4. MASTROCINOUE G. et al., A numerical investigation on a C.W. highpower, electron-beam, nreionized $\mathrm{He}_{\mathrm{C}}: \mathrm{S}_{:}: \mathrm{CO}_{2}: \mathrm{CO}$ laser, Optica Acta, 27, 8, 1275-1286, 1980
5. BREYEV V.V., et al., Numerical investigation of a technological Cu:-laser with a closed gas dynamic contour, Kvantovaya Elektronika, 8, 8, 1656-1662, 1981
6. RAIZER YU.3., Principles of the Modern Physics of Gas Discharge Processes losnovy sovremennc fiziki gazorazryadnykh protsessov), Nauka, Moscow, 1980.
7. KOTEROV V.N., SIDOROV I.i. and SHIPILIN A.V., Two-dimensional model of the working volume of a continuous electro-ionization $\mathrm{Cl}_{2}-l a s e r$. Methods of calculation. Implementation in: Applied Math. Commurications (Soobshch. po prikladnoi matematike), Vychisl. Tsentr.
Akad. Nauk SSSR, Moscow, 1981 .
8. GORDIYETS B.F., OSIPOV A.I. and SHELEPIN L.A., Kinetic Processes in Cases and Molecular Lasers (Kineticheskie protsessy v gazakh i molekulyarnye lazery), Nauka, Moscow, 1980.
. ANAN'YEV YU.A., Optical Resonators and the Problem of the Divergence of Laser Radiation (Opticheskie rezonatory i problema rackhodimosti lazernogo izlucheniya), Nauka, Noscow,
9. SMITH C. and THOMSON R., Numerical Modelling of Gas Lasers /Russian translation/, Mir, Moscow, 1981.
10. GLOTOV E.P., DANILYCHEV V.A. and KHOLIN I.V., Sticking and recombination in a plasma discharge excited by the electro-ionization method, Trudy Fiz. Inst. Akad. Nauk SSSR, Moscow, 116, 188-201, 1980.
11. LOBANOV A.N. et al., Parametric investigation of the energy characteristics of an electroionization CO-laser. Preprint 199, Fiz. Inst. Akad. Nauk SSSR, Moscow, 1977.
12. SHIPILIN A.V., An iterative numerical method for calculating flows of a radiating gas at subsonic velocities, in: Dynamics of a Radiating Gas (Dinamika izluchayushchego gaza), 2nd Ed., Vychisl. Tsentr Akad. Nauk SSSR, Moscow, 78-89, 1976.
13. WASOW W.R. and FORSYTHE G.E., Finite Difference Methods for Partial Differential Equations, Izd. Inostr. Lit., Moscow, 1963.
14. TIKHONOV A.N. and SAAARSKII A.A.. On the convergence of difference schemes in the class of dischontinuous coefficients, Dokl. Akad. Nauk SSSR, 124, 3, 529-532, 1959.
15. SIDOROV I.N., Iterative numerical method for calculating internal flows of a weakly ionized plasma in an electric field, Zh. vychisl. Mat. mat. Fiz., 21, 3, 804-808, 1981. Preprint 9, Inst. Prikladn. Mat Aifference Schemes (Operatornve raznostnye skhemy), Preprint 9, Inst. Prikladn. Mat. Akad. Nauk SSSR, Moscow, 1981.
16. BURDA A.O. et al., Handbook on the Use of the Alpha-6 System for the Automation of Programming (Rukovodstvo k pol'zovaniyu sistemy avtomatizatsii programmirovaniya), Vychisl. Tsentr Akad. Nauk SSSR, Novosibirsk, 1974.
17. VELIKHOV E.P., PIS'MENNYI V.D. and RAKHIMOV A.T., A non-independent gas discharge which excites continuous working CO_{2}-lasers, Uspekhi fiz. Nauk, $122,3,419-447,1977$.

Translated by E.L.S.
U.S.S.R. Comput.Maths.Math. Phys. ,Vol. 26,No.5,pp.74-84,1986

Printed in Great Britain

NUMERICAL MODELLING OF TWO-DIMENSIONAL GAS-DYNAMIC FLOWS ON A VARIABLE-STRUCTURE MESH*

N.V. MIKHAILOVA, V.F. TISHKIN, N.N. TYURINA, A.P. FAVORSKII and M.YU. SHASHKOV

A method of computing complex two-dimensional gas-dynamic flows on variable-structure meshes is proposed. The medium is represented as a set of point particles and of domains surrounding the particles. These domains are so-called Dirichlet domains. Discretization of the equations is realized on a pattern formed from "Dirichlet neighbours". To construct the difference scheme, the method of supnort operators is used: with this method, completely conservative schemes can be obtained. Results are given of two-dimensional computations on modelling a Rayleigh-Taylor instability in a closed rectangular vessel.

Introduction.

The need to study complex gas-dynamic flows leads constantly to the development of new methods for performing computing experiments. At present, two main descriptions of the medium are used when modelling flows numerically: the Lagrangian approach in the case of relatively smooth flows / 1-3/, and the Eulerian description / / for flows with strong

[^0]deformations. At the same time, situations are often encountered in important practical problems in which it is desirable to retain the advantages of both approaches. The use of purely Lagrangian methods leads to strong distortion of the mesh cells, which creep into one another and overlap, thus making it impossible to continue the computation. The main
drawback of the Eulerian approach is the difficulty of taking account of contact boundaries. There are various methods of quasi-Lagrangian type, the basic idea of which is to use meshes with Lagrangian nodes, whose connection is not fixed but can vary with time depending on the mutual disposition of the meshes. Such methods are discussed e.g., in $/ 5,6,7$, Chapter 11 , 12, and 8-11/.

