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Abstract

A novel adaptive mesh refinement (AMR) strategy based on the moment-of-fluid
(MOF) method for volume-tracking of evolving interfaces is presented. Moment-of-
fluid method is a new interface reconstruction and volume advection method using
volume fractions as well as material centroids. The mesh refinement criterion is
based on the deviation of the actual centroid obtained by interface reconstruction
from the reference centroid given by moment advection process. The centroid error
indicator detects not only high curvature regions but also regions with complicated
subcell structures like filaments. A new Lagrange+remap scheme is presented for
advecting moments, which includes Lagrangian backtracking, polygon intersection-
based remapping and forward tracking to define the material centroid. The effec-
tiveness and efficiency of AMR-MOF method is demonstrated with classical test
problems, such as Zalesak’s disk and reversible vortex problem. The comparison
with previously published results for these problems shows the superior accuracy of
the AMR-MOF method over other methods. In addition, two new test cases with
severe deformation rates are introduced, namely droplet deformation and S-shape
deformation problems, for further demonstration of the capabilities of the AMR-
MOF method.
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Adaptive Mesh Refinement

Flow Solver

Interface Representation
(MOF, VOF, Level−set, Front−tracking)

(incompressible)

Fig. 1. Conceptual structure of the adaptive mesh refinement strategy for interfa-
cial flow computation. In volume-tracking methods (MOF or VOF), the Interface
Representation module is typically composed of (i) interface reconstruction and (ii)
advection steps.

1 Introduction and background

One of the popular strategies for improving accuracy in computational physics
is using adaptive mesh refinement (AMR). AMR technique is being widely
used for various types of problems [1–12].

Although the flows with evolving interfaces are an appropriate class of problem
with potential for adaptivity, the application of AMR on such problem is
relatively rare compared to the flow problems without interfacial phenomena.
For example, in proceedings of recent conference on AMR, [9], only two papers
were related to the multi-material flows [13,14].

We also want to mention the following papers on adaptive mesh refinement for
interfacial flows: for those using volume-of-fluid (VOF) type methods [15–18],
those using level-set method [19,20], and front-tracking method [21].

Conceptual structure of AMR strategy for interfacial flows is presented in
Fig. 1.

In this paper we are interested in the development of AMR type methods
for interfacial flows which use volume tracking methods like VOF for two
materials - dark and light material. In volume tracking methods, the instan-
taneous material interface is described by volume fractions fdarkc and f lightc ,
which indicates how much volume of each material is present in cell, i.e. c
- fdarkc = V dark

c /Vc , f
light
c = V light

c /Vc. Because V dark
c + V light

c = Vc volume
fractions are complimentary to each other - f lightc = 1− fdarkc . For this reason,
in VOF methods for two materials, one usually use only volume fraction of
one of the materials and drops material index. Therefore, we will use notation
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fc = fdarkc , and where it is not ambiguous we will use term material meaning
dark material. For cells completely filled with the dark material fc = 1, and
for the cell where the dark material is not present fc=0. For mixed cells, par-
tially filled by the dark material we have 1 > fc > 0. In most volume tracking
methods, [22], interface representation phase of the AMR method (see Fig. 1)
is composed of interface reconstruction and some procedure for evolving vol-
ume fraction in time (usually called advection) in accordance with velocities
obtained by flow solver. The reconstructed interface is used in the advection
step.

One of the most important question in AMR methods is refinement/derefinement
criterion. In this paper we will only discuss refinement/derefinement criteria
in mixed cells - that is, what is the appropriate level of refinement needed to
represent the interface. The simplest approach is to use the same prescribed
level of refinement in all mixed cells and their neighbors [23,15,24]. In [25], the
authors suggest to uniformly refine all mixed cells where the volume fraction
value lies in the following limits: 0.8 ≥ fc ≥ 0.2. Then volume fractions are
recomputed using some remapping algorithm and the refinement procedure is
repeated until some prescribed level of refinement is reached. All mentioned
approaches do not take into account the complexity of the interface.

