore, with high confidence, one canconsiderthe centroidof
the parcel to be aLagrangianparticle.
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