The present paper gives a method of computing complex two-dimensional flows on meshes of variable structure. The method has the following distinctive features. The medium is represented as a set of point particles (mesh nodes), which move along with the medium, and domains which surround the particles. These domains are Dirichlet domains or cells (see e.g., $/ 5,12 /$). With each particle there is connected a mass which is assumed Lagrangian and fixed in time. All the gas-dynamic quantities relate to particles. Given the configuration of the particles, the Dirichlet cells are constructed afresh at each instant. As a result of the construction of the Dirichlet cells, the "Dirichlet neighbours" are uniquely defined, i.e., the particles which are closest to the given particle in the geometric sense. These particles in fact form the pattern on which the equations of gas dynamics are discretized. The difference scheme is constructed by using the method of support operators /13-15/, which enables completely conservative schemes to be obtained. Matching of the properties of the difference analogues of the operators div and grad is performed both directly, on the basis of integral identities, and by using the variational approach $/ 3 /$. When introducing the artificial viscosity needed to compute flows with shock waves, and in order to ensure stability of the scheme, the dissipative process is regarded as the consequence of inelastic collisions of particles. This way of introducing viscosity for Lagrangian schemes was proposed in /16/, but it is more natural when Dirichlet cells are used. A similar approach in the one-dimensional case was considered in /ll/.

Our algorithm has the following merits. First, the volume of Dirichlet cells depends continuously on the particle coordinates, and remains unchanged, both at the instant when a particle enters the neighbourhood of the given particle, and when another particle leaves. The continuity of the volume determines the continuity of the density for the given particle. Another important property of the Dirichlet volume is that its derivatives with respect to the particle coordinates are likewise continuous. These derivatives appear in the difference equations, so that the acceleration, velocity, internal energy, and pressure are continuous. The pattern of the difference scheme adapts automatically to the solution, so that a reasonable degree of accuracy can be expected. The algorithm can be used to compute complex flows, without emergency situations arising.

The main drawback is that the Dirichlet cells are not Lagrangian; this was pointed out in /7, Chapter 11/. This implies the absence of local approximation for the equation of continuity. It must be said, however, that a similar situation holds for the equations of motion in the widely used Lagrangian schemes of /1, 17/. Also, it is well-known that, in spite of the absence of local approximation, convergence theorems /18/ have been proved for a number of schemes for Laplace's equation. We can expect that a similar situation will hold for the scheme used in our algorithm, though questions concerning accuracy require extra consideration. The next drawback is typical for schemes in which all the quantities are referred to the nodes: in the case of regular rectangular meshes, the scheme is a "through point" scheme, so that stability is reduced and the role of the chosen aritificial viscosity is increased.

1. General description of the algorithm.

The method is designed to solve the equations of gas dynamics in Lagrangian variables:

$$
\begin{align*}
& \frac{d \rho}{d t}-\rho d \mathrm{~W} W=0 \tag{1.1}\\
& \rho \frac{d W}{d t}-\operatorname{grad} p=0 \tag{1.2}\\
& \rho \frac{d \varepsilon}{d t}-p \operatorname{div} W=0 \tag{1.3}
\end{align*}
$$

$$
\begin{equation*}
\mathbf{W}=d \mathbf{r}^{\prime} d t . \quad F(p . \rho, \varepsilon)=0 \tag{1,4}
\end{equation*}
$$

where p is the density, W the velocity vector, r the radius vector, p the pressure, and ε the specific internal energy.

The medium is modelled by a set of point narticles and domains connected with them. With each particle there are connected: the mass m_{i}, the density ρ_{1}, the components $W X_{i}$, $W Y_{i}$ of the velocity vector, the specific internal energy f_{1}, the coordinates x_{1}, y_{i}, the pressure p_{i}, and the volume V_{i} of the corresponding domain. We assume that the particles move with the medium and that their mass remains unchanged in the computational process.

The domains connected with the particles are Diricinlet domains. For a given narticle, the Diricnlet domaln is defined as the subdomain of the (x. y) plane, all the points of which are closer to the given particle than are the remainder. The Dirichlet cells are convex polygons, which cover the ($x . y$) plane without gaps or overlans.

By dividing the domain into Dirichlet cells we can introduce the concept of a neighbour. Given the particle, its neighbours are those whose Dirichlet cells have a common plece of boundary with the cell of the given particle. The neighbours form a pattern, on which Eqs. (1.1)-(1.4) are approximated for the given particle.

The method of support operators /13-15/ is used to construct the difference scheme. applied to system il.1;-(1.4), this amounts essentially to replacing the differential As by their difference analogues DIV and GRAD. The latter are constructed in such a way operators satisfy difference analogues of certain integral identities which are satisfied by was to differential operatcrs. By thus choosing DIV and GRAD, we can obtain completely conservatial differential-difference schemes, where time remains continuous. The methods describedvative can be used to construct the completely discrete model when approximating in described in $/ 1 /$

To be able to compute flows with the difference equations. The dissipative process arti-icolviscosity is introduced into collisions of the given particle with its neighbours regarded as a consequence of inelastic
2. Dirichlet cells: properties and method of construction.

1. Suppose we are given in the plane a set of points $\left\{P_{1}\right\}, i=1,2, \ldots . N$. The Dirichlet domain or cell for point P_{k} is then the domain V_{k}, any point of which is closer to P_{k} than are other points of the set $\{P$,$\} .$

Note that the Dirichlet cells may be unbounded for certain points. If the computational domain D is bounded, we understand by the Dirichlet cells in it the intersections of the domains V_{k} with D. Then, those Dirichlet cells which were unbounded on the entire plane, become bounded and part of their boundary consists of pieces of the boundary of D. It will be assumed for simplicity throughout that D is a rectangle with sides parallel to the coordinate axes. In Fig. 5 of Sect. 5 we show an example of a Dirichlet cell for an actual problem. Given a point P_{k}. its neighbours are by definition the points $P_{\text {, }}$ for which $\bar{\Gamma}_{1} \cap \bar{F}_{*} \neq \varnothing$. where \vec{F}_{i} and \vec{l}, are the closures of the respective sets. In para. 3 of the present section we describe an efficient algorithm for constructing Dirichlet cells and the corresponding
lists of neighbours.