In [26], there is one example where the norm of the local gradient of the
volume fraction is used as a refinement/derefinement criterion. Next level of
sophistication, which is used in practice is to use some estimates for curvature
of interface as criterion for refinement/derefinement [6,27,26,18,19]. There are
several problems with these approaches. First of all, to obtain reliable estimate
gradient of the volume fraction or estimate for curvature from volume fraction
one needs sufficiently fine resolution. Theoretically, this leads to vicious circle
- to obtain a good estimate one needs enough resolution and at the same time
one is trying to use this estimate to decide what resolution is needed. However,
in practice a refinement criterion based on curvature gives good results. The
more serious problem is related to the fact that complexity of an interface not
restricted just to curvature; for example, interface can have complex topology
like filaments or subcell size droplets. Our opinion is that for such situations
curvature estimation does not make much sense.

In series of recent reports and papers we have introduced the new moment-
of-fluid (MOF) method, [28–33]. The MOF method can be thought of as a
generalization of the VOF method. In the VOF method, material volume (the
zeroth moment) is advected with local velocity and the interface is recon-
structed based on the updated (reference) volume fraction data. In the MOF
method, the material volume (zeroth moment) as well as centroid (ratio of
the first moment with respect to the zeroth moment) are advected and the
interface is reconstructed based on the updated moment data (reference vol-
ume and reference centroid). In the MOF method, the computed interface is
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chosen to match the reference volume exactly and to provide the best possible
approximation to the reference centroid of the material.

By using the centroid information, the volume tracking with dynamic inter-
faces can be performed much more accurately. Furthermore, with this ex-
tension of using the moment data, the interface in a particular cell can be
reconstructed independently from its neighboring cells. With the advantages
of MOF method over the VOF method, our opinion is that the MOF method is
a next generation of the volume-tracking interfacial flow computation method
evolved from VOF method.

In this paper, we present a very accurate and efficient adaptive mesh refine-
ment strategy for volume-tracking interfacial flow computations based on the
moment-of-fluid method. In the new AMR-MOF method the distance between
reference centroid and actual centroid computed from reconstructed interface
is used as refinement criterion.

Below in this section, we first review the idea of piecewise linear interface cal-
culation (PLIC) method and standard MOF interface reconstruction method.
Next, we briefly describe how to obtain the data for MOF interface recon-
struction. Then, we introduce the motivation and an algorithmic overview of
AMR-MOF method, which is the main topic of this paper.

1.1 Piecewise linear interface calculation (PLIC)

In PLIC methods, the interface between two materials in each mixed cell is
represented by a plane (line in 2D). It is convenient to specify this plane in
Hessian normal form

n · r + d = 0 , (1)

where r = (x, y) is a point on the interface, n = (nx, ny) are components of
the unit normal to the interface, and d is the signed distance from the origin
to the interface.

The principal reconstruction constraint is local volume conservation, i.e. the
reconstructed interface must truncate the cell, c, with a volume equal to the
reference volume V ref

c of the material (or equivalently, the volume fraction
f refc = V ref

c /Vc, where Vc is the volume of the entire cell c). Here we have
introduced superscript ref to emphasize that reference quantities are input
parameters at interface reconstruction stage and need of such notation will be
more clear in the next section, where other reference quantities are introduced,
which are not matched exactly.
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PLIC methods differ in how the interface normal n is computed. In the VOF
method, the interface normal (nc) for cell-c is computed from the volume
fraction data on the stencil composed of cell-c as well as its neighbors. In
MOF method, the interface normal, nc is computed from moment data, i.e.
volume fraction and material centroids, in cell-c only.

Once the interface normal nc is computed, the interface is uniquely defined by
computing the distance dc satisfying the reference volume V ref

c exactly.

1.2 Moment-of-fluid interface reconstruction

The moment-of-fluid (MOF) interface reconstruction method was first intro-
duced in [28,30], for interface reconstruction in 2D. The 3D extension for the
arbitrary polyhedral mesh and multi-material case is described in [32].