Fig. 1
2. Let us consider some geometric properties of Dirichlet cells. First, these cells are convex. Let us see how the coordinates of the vertices of the domain V_{k} are expressible in terms of the coordinates of the neighbours of the point P_{k}. We order the neighbours according to angle in the counter clockwise direction. Those neighbours are called consecutive which stand in such an ordered series. We denote each vertex of V_{k} by the letter T with the index of the neighbour standing ahead of it when point P_{k} is circulated counter clockwise The vertices of V_{k} are the centres of circles described about the triangles whose vertices are point P_{k} and two of its consecutive neighbours. In the situation of Fig. 1 , a, the vertex T_{1} is the centre of the circle through points $P_{k} . P_{1}, P_{j}$. The coordinates of the vertex T_{1} are expressible as follows in terms of the coordinates of $P_{n}, P_{t}, P_{\mathrm{s}}$:

$$
\begin{align*}
& x_{T_{l}}=0.5\left[A^{2}\left(y_{P_{l}}-y_{P_{j}}\right)-A^{2}\left(y_{P_{l}}-y_{P_{l}}\right)\right] / D, \\
& y_{T_{l}}=0.5\left[1^{2}\left(x_{P_{l}}-x_{P_{j}}\right)-1^{1}\left(x_{P_{l}}-x_{P_{j}}\right)\right] / D, \tag{2.1~b}
\end{align*}
$$

where $A^{1}=x_{P_{l}}^{2}-x_{P_{k}}^{2}-y_{P_{l}}^{2}-y_{P_{k}}^{2}, A^{2}=x_{P_{l}}^{2}-x_{P_{j}}^{2}+y_{P_{l}}^{2}-y_{P_{j}}^{2}, \quad D=\left(x_{p_{l}}-x_{P_{k}}\right)\left(y_{P_{l}}-y_{P_{j}}\right)-\left(x_{P_{l}}-x_{P_{j}}\right)\left(y_{P_{i}}-y_{P_{k}}\right)$.
An important property of the volume (also denoted by V_{n} of a Dirichlet cell, is its continuous dependence on the position of the point. A second important property of the Dirichlet volume is that the derivatives $\partial V_{k} \partial x_{p_{q}}, \partial V_{k} / \partial y_{p_{q}}$ are continuous, where q runs over all values from 1 to N.

Let us prove these properties. It must first be remarked that, from the formal standpoint, the volume V_{*} is a function of several variables, namely, of the coordinates of all points. We know that the differentiability, and hence continuity, of a function of several variables follows from the existence and continuity of the derivatives with respect to the individual arguments, so that it suffices to prove the continuity of the derivatives $\partial V_{k} / \partial x_{p}$ $\partial V_{k} \partial y_{p_{4}}$. The expressions for these derivatives are obtained by direct differentiation, in the light of the fact that only part of the volume $\mathrm{l}_{4}{ }^{*}$ depends on the position of the point P_{q} (see Fig. 1,b). First, the expressions for the derivatives were obtained manually, then they were checked by using the REDUCE system of analytic transformations (see e.g., /19/). Let us quote the expression for $\partial V_{k} / \partial x_{P e}$ (the derivative with respect to y is computed in
the same way):

$$
\begin{equation*}
\frac{\partial V_{k}}{\partial x_{P_{7}}}=\left(y_{T_{q}}-y_{T_{l}}\right) \frac{x_{P_{q}}-\left(x_{T_{l}} \div x_{T_{q}}\right) i^{2}}{x_{P_{q}}-x_{P_{i}}} \tag{2.2}
\end{equation*}
$$

In the case $x_{P_{q}} \neq x_{P_{k}}$ it follows directly from (2.2) that the derivative is continuous, if P_{Q} s a neighbour and remains a neighbour when its coordinates vary with a small neighbourhood. $f P_{q}$ is not a neighbour of P_{k} then $\partial V_{h} / \partial x_{P_{i}}=0, \partial V_{l /} / \partial y_{P_{q}}=0$.

Fig. 2
It remains to show that $\partial V_{k} / \partial x_{P_{q}}=0$ when the cells V_{4} and V_{q} are in contact with a common vertex, or in other words, when the point P_{q} lies in the circle nassing through the points P_{n}, P_{i} and P_{1}. Since, in this case, the points T_{1} and T_{g} move to the same point $T_{i}^{\prime}(F i g .2, a)$,
 similarly, on noting that, since $P_{k} P_{q}$ and $T_{q} T_{t}$ are mutually perpendicular, we have ($y_{T_{q}}$ $\left.y_{T_{i}}\right) /\left(x_{P_{q}}-x_{P_{k}}\right)=-\left(x_{T_{q}}-x_{T_{l}}\right) /\left(y_{P_{q}}-y_{P_{l}}\right)$, and hence (2.2) can be reduced to the form

$$
\frac{\partial V_{k}}{\partial x_{P_{q}}}=-\left(x_{T_{q}}-x_{T_{1}}\right) \frac{x_{P_{q_{1}}}-\left(x_{T_{l}}+x_{T_{q}}\right) / \underline{2}}{y_{P_{q}}-y_{P_{k}}}
$$

Now consider how the derivative $\partial V_{n} / \partial x_{p_{n}}$ behaves. Since the volume of the Dirichlet cell remains unchanged when all points are given a parallel shift, we can write

$$
V_{1}\left(x_{P_{k}}-t, x_{P_{q}} \div t, x_{P_{l}}+t, \ldots, y_{P_{h}}, y{P_{\eta}}, y_{P_{l}}, \ldots\right)=\text { const }
$$

so that

$$
\begin{equation*}
\frac{\partial V_{k}}{\partial t}=\sum_{\left.i=\bar{H}()^{\prime}\right)} \frac{\partial V_{k}}{\partial x_{P_{i}}}=0 \tag{2.3}
\end{equation*}
$$

where the pattern $\Pi(k)$ consists of the point k itself and all its neighbours. A similar relation holds for $\partial V_{h} / \partial y_{P}$. From (2.3) we have

$$
\begin{equation*}
\frac{\partial V_{k}}{\partial x_{p_{i}}}=-\sum_{i=\Pi^{\prime}(i)} \frac{\partial V_{i}}{\partial x_{p_{i}}} \tag{2.4}
\end{equation*}
$$

where the pattern $\Pi^{\prime}(h)$
consists of neighbours of the point k. By (2.4), the derivative $\partial \mathrm{V}_{1} / \partial x_{\mu}$ is continuous.
3. The algorithm for constructing the Dirichlet cells in fact reduces to finding the neighbours for each point. When the neighbours are found, the coordinates of the vertices of the Dirichlet cells are given by (2,1). The main ideas underlying our method are taken from / 12/.

Assume that the set of points considered is numbered from 1 to N in some way. We will first consider separately the first P points on the assumption that neighbourhoods are established between them while disregarding the other points. Assume that the numbers of the neighbours, for each point, are stored in a special list and are ordered according to angle, counter-clockwise. The point with number $P-1$ is then brought into consideration, and the set of first $P+1$ points is considered. We then have to find the neighbours for point number $p+1$ from among the first points and correct the list of neighbours for the first P points. We shall describe this procedure in the case when the Dirichlet cells for the $P+1$ points do not contain, as pieces of boundary, pieces of the sides of the bordering rectangle.

That one of the first P points which is closest to point $P+1$ is first found; call it K (see Fig. $2, b$). We then drop a perpendicular through the mid-point of the segment joining points K and $P+1$, and seek the intersection of this perpendicular with a side of the Dirichlet cell for point K, as shown in Fig. $2, b, i . e .$, on moving along the perpendicular to the point of intersection, which we denote by A point $l-1$ remains on the right. The side intersected by the perpendicular uniquely desines one of the neighbours of the point, call it $/$. . Point L, is put Eirst in the iist of neighbours for the point 1 . 1 . We then drop a perpendicular throunh the mid-point of the seqment joininr noints $p+1$ and $L_{\text {. }}$. This perpendicular cuts two sides of the Dirichlet cell for point L_{1}. One of the points of intersection is the same as A_{1}. since .1 is the centre of the circle nassing through points L_{1}. K, and $\mu-1$

The second point icall it 1.1 defires the number of the next neighbour of noint $\rho-1$.
call it L.: In order to order counter-cicckwise, this number is placed Eirst in the list of neighbours of point $P-1$. while number l. $2 s$ glaced second. This grocess is continued antil the Dirichletcell of point $P-1$ is closed. The list of neighbours of the new point $P-1$ is thus constructed.

New consider how the iists of neignbours of other points must be corrected. First, we change the list of neignbours of only tiose points which were in the neighbourhood of the point $P-1$. Say we have to correct th iist of point L. We first see which of the two sides are cut by the perpendicular dropped through the mid-point of segment L. $P+1$ Let V_{1}, N_{2}. be the numbers of the respective neighbours. Then, from the old list of neighbours of point L, we remove all the neighbours whose numbers lie in the list between V_{1} and N_{2}, and in their place we introduce the neighbour with number $P+1$. If there are no other numbers between $V_{\text {, }}$ and N_{2}, the list is increased as a result of introducing number $P+1$ between V_{1} and N_{2}. In the situation shown in Fig. $2, b$, from the list of neighbours of point L_{1} we strike out L_{1}. and in its place put $p \div 1$. etc.

Notice that the must laborious stage in the algorithm is that connected with choosing the nearest point for the newly introduced point. We pronose the following procedure for realizing this stage. We choose one point (call it K,) among the first points, and compute the distance from $P+1$ to K, and all its neighbours. We compare these distances and at the next approximation to the nearest point we take point K_{2}. the distance to which is least. If $K_{1}=K_{2}$, the required point is found. Otherwise, the procedure is repeated, starting with point K_{2}. etc. It is easily shown that this process leads to the nearest point after a finite number O f steps. The number of operations per point is then $O(N \cdot)$, whereas $O(N)$ operations are needed in the direct method. Obvicusly, the efficiency of the algorithm for finding the nearest point depends on the choice of the initial point K_{1}.

In the general algorithm, described in Sect.l, the procedure for constructing the Dirichlet cells is used at the new ($n+1$)-th time layer. The lists of neighbours are then known at the previous n-th time layer. It is natural to use this information to choose the point K_{1}; in fact, as $K_{\text {, }}$ we choose a neighbour of point $P+1$ at the $n-t h$ time layer. The points are then numbered and run through in such a way that these neighbours are among the first processed points. Examples of the construction of Dirichlet cells and some data about the efficiency of the algorithm are given in Sect.5.
3. Construction of the difference scheme.

1. As applied to Eqs.(1.1)-(1.4), the method of support operators $/ 13-15 /$ is as follows. Let a completely conservative difference scheme be required; then we first have to see what properties of the differential operators imply the satisfaction of the laws of conservation in the differential case.

We know (see e.g., /20/) that, for Eqs.(1.1)-(1.4), the laws of conservation follow from the fact that operators div and grad have the divergence form

$$
\int_{V} \operatorname{div} \mathbf{A} d v=\mathfrak{f}_{s}(A, n) d s, \quad \int_{V}(c, g r a d r) d v=\mathfrak{f}_{s}(f(c, n) d s,
$$

and from the fact that the following identity holds:

$$
\begin{equation*}
\int_{i}^{2} \varphi \operatorname{div} \mathbf{A} d v-\int_{i}^{2}(A, \operatorname{grad} \uparrow) d v=f_{s}^{2} \varphi(\mathbf{A}, \mathbf{n}) d s \tag{3.1}
\end{equation*}
$$

where S is the surface bounding the volume V, n is the outward normal to S, φ and A are scalar and vector functions, and c is a constant vector function.

In the method of support operators, the difference analogues DIV and GRAD of the operators div and grad, are constructed in such a way that the difference analogue of (3.1) is satisfied, i.e., one operator, say DIV, is constructed directly, while GRADis found from the conditions for satisfying the difference analogue of (3.1). It is natural to choose the divergence form of DIV. The divergence of GRAD, needed for complete conservativeness, is ensured if DIV is chosen so that it vanishes on a constant mesh vector function $/ 20 /$.
2. Let us use the approach described to construct the difference scheme for Eas. (1.1)(1.4). Notice that DIV cannot be specified arbitrarily here. For, to approximate the equation of continuity we use in the algorithm the relation

$$
\begin{equation*}
\rho_{1}=m_{1} / V_{1} . \tag{3.2}
\end{equation*}
$$

On reducing (3.2) to a form similar to (1.1), we obtain the explicit form of DIV. We differentiate (3.2) with respect to time, while noting that $d m / d t=0$:

$$
\begin{equation*}
\frac{d \rho_{i}}{d t}-\rho_{i}\left[\frac{1}{V_{i}} \frac{d V_{i}}{d t}\right]=0 \tag{3.3}
\end{equation*}
$$

Comparing (3.3) and (1.1), we see that, in the difference case, corresnonding to div we have the expression in brackets in (3.3), i.e.,

$$
\begin{equation*}
(D I V W)_{i}=\frac{1}{V_{i}} \frac{d V}{d t} \tag{3.4}
\end{equation*}
$$