To describe main idea of MOF method we need to introduce some definitions.
For given material region, Ω, the zeroth moment (volume) and first moment
are defined as follow as

M0(Ω) =
∫
Ω

dV , M1(Ω) =
∫
Ω

x dV . (2)

Centroid of the material region Ω is the ratio of first and zeroth moments

xΩ =
M1(Ω)

M0(Ω)
. (3)

Let us assume that for each mixed cell we know, not only, the reference volume
fraction f refc , but also reference centroid xrefc . We need to emphasize that for
the interface reconstruction algorithm the reference volume fraction and the
reference centroid are input data, which is supplied by some other algorithm
(advection, for example). Therefore these quantities have errors and more-
over there maybe no real material configuration which exactly matches both
reference volume fraction and reference centroid.

In the MOF method, the computed interface is chosen to match the reference
volume exactly and to provide the best possible approximation to the reference
centroid of the material. That is, in MOF, the interface normal, n, is computed
by minimizing (under the constraint that the corresponding pure subcell has
exactly the reference volume fraction in the cell) the following functional:

EMOF
c (n) =‖ xrefc − xc(n) ‖2 (4)
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n

Actual Centroid

Reference Centroid

Fig. 2. Stencil for MOF in two dimensions. The stencil for MOF interface recon-
struction is composed of only the cell under consideration. The MOF method can
be used for arbitrary polygonal cells (polyhedral cells in 3D). The solid curved line
represents the true interface, and the dashed straight line represents the piece-wise
linear, volume fraction matching interface at the cell.

where xrefc is the reference material centroid and xc(n) is the actual (recon-
structed) material centroid with given interface normal n.

The implementation of the MOF method requires the minimization of the non-
linear function (of one variable in 2D and of two variables in 3D) given in (4).
The computation of EMOF

c (n) requires the following steps. First, for a given
n we find the parameter d of the plane such that the volume fraction in cell c
exactly matches f refc . Second, we compute the centroid of the resulting subcell
containing the reference material. This is a simple calculation, described, for
example, in [33,34]. Finally, one computes the distance between the actual
and reference centroids. The MOF method is linearity-preserving, that is, it
reconstructs linear interfaces exactly.

The MOF method uses information about the volume fraction, f refc as well
as centroid, xrefc of the material, but only from the cell c under consideration.
No information from neighboring cells is used, as illustrated in Fig. 2.

1.3 Obtaining reference volume fraction and reference centroid information

To use MOF method for interface reconstruction one needs to have reference
volume fractions f refc and reference centroid xrefc for each mixed cell c. There
are two distinct situations: static reconstruction and dynamic reconstruction.

Static reconstruction, described in Section 3 is used to represent “exact” mate-
rial configuration on given mesh using PLIC. Exact material configuration can
be provided in different ways but in any case it allows us to compute reference
volume fractions and reference centroids for any mesh with the same accuracy
with which material configuration is described. Static interface reconstruction
is used for initialization of the problem.
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In case of dynamic reconstruction (Section 4), which is used during the time
evolution, the reference volume fractions and reference centroids are obtained
by ”advection” of these quantities using velocity field provided by flow solver.
There are a lot of different methods for advection of volume fraction (see for
example, [22], for review). In context of MOF method we also need to advect
centroids. One of the possible methods to advect volume fractions and cen-
troids is described in [28,30]. This method is close in flavor to semi-Lagrangian
techniques [35,36] and has a lot of similarities with methods described in [37–
40] and can be characterized as cell-based Lagrange plus remap. In case of
MOF it is used both for advecting volume fractions and centroids.

In case AMR-MOF we have found that to improve accuracy we need to modify
method from [28,30]. A new method is described in Sections 4.2, 4.3 and 4.4.

1.4 AMR-MOF: Design principles

In many physical simulations, the region of interest is often localized (e.g.
boundary layer, wake behind of a body, shock front, or multi-material/phase
interfaces) and the computational resources can be selectively utilized for im-
proving the accuracy in such regions. Refining the mesh in such regions, that
is adaptive mesh refinement, is very natural way of improving accuracy for a
given set of computational resources.

For interfacial flows, there is a clear definition of the localized region of in-
terest: the region around the interface. In most interfacial flow computations
based on volume-tracking, the major issue is how to accurately resolve the
material configuration which is again defined by the interface. Ideally, adap-
tation algorithm is supposed to detect the interface complexity intelligently.
The two immediate properties characterizing the interface complexity would
be curvature and topology of the interface.

Fig. 3 illustrates representative interface features. We note that all features
illustrated in the Fig. 3 are at the subcell scale (their length scale is less
than those of the unrefined mesh) and also independent from the features of
their neighboring cells (neighboring cells may not have similar features). It
is interesting to note that after we have created illustrative Fig. 3 we have
discovered a very similar figure in [18]. We also note that the subcell scale
filament can be represented by two non-contiguous linear segments [41].

The cornerstone of any AMR method is the refinement criterion. In the context
of modeling of interfacial flows, the refinement criterion is supposed to detect
severe deformation of the interface in a wide spectrum of length scales. In this
paper, the refinement criterion is based on the error indicator, defined as the
deviation of the actual centroid of the reconstructed material configuration

7



ACCEPTED MANUSCRIPT 
 

fe
at

u
re

s
re

fi
n
em

en
t

(a) (b) (c) (d)

Fig. 3. Subcell scale interface features with different curvature and topology. The
thick solid line indicates the square cell boundary, and gray region indicates material
configuration. Top row – material configuration, bottom row – possible AMR-MOF
refinement pattern. Four representative interface features within a square cell are
illustrated: (a) one piece of the material inside the cell — interface is the segment
of the straight line (curvature is zero); (b) two disjoint pieces of the white material
— subcell thickness filament of dark material, curvature has meaning only for each
segment of the straight line and equal to zero, but one curvature per cell does not
make sense; (c) one piece of dark material with complicated shape, only average
curvature makes sense; (d) disjoint pieces of dark material (subcell size droplet),
each of pieces has high average curvature.

from the reference centroid. As we will show in Section 2 the centroid error
is the effective measure of the discrepancy between the reconstructed and the
reference material configurations defined by the reference volume fraction and
the reference centroid. If the centroid error is higher than a certain tolerance,
then the cell is refined. It is important to note that refinement criterion is
based on the same data, namely centroid information, which is used in MOF
interface reconstruction.

Next question is how to refine? This issue is closely related to what data
structures are used to describe the refined mesh. According to [20], two most
popular types of refinement are patch based [1,42,43], and tree based refine-
ment [16,18,6,26,25]. For general discussion and more references related to
spatially adaptive techniques, we refer the interested reader to [20].

In this paper we use quadtree refinement, where a cell flagged for refinement
is subdivided into four subcells. From this point of view, this is isotropic re-
finement as opposed to anisotropic refinement [10]. Many codes which use
quadtree data structures have constraint that the level of refinement in neigh-
boring cells can differ only by one level. This constraint is usually related to the
available flow solver and simplicity of data communication between different
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level-0 level-1 level-2 level-3

Fig. 4. AMR-MOF interface reconstruction on adaptively refined meshes. From the
left (level-0) to the right (level-3) refinement.

levels.

In this paper we are not dealing with flow solver but we want to mention that
modern discretization techniques allows us to use quadtree meshes without
constraints related to level of refinement in neighboring cells, [44,20], and
therefore, we use such unconstrained quadtree meshes in this paper.