Since l, is not explicitly dependent on time, while its vertices are determined by the
position of the neighbours, we can write

$$
\begin{equation*}
(\mathrm{DIV})_{1}=\frac{1}{V_{i}} \sum_{k=\Pi(i)}\left(\frac{\partial V_{i}}{\partial x_{k}} W X_{k}+\frac{\partial V_{i}}{\partial y_{k}} W Y_{k}\right) \tag{3.5}
\end{equation*}
$$

Consider the properties of DIV. First, this operator has divergence form, which is a direct consequence of (3.4). Second, for a constant vector function, expression (3.5) vanishes. This follows from (2.3) and (3.4). As we have remarked, from this there follow the equations

$$
\begin{equation*}
\sum_{k \in \Pi^{(i)}} \frac{\partial V_{i}}{\partial x_{k}}=0, \quad \sum_{k=\Pi^{(i)}} \frac{\partial V_{i}}{\partial y_{k}}=0 . \tag{3.6}
\end{equation*}
$$

Thus DIV satisfies the requirements stated in Para.l of the present section.
3. In accordance with the ideas of the method of support operators, to construct GRAD we use the difference analogue of identity (3.1). Assume for simplicity that the line integral in (3.1) vanishes. We then use the following difference analogue of (3.1):

$$
\begin{equation*}
\sum_{i} \mathrm{q}_{i}(\text { DIV } A)_{i} V_{i}+\sum_{i}\left(A X_{i} G X_{i}+A Y_{i} G Y_{i}\right) V_{i}=0 \tag{3.7}
\end{equation*}
$$

where $G X$ and $G Y$ correspond to the x - and y-components of vector GRADY and are subject to definition. Regarding (3.7) as an identity in $A X_{i}$ and $A Y_{i}$, we obtain the following expressions for the operator components:

$$
G X_{i}=-\frac{1}{V_{i}} \sum_{k \in \Pi(i)} \frac{\partial V_{k}}{\partial x_{i}} \tau_{k}, \quad G Y_{i}=-\frac{1}{V_{i}} \sum_{k \in \Pi(i)} \frac{\partial V_{k}}{\partial y_{i}} \varphi_{k}
$$

If we define the scalar products in the spaces of mesh scalar and vector functions by the equations

$$
\begin{equation*}
\left(\left|\varphi_{,} \psi\right|\right)=\sum_{i} \varphi_{1} \psi_{i} V_{n}^{\prime}, \quad(|\mathbf{A}, \mathbf{B}|)=\sum_{i}\left(A X_{i} B X_{i}+A Y_{i} B Y_{i}\right) V_{1} \tag{3.8}
\end{equation*}
$$

then we can write (3.7) as the operator equation

$$
\begin{equation*}
\text { GRAD }=- \text { DIV }, \tag{3.9}
\end{equation*}
$$

in the same way as in the differential case.
4. Using the above operators DIV and GRAD, the differential-difference equations for (1.2) and (1.3) may be written as

$$
\begin{equation*}
\rho d \mathbf{W} / d t=-\mathrm{GRAD} p, \quad \rho d \varepsilon / d t=\cdot p \mathrm{DIV} \mathbf{W} \tag{3.10}
\end{equation*}
$$

The difference analogue of (1.1) can be written, in accordance with (3.2)-(3.5), as

$$
d \rho / d t+\rho \text { DIV W }=0
$$

The properties of DIV and the construction of GIRAD ensure that the scheme is completely conservative /20/.
5. The use of the difference analogue of (3.1) implies the so-called direct method of matching the properties of DIV and GRAD. Let us consider what scheme is implied by the variational method of matching $/ 9,20,21 /$.

In accordance with the Hamilton-Ostrogradskii variational principle, motion of the medium occurs in such a way as to obtain the extremum of the functional of action

$$
\begin{equation*}
J=\int_{i}^{t} t(t) d t \tag{3.11}
\end{equation*}
$$

where \mathscr{L} is the Lagrangian, defined as the difference between the potential and kinetic energies. Variation of (3.11) must be made in the light of the law of conservation of mass, the adiabaticity condition, and the kinematic relations.

In the case of a discrete medium, the Lagrangian \mathscr{L}_{h} has the form

$$
\begin{equation*}
\left.t_{n}=\sum m, \frac{(W, W)_{1}}{2}-r\right) \tag{3.12}
\end{equation*}
$$

The above relations may be written as

$$
\begin{align*}
& m=\text { con } 4 . \quad(2,1: 3 \mathrm{n}) \\
& m \rightarrow=-1 H^{\circ} . \\
& \text { (:3.1:" } \\
& \text { d. } d t=\left\|X . \quad d y_{i} d t=\right\| Y_{1} . \tag{:1:30}
\end{align*}
$$

To construct the difference equations, the $\because a r i e t i o n$ of the functional $3 . i=$ Thst be ecuated to zero. The variations of ail fuantities must then be expressed in terms of $\because a r i a t i o n s$ of the coordinates x and y :

$$
\left.\delta S=\prod_{i}^{1} \sum_{i}\left(\left(\mid W, \delta W_{i}\right)-\delta \varepsilon .\right] m d t-j_{i} \sum_{i}\left(m W_{,} s W_{i j}\right) d t-\sum_{i} m \delta \varepsilon_{i}\right) d t
$$

In view of $(3.13 b, c)$, we obtain

$$
\delta S=\int_{i}^{t}\left[\sum_{i}\left(\left|m W, \frac{d \delta r}{d t}\right|\right)\right] d t-\int_{i}^{1}\left(\sum_{i} p_{t} d V_{i}\right) d t .
$$

Next, we transform the first integral by using integration by parts and condition (3. $13 a$), and to transform the second, we use (3.4) and (3.13c) in turn. The result is

$$
\delta S=-\int_{i .}^{t_{1}}\left[\sum_{i}\left(\left|\rho \frac{d W}{d t}, \delta r\right|\right)_{i} v_{i}-\sum_{i} p_{1}\left(\mathrm{DIV} \delta \mathbf{r}_{i} V_{i}\right] d t .\right.
$$

Using definition (3.8) of the scalar product, we obtain

$$
\begin{equation*}
\delta S=-\int_{i_{0}}^{t_{1}}\left[\left(\left|\rho \frac{d W}{d t}, \delta \mathbf{r}\right|\right)-(|p, \operatorname{DIV} \delta \mathbf{r}|)\right] d t . \tag{3.14}
\end{equation*}
$$