To give an idea how quadtree refinement and corresponding data structures
in application to interface reconstruction may look like we consider simple
illustrative example of static interface reconstruction (initialization), Fig. 4,
and Fig. 5. It is the reconstruction of a square material region occupying
[0., 0.64]2 within a cell covering [0, 1]2 square domain (equivalent to a level 0
mesh, which consist only of one cell). The quadtree data structure developed
in the process of the corner reconstruction example, as shown in Fig. 4, is
illustrated in Fig. 5.
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Level 0

Level 1

Level 2

Level 3

Pure Cell − Filled        :Leaf Node

Pure Cell − Void          :Leaf Node

Mixed Cell − Refined  :Internal Node

Mixed Cell − Unrefined    :Leaf Node

Fig. 5. Quadtree structure of AMR-MOF reconstruction shown in Fig. 4. Corre-
spondence between Fig. 4 established by introducing local enumeration of children
of parent cell counter-clockwise starting from left-bottom child to left-top child.
Then for each level the left circle corresponds to left-bottom child and the right
circle correspond to left-top child.

At each AMR iteration, mixed cells are refined into four child cells. Once a
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cell is refined, then the reference moment data is recomputed on the child cells
for the next interface reconstruction stage. If a mixed cell has centroid error
less than a given tolerance (e.g. child cell with linear interface), the mixed cell
is not flagged into refinement.

This adaptive refinement strategy results in adequate piece-wise linear repre-
sentation of interface on adaptive mesh.

1.5 Organization of the paper

The rest of the paper is organized as follow. In Section 2 we numerically jus-
tify the use of the error in centroid position as a criterion for mesh refinement.
Static AMR-MOF interface reconstruction and numerical example of interface
reconstruction of a multi-element airfoil geometry are described in Section 3.
Dynamic AMR-MOF is described in Section 4. The moment advection is first
explained for case of uniform mesh case, Section 4.3, and then extended to
AMR meshes, Section 4.4. Different approaches for time-stepping are described
in Section 4.5. To demonstrate the effectiveness of the AMR-MOF method,
various test problems are presented in Section 4.6. In Section 4 we describe
a numerical tests related to dynamic interface reconstruction. The effect of
quality of the initial interface representation is investigated in Section 4.6.1.
In Sections 4.6.2, 4.6.3, and 4.6.4 two classical test problems are presented,
namely Zalesak’s notched disk rotation and single reversible vortex problem.
Comparative studies with other published results are presented for both stan-
dard MOF and AMR-MOF. In addition to those classical problems, two new
test problems with severe deformation rates are presented in Sections 4.6.5,
4.6.6. Finally in Section 5, we present summary of the results obtained in the
paper and consider future work.

2 Centroid error as refinement criterion

In this section, we demonstrate that the centroid error, the error indicator
for AMR-MOF method, can detects different feature of the interface. This
includes not only the local curvature of the interface but also the topology of
material region within the cell.

We first demonstrate the local curvature sensing capability of AMR-MOF
method. If the true interface is straight line, the MOF method reconstructs
the interface exactly, i.e. centroid error is zero. If the interface is curved, the
linear interface computed by MOF method will deviate from the true curve.
In this case, MOF computes non-zero centroid error. It can also be expected
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Fig. 6. Curvature effect on the interface reconstruction on a square cell of [0, 1]2.
Top row shows the standard MOF interface reconstruction. Bottom row shows the
AMR-MOF interface reconstruction. To emphasize the quality of the reconstruc-
tion, the true material region (red) is overlapped on top of reconstructed material
region (gray). For standard MOF reconstruction, higher curvature results in higher
deviation of reconstructed material region from the true material region. This is
directly indicated by the centroid error (Euclidean distance between the actual and
reference centroids,

√
EMOF
c ) and also as displayed in Fig. 7-(a). For AMR-MOF

reconstruction, the higher curvature results in higher level of refinement to decrease
of the centroid error below the prescribed tolerance. This trend is also confirmed in
Fig. 7-(b).

that the higher curvature of the interface, the higher centroid error due to the
linear approximation of the curved interface.

This implies that the AMR-MOF method based on the centroid error de-
tects the curvature of the interface. This claim is supported by the examples
illustrated in Fig. 6. As the interface curvature (κ = 1

r
, where κ is curva-

ture and r is the radius of circular interface) increases, the linear interface
produced by standard MOF method results in large discrepancy between the
true and reconstructed regions, but with AMR-MOF the discrepancy between
the reconstructed material region and highly curved original material region
is removed.

Fig. 7 confirms this observation. The centroid error produced by standard
MOF method (see, Fig. 7-(a)) shows that the error is increasing quadratically
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Fig. 7. Curvature effects on the centroid error and level of refinement required. Top
graph shows the centroid error computed by standard MOF reconstruction. It con-
firms that the centroid error (here, it is measured by Euclidean distance between the
actual and reference centroids,

√
EMOF
c ) is quadratic with respect to the curvature,

i.e. the centroid error quadruples as the curvature doubles. Bottom graph shows that
more levels of refinement are required to decrease the high centroid error induced by
the high curvature interface. Refinement is performed until EMOF

c < 1.e-12. These
two figures directly correspond to the results presented in Fig. 6.

with respect to the interface curvature. This result is in accordance to the
analysis in [29]. We note that the analysis in [29] assumes the local radius
(r = 1/κ) is larger than local cell size. The slight super-quadratic behavior of
the centroid error at the highest curvature is due to the local radius falling
below the cell size, where the analysis is not valid. The maximum level of
refinement required for the AMR-MOF to achieve a centroid error less than the
given tolerance is displayed in Fig. 7-(b). It is clear that higher the curvature
of the interface, the more refinement is required to decrease the centroid error.

Another important aspect of interface complexity is its topology within the
cell. For example, there can be multiple disjoint pieces of the material within
a cell. Such subcell-scale material configuration cannot be correctly recon-
structed with methods without refinement. Example of filament reconstruc-
tion with subcell thickness is illustrated in Fig. 8. As shown in top row of the
Figure, the standard MOF reconstruction cannot resolve the filament config-
uration as it falls inside of the cell. However, as shown in the bottom row, the
AMR-MOF reconstruction, based on the centroid error indicator, correctly
resolves the subcell configuration of the filament.

The previous examples confirm that our error indicator, the centroid error, is
not only senses the local curvature but also reflects the overall accuracy of re-
constructed interface for complex material configurations. This centroid error
indicator eventually guides the AMR-MOF method to produce the accurate
interface reconstruction. Numerical examples presented in following Sections
confirm this conclusion.
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xrefc = (0.05, 0.5) xrefc = (0.22, 0.5) xrefc = (0.39, 0.5)

Fig. 8. Reconstruction of subcell thickness (w = 0.1) filament within a square cell
covering [0, 1]2 domain. From the left, the reference filament configuration (indicated
by transparent red) is translated to the right with increment of ∆x = 0.17. The
gray region indicates reconstructed filament region. Actual and reference centroids
are marked with black square dots. Top – standard MOF interface reconstruction,
bottom – AMR-MOF interface reconstruction. As filament moves inside of the cell,
standard MOF fails to represent the true material configuration, while AMR-MOF
resolves the true material configuration.

3 Static interface reconstruction - initialization

3.1 Logic of static interface reconstruction

The statement of the problem for AMR-MOF static interface reconstruction
is as follows: for given original material configuration, represent the recon-
structed material region by PLIC on adaptively refined mesh. The main algo-
rithm is composed of the following three steps:

(i) identify the cells to be refined (refinement criterion)
(ii) compute reference moment data (de-referencing)

(iii) reconstruct interface on the AMR mesh using MOF.

The refinement criterion is based on the centroid error, the departure of the
actual (reconstructed) centroid from the reference centroid. If this error is big-
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ger than a certain tolerance, then the cell is refined. The second part can be
referred to as de-referencing. For the static cases (e.g. initial stage of inter-
facial flow simulation), the reference material configuration is usually given
by an analytical form or body fitted meshes describing the original geometry.
In examples presented in this paper the reference moment data (volume and
centroid) representing the true material configuration is computed by exact
intersection of the cell and the original geometry. Finally, the interface is re-
constructed on the AMR mesh using MOF with the provided reference data.
It completes one AMR-MOF iteration. One can continue to the next level of
refinement depending on desired error in the centroid and maximum allowed
level of refinement. The flow-chart for the static AMR-MOF interface recon-
struction of a given geometry is presented in Fig. 9. We note that the static

Next AMR iteration

Refine cells with Ec
MOF >− Etol

NO

YES

E Etolc <MOF

Finish

Static AMR−MOF Module

Start

Compute Reference Moments
by intersection

Reconstruct Interface
by MOF

Fig. 9. Flow-chart for static AMR-MOF interface reconstruction for initial repre-
sentation of material configuration on AMR mesh.