Using the concept of adjoint operator, we can write

$$
(\mid p, \text { DIV } \delta \mathbf{r} \mid)=\left(\left|\mathrm{DIV}^{*} p, \delta \mathbf{r}\right|\right) .
$$

From this and (3.14), since δ is arbitrary, it follows that the condition $\delta S=1$ is equivalent to the equation

$$
\begin{equation*}
\rho d \mathbf{W} / d t=\mathrm{DIV}^{*} p \tag{3.15}
\end{equation*}
$$

which approximates the equation of motion (1.2). Recalling Eq. (3.9), it can be seen that Eq. (3.15) is the same as the first of Eqs.(3.10). Moreover, it is obvious that we have the same difference analogues of the equations of continuity and the equation for the internal energy; for the variational method of matching, these equations are required as connections.
4. Artificial viscosity.

1. When introducing artificial viscosity into our discrete model, we start from the idea of /16/, whereby the artificial dissipative process is regarded as a consequence of inelastic collisions of particles modelling the discrete medium.

Let us explain this idea in the one-dimensional case. We will assume that a non-uniform Lagrangian mesh, whose nodes have coordinates $\left\{x_{i}\right\}$ (Fig.3), is introduced into the computational domain.

As in the two-dimensional case, the quantities $m_{1}, \rho_{1,} p_{1}, u_{i}, \varepsilon_{1}$, and V_{i} are connected with each node. In the one-dimensional case the Dirichlet cell boundaries are located at the mid-point between nodes; they are marked by asterisks in Fig.3. When introducing the artificial dissipative process, we assume that the mass m_{t} is distributed over all its Dirichlet cell. We next consider the process of inelastic collision of particle numbered i with its neighbours, i.e., particles $i-1$ and $i+1$. We assume that collision occurs at points corresponding to the boundaries of the Dirichlet domain. Only part of the mass of the corresponding cells participates in the collision. When particles i and $i-1$ collide, part of the mass of particle i, call it $\delta m_{i, i+1}$, is introduced into the collision orocess, and part δm_{1+1}, of particle $(i+1)$. The first subscript refers to t he particle number, whose part is cosidered, while the second indicates the collision with which the particle the mass participates. As a result of inelastic collision of masses $\delta m_{1,1-1,} \delta m_{1-1,1}$, a darticle with mass $\delta m_{i+1,1}+\delta m_{i, i-1}$ the velocity \bar{u} is formed. By the law of conservation of momentum,

$$
\begin{equation*}
\left(\delta m_{1, i+1} \div \delta m_{1+1, i}\right) \bar{u}=\delta m_{i, i-1}, \bar{u}_{2}+\delta m_{1+1, i}, \bar{u}_{1-1} \tag{4.1}
\end{equation*}
$$

where \bar{u}_{i} and \bar{u}_{i+1} are the velocities of masses $\delta m_{i, 1+1}$ and $\delta m_{1+1, i}$ respectively. If we assume that $\bar{u}_{1}=u_{1}, \bar{u}_{i+1}=u_{i, 1}$, we obtain from (4.1):

$$
\bar{u}=\frac{\delta m_{1-1, i, i} u_{i-1}-\delta m_{i, 4} u_{i}}{\delta m_{i, i, 1}-\delta m_{1}} .
$$

Fig. 3

Fig. 4
e next assume that thepart of mass $\delta m_{i, 1+1}$ having velocity \bar{u}, collides inelastically with mass $m_{1}-\delta m_{1, i+1}$ having velocity u_{i}, while the part $\delta m_{i+1, i}$ similarly collides with mass $m_{i+1}-\delta m_{1+1, i}$. A similar process occurs with particles i and $i-1$, in which parts of the masses, $\delta m_{6,1-1}$ and $\delta m_{1-1,1}$, participate in the collision.

As a result, a particle with mass m_{i} is again formed, with new velocity $\hat{u}_{\text {, }}$, given by the law of conservation of momentum:

$$
\begin{aligned}
\hat{u}_{\mathrm{i}}= & \frac{1}{m_{\mathrm{i}}}\left[\left(m_{\mathrm{i}}-\delta m_{\mathrm{i}, i+1}-\delta m_{\mathrm{i}, i-1}\right) u_{\mathrm{i}}+\right. \\
& \frac{\delta m_{\mathrm{i}, i-1}}{\delta m_{\mathrm{i}, i-1}+\delta m_{i+1, i}}\left(\delta m_{i, i+1} u_{i}+\delta m_{\mathrm{i}-1, i} u_{i-1}\right) \div \\
& \left.\frac{\delta m_{i, i-1}}{\delta m_{i, i-1}+\delta m_{i-1, i}}\left(\delta m_{i-1, i} u_{i-1}+\delta m_{i, i-1} u_{i}\right)\right] .
\end{aligned}
$$

It was shown in /l6/ that, given a special choice of the quantities δm, we can obtain with this approach, for Lagrangian schemes, several familiar types of artificial viscosity: linear, quadratric, and composite /22/. In /16/. For the case of one- and two-dimensional Lagrangian schemes, the properties of this dissipative process are treated in detail, and notably, the question of the variation of the kinetic energy and of the corresponding change in the equation for the internal energy.
2. Consider the two-dimensional case. We assume that the particle only participates in inelastic collision with its neighbours. The collision with each particle occurs along their common piece of Dirichlet cell boundary, while the actual collision with each neighbour is similar to the one-dimensional case, i.e., as a result of the collision of particle k with its neighbour g (Fig.4), the projection of the velocity vector at the node on the direction of the segment joining k and q, varies by the amount

$$
\frac{1}{m_{k}}\left\{\left(m_{k}-\delta m_{k q}\right)\left(u_{k}\right)_{q}+\frac{\delta m_{k q}}{\delta m_{k q}+\delta m_{q k}} \times\left[\delta m_{k q}\left(u_{k}\right)+\delta m_{q k}\left(u_{q}\right)_{q}\right]\right\},
$$

where $\left(u_{n}\right)_{Q}$ etc. are the velocity projections at the corresponding point. Similarly for collisions with other neighbours. The resultant expression for the new velocity at node k is