AMR-MOF interface reconstruction, described in Fig. 9 is only for the initial
representation of given material configuration on AMR mesh.

3.2 Example of static interface reconstruction

In this Section we present static interface reconstruction for a multi-element
airfoil configuration, as shown in Fig. 10. The AMR-MOF reconstruction starts
with a single cell [0, 1]2 - level-0 mesh.

The reference moment data is computed by exact intersection of mixed cells
and original geometry, i.e. the body fitted unstructured mesh representing the
airfoil, as shown in Fig. 13. The mesh is generated by using Gmsh [45] based
on the boundary data as shown in Fig. 10. Adaptive refinement is performed
up to level-8 from the level-0 mesh. First six levels of AMR-MOF interface
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Fig. 10. Multi-element airfoil configuration.

level-1 level-2 level-3

level-4 level-5 level-6

Fig. 11. AMR-MOF interface reconstruction of multi-element airfoil configuration
starting with one cell, i.e. the level-0 mesh is 1 × 1 covering the domain of [0, 1]2.
Different levels of AMR-MOF reconstruction process are displayed. Etol = 1.e-15 is
used as the refinement criterion.

reconstruction is displayed in Fig. 11.

The initial geometry as shown in Fig. 13-(a) is triangulated so that the re-
construction error can also be easily computed in the sense of area of the
symmetric difference between the true (original) and reconstructed configura-
tions.

The symmetric difference of regions T and R is defined as follows:

T 4R = (T ∪R)− (T ∩R) (5)
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Fig. 12. Reduction of error, Esd, computed by the area of symmetric difference
by AMR-MOF interface reconstruction. Etol = 1.e-15 is used as the refinement
criterion.

where T represents the set of true material regions and R represents the set
of actual (reconstructed) material regions on a given mesh.

The actual computation of the error, the area related to symmetric difference,
is carried out cell-wise manner as follows:

Esd =
∑
c∈M
|Tc4Rc| =

∑
c∈M
|(Tc ∪Rc)− (Tc ∩Rc)| (6)

where M is the set of cells; Tc = T ∩ c is the intersection of the material
region with cell c, and Rc is reconstructed material within the cell-c. |Tc4Rc|
represents the area of the region defined by Tc4Rc.

The error Esd is displayed in Fig. 12 as function the refinement level.

The close up view on the final reconstruction is compared with the original
configuration in Fig. 13. Most of refinement structure is performed around
high curvature region, especially leading and trailing edges of each airfoil. This
result supports our claim that the error indicator, based on the departure of
reference and actual centroids, detects high curvature region effectively.
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Fig. 13. AMR-MOF interface reconstruction of stationary object. Three-element air-
foil geometry within 1×1 mesh (level-0) covering the square domain [0, 1]2 is consid-
ered. Refinement is carried up to level-8, i.e. the maximum effective mesh resolution
is 256 × 256. Top – original, bottom – AMR-MOF reconstruction. Etol = 1.e-15 is
used in the refinement criterion.

4 Dynamic interface reconstruction

4.1 Logic of dynamic interface reconstruction

The algorithm of the AMR-MOF for dynamically evolving interface is illus-
trated in Fig. 14. The essential difference of AMR-MOF algorithm for the
dynamic interfaces compared to the static interface reconstruction is in the
way the reference moment data is computed. In static AMR-MOF, the refer-
ence moment data is computed by exact intersection of the mesh with orig-
inal geometric description, usually represented by bodyfitted unstructured
mesh. In dynamic AMR-MOF, the reference moment data is computed by
de-referencing the material configuration on the AMR mesh at the previous
time step. The material configuration at the previous time step is represented
by pure subcells obtained by AMR-MOF interface reconstruction of the pre-
vious time step. In dynamic AMR-MOF, the reference moment data for each
refined cell is computed by moment advection between the material configu-
rations at the previous time step and the current time step.