$$
\begin{aligned}
& \hat{\mathfrak{W}}_{k}=\sum_{\left.\mathrm{i} \in \sum_{\boldsymbol{H}}^{i}\right)}\left\{\left(1-\frac{\delta m_{k i}}{m_{k i}}\right)\left(u_{k}\right)_{i}-\right. \\
& \left.\quad \frac{\delta m_{k i}}{m_{k}\left(\delta m_{k i}+\delta m_{i k}\right)}\left[\delta m_{k_{i} \mathrm{i}}\left(u_{k}\right)_{i}+\delta m_{\mathrm{ik}}\left(u_{k}\right)_{k}\right]\right\} \mathbf{e}_{k i},
\end{aligned}
$$

where $\mathbf{e}_{k i}$ is the unit vector along the segment $k i$.
The second important question is the choice of the $\delta m_{k q}$. Since we assume that the collisions occur only with neighbours, it follows from arguments of continuity that $\delta m_{n q}$ must be zero at the instant of departure of the point from the neighbourhood. Moreover, it is natural to require that the dissipative process should be stronger as the points come closer. This demand is satisfied by the choice

$$
\delta m_{n q}=\rho_{k} S_{k q} J t c_{k} .
$$

Here, $S_{k q}$ is the length of the common boundary of cells V_{k} and $V_{q,} \Delta t$ is the time step, and c_{n} is a characteristic velocity. In the computations whose results are given in sect. $5 c_{n}$ was taken to be the velocity of sound at node k, which corresponds in the one-dimensional case to linear viscosity. Notice that the process of introducing artificial viscosity gives expressions similar to those for so-called "contour viscosity", which was used in /7, Chapter 8/ when describing the Lagrangian method.

5. Example of the computation.

Consider the results of computing the development of Rayleigh-Taylor instability in a closed rectangular vessel in a gravitational field of force $g=1$. The problem is posed as fcllows. In the closed rectangle with rigid walls there are two fluids: a heavy fluid with initial density $\rho_{1}=10$ at the top, and a lighter fluid with density $\rho=1$ at the bottom. The equations of state for the fluids were taken as $\mu_{1}=50(\rho-10)$ and $p_{2}=50(\rho-1)$. The boundary between the fluids at the initial instant is shown by the heavy line in Fig. 5 . Due to the instability of this configuration, in the course of iime the heavy fluid must flow to the . bottom and displace the light fluid upwards.

In Fig. 5 we show the initial configuration of Dirichlet cells; the asterisks denote the heavy fluid particles, and the points the light particles. In Fig. 6 we consider the instant for which purelv Lagrangian methods usually give satisfactory results. The first critical instant is connected with the impact of the heavy fluid on the bottom of the vessel (rig. 7). The next characteristic instant is linked with the impoct of the fluid moving along the bottom With the left-hand wall ifig. 3). It can be seen in Fig. 9 how at a later instant the wave refiected from the left-hand wall tips over, and the particles of heavy fluid drop from the upper boundary, where they were compressec by the bubble of surfacing light fluid. In fig. 10 we show the configuration when all the heavy fluid has gone to the bottom.
6. Discussion.
. At the next stape, a theoretical and numerical study of the accuracy of our scheme is
USSR 26:5-p
required. The stability of the scheme and the choice of step $J t$ are impretant topics. A study of the stability for a similar scheme in $/ T /$, Chapter $11 ;$ suggests that sten a^{\prime} will not tend to zero as the points apnroach one another, but will denend on certain characteristics of the Dirichlet cell, e.g., on its diameter.

Fig. 5

Fig. 7

Eig. 6

Fig. 8
2. A second group of questions needing consideration concerns the realization of the implicit scheme. As in $/ 23 /$, it is proposed to realize the method of parallel chords with iterations over the pressure.
3. From the stand-point of solving practical problems, the question of realizing boundary conditions of the free boundary type is important. This can be done e.g., by immersing the. computational domain in the medium where the pressure depends only weakly on the density and has a given space and time distribution.
4. When computing actual problems, certain physical effects such as heat conduction, magnetic field diffusion, etc., must be taken into account. In this connection it becomes necessary to construct schemes which utilize Dirichlet cells for the processes. The method of support operators can prove an effective means here for constructing schemes.

The authors thank A.A. Sarmarskii for his interest and valuable advice, and A.V. Solov'yev for realizing the algorithm for Dirichlet cell construction.

REFERENCES

1. SAMARSKII A.A. and POPOV YU.P., Difference methods for solving problems of gas dynamics (Raznostnye metody resheniya zadach gazovoi dinamiki), Nauka, Moscow, 1980.
2. GOLOVIZNIN V.M., SAMARSKII A.A. and FAVORSKII A.P., A variational approach to the construction of finite-difference models in hydrodynamics, Dokl. Akad. Nauk SSSR, 235, 6, 1285-1287, 1977.
3. FAVORSKII A.P., Variational-discrete models of equations of hydrodynamics, Differents. ur-niya, 16, 7, 1308-1321, 1980.
4. ROUCH P., Computational hydrodyanmics, Mir, Moscow, 1980.
5. GLAGOLEVA YU.P. et al., Foundations of the "Medusa" method, in: Numerical methods of the mechanics of a continuous medium (Chisl. metody mekhan. sposhnoi sredy), 3, 2, vTs so AN SSSR, Novosibirsk, 1972.
6. CROWLEY W., FLAG - a free Lagrangian method for numerically modeiling hycirodynamic flows in two dimensions. in: Numerical methods in fluid mechanics, Mir, Moscow, 1973.
7. ANUCHINA N.N. et al., Theoretical principles and construction of numerical algorithms of problems of mathematical physics (Teoreticheskie osnov: i konstruirovanie chislennykh algoritmov zadach matematicheskoi fiziki), Nauka, Moscow, 1979.
8. D'YACHENKO V.F., On a new method for the numerical solution of non-stationary problems of gas dynamics with two space variables, Zh. vych. Mat. mat. Fiz., 5, 4, 680-688, 1965.
9. VOLKOVAR.A. et al., Application of the variational approach for computing gas-dynamic flows on variable-structure meshes, Preprint IPMatem. AN SSSR, 17, 1982.
10. ARDEIYAN N.V., KOSMACHEVSKII K.V. and CHUVASHEV S.N., On the computation of two-dimensional gas-dynamic flows on a variable Lagrangian mesh, in: Library of programs for solving boundary value problems by difference methods (Biblioteka procramm dlya resheniya kraevykh zadach raznostnymi metodamii, IzC-vo MGU, Moscow, 1933.
11. AUGENBAUM I.M., A Lagrangian method for the shallow water eguations based on a voronoi mesh - one-dimensional results, J. Comput. Phys., 53, 2, 240-265, 1984.
12. GREEN P.J. and SIBSON R., Computing Dirichlet tesselations in the plane, Comput. J., 2l, 158-173, 1977.
$\therefore 3 . \operatorname{sAi} A R E K I I A . A .$, et al., An operator renresentation of difference schemes of mathematical physics, Doki. Akad. Nauk SSSP, 256, 5, 1092-1096, 1931.
13. SAMARSKII A.A. et al., Operator differer:e schemes, Differents. ur-niya, 17, 7, 1317:327, 1981.
IE. ミhharsuil f.A., et al., Varıationa: difference anc onerator schemes for the equations of the mechanics of a continuous mejium, in: liathematical modeis, analvtic and numerical methods in transpore theory thater. modeli, anainizh. 1 chisi. metody v teoriya perenosai. ITMC AN SSSR, linnsk, $=932$.
14. MOISEYEN:O L.V. et \exists :., On the introduction of artizicial dissinators into difference schemes of hydrosymanios, Prenrint IPMater. AN SSSE, Moscow, 18, 1982.

15. SAMARSKII A.A., Theory of difference schemes (Teoriva raznostnykh skhem!, Nauka, Noscow, 1977.
16. BOGOLYUBSKAYA A.A., ZHIDKOVA I.E. and ROSTOVTSEV V.A., The REDUCE-2 programming system (Sistema programirovaniva REDUCE-2), OIYaI, Dubna, 1983.
17. KORSHIYA T.K. et al., Variational operator difference schemes for the erguations of mathematical physics (Variatsionno-operatorny raznostnye skhemy diya uravnenii matematicheskoi 三iziki), Izd-vo TrU, Tbilisi, 1983.
18. GOLOVIZNIN V.M. and KORSHUNOV V.K., On two-dimensional variational difference schemes of gas dynamics on triangular meshes, Preprint IPliatem. AN SSSR, 17, Moscow, 1980.
19. KUROPATENKO V.F., On a form of pseudoviscosity, Izv. SO AN SSSR, Ser. tekhn. Nauk, 13, Part 3, 81-82, 1967.
20. GASILOV V.A. et al., The use of the method of parallel chords to solve difference equations of hydrodynamics, Zh. vych. Mat. mat. Fiz., 21, 3, 707-720, 1981.

Translated by D.E.B.
U.S.S.R. Comput.Maths.Math. Phys., Vol. 26 ,No. 5, pp. 84-88, 1986 Printed in Great Britain
$0041-5553 / 86 \$ 10.00+0.00$
(c) 1988 Pergamon Journals Ltd.

SHORT COMMUNICATIONS

NEW ALGORITHMS FOR CALCULATING DISCRETE FOURIER TRANSFORMS*

A.M. GRIGORYAN

Effective methods are proposed for calculating a multidimensional discrete fourier transform based on a new representation of it.
This paper describes a new general approach to the consideration of an arbitrary multidimensional discrete fourier transform (MDFT), the basic idea of which lies in the possibilitv of a single-valued representation of each component transform as a one-dimensional vector that corresponds to it. Such an approach allows independent calculations of the MDFT to be carried out on each group on readouts that do not intersect with another group of readouts, into which the whole domain of definition of the spectrum is divided in a defined way, that allows effective algorithms to be constructed for calculating the MDFT by means of a minimum number of one-dimensional DFTs.

The case of a two-dimensional DFT is described in detail and the new algorithms that correspond to it are compared with the least algorithms worked out up to the present time for calculating a two-dimensional DTF, based on the Kooley-Tukey method $/ 1,2 /$, on polynomial transforms /3/, and also on the operation of two-dimensional "butterflies" /4/. The corresponding algorithm is considered as a special case and for a one-dimensional Fourier transform.

1. Vector representation of the spectrum by a MDFT.

Let us consider an arbitrary block $\left\{f_{\left.h_{1}, \ldots, k_{n}\right\}}\right\}$ for an n-dimensional discrete signal, whose dimensions, for simplicity, will be considered equal i.e. $1 \leqslant k, i, i=1,2, \ldots, n$, for some integer N. Each snectral component in the readout $\left(p_{1} \ldots, p_{n}\right)$ where $p_{i} \in Z_{s}{ }^{\prime}=1,2, \ldots, i, i=1,2, \ldots, n$, which apart from a normalized multiplier, is equal to

$$
\begin{equation*}
F_{i, \ldots, j_{n}}=\sum_{k_{1}=1}^{N} \ldots \sum_{k_{n}=1}^{N} f_{k_{1}, \ldots, k_{n}} 1^{\dot{N}_{1 / 2}-\ldots \cdot \dot{n}_{n} p_{n}} \tag{1}
\end{equation*}
$$

where $W=W=\exp (2 \pi i ; W)$, can be represented as the l-dimensional vector

$$
\begin{equation*}
F_{p_{1} \ldots . . ., p_{n}}=\left(f_{p_{1}} \quad . p_{n} \quad 1, \ldots, f_{p_{1}, \ldots, p_{n}, n}\right), \tag{2}
\end{equation*}
$$

for which

$$
F_{1, \ldots, i_{n}}=\sum_{t=1}^{V} f_{i_{1}, \ldots, s_{n}, t} H^{t}
$$

For this, as follows from (1), each component of the vector (2) must be calculated by summation of the values of the initial signal at readouts of the corresponding sets:

$$
\begin{equation*}
r_{i, \ldots, t_{n}: t}=\left\{\left(k_{1}, \ldots, k_{n}\right) ; 1 \leqslant k_{i} \leqslant V_{, t}=1,2, \ldots, n, \sum_{i=1}^{n} k_{i} p_{i}=t \bmod A\right\}, \tag{3}
\end{equation*}
$$

i.e.

[^0]: *Zh.vychisl.Mat.mat.Fiz.,26,9,1392-1406,1986