The MOF method can be applied to volume-tracked evolving interface prob-
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Next AMR iteration
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Advect Reference Moments
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c
MOF
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<
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Dynamic AMR−MOF Module

Reconstruct Interface
by MOF

Coarsen Cells

Next Time Step

Fig. 14. Flow-chart for dynamic AMR-MOF interface reconstruction and moment
advection. The difference of the dynamic AMR-MOF module from the static AM-
R-MOF module, as shown in Fig. 9, is reference moment computation step. For
dynamic case, the reference moment is computed by advection step, as indicated
with gray box.

lems once the moment advection scheme is augmented.

4.2 Principles of advecting moments

We explain principles of advection on the example of mesh without refine-
ment. At the initial time we know the exact material configuration and we
can use static interface reconstruction, described in the previous Section, to
approximately represent the material configuration by a set of pure and mixed
(multimaterial) cells of the mesh. Each mixed cell is subdivided in two pure
subpolygons representing corresponding materials.

Now we can assume that at time t = tn we have a similar representation of
material configuration and our goal is to represent material configuration at
time t = tn+1, which has changed due to prescribed velocity field. Let us denote
a cell of the stationary Eulerian mesh by {c}. The known pure subpolygon
representing a dark material in cell c at t = tn is denoted by Ωn

c (if cell c
completely filled with dark material then Ωn

c = c, and if cell c is empty then
Ωn
c = ∅). These subpolygons for cells surrounding central cell c are presented

in gray in Fig. 15 (a). Our goal is to construct Ωn+1
c .

We will need to introduce several notions and notations. According to the
book [46] a material volume “. . . is an arbitrary collection of fluid of fixed
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(a) Lagrangian backtracking (b) Polygon intersection-Remapping (c) Forward tracking

Fig. 15. Moment advection by Lagrange+remap strategy. The moment advection
process for the central cell-c on 3× 3 local stencil is illustrated.

identity and enclosed by surface also formed by fluid particles. All points of
the material volume, including the points of its boundary, move with the local
continuum velocity. A material volume moves with the flow and deforms in
shape as the flow progresses, with stipulation that no mass ever fluxes in or out
of the volume, viz., both the volume and its boundary are always composed
of the same fluid particles.”

To avoid expressions like ”volume of the material volume”, we will use term
material element (ME) instead of material volume.

In the context of our paper ME corresponding to cell c can consist of two
materials and each of these materials can be considered as a material element
by itself.

Our goal is to represent the material configuration at t = tn+1 on the Eulerian
mesh. We know the geometry of the material element at t = tn+1 (which is
just cell c - central cell in Fig. 15), but we do not know what materials it will
consist of. To find this, we need to know what material element at time t = tn

(departure element) will arrive at cell c at t = tn+1. We will denote geometry of

departure element by
←
c . The cell

←
c can be approximately defined by tracking

back in time 1 the vertices of cell c (in the following Sections this process
will be referred as Lagrangian backtracking), and connecting these vertices

by segments of straight lines. The boundary of the departure element
←
c is

shown in Fig. 15 (a) in dashed lines. Clearly this procedure is an approximate
procedure because there is an error in time integration of positions of vertices
as well as an error related to connecting vertices by straight lines. Implications
related to these errors are considered in the later Sections of the paper. Here
for simplicity we also assume that

←
c⊂ ⋃

c′∈C(c) c
′ , where C(c) is the union of

the immediate neighbors of cell c and cell c itself (C(c) consists of nine cells

1 using 4th order Runge-Kutta scheme
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presented in Fig. 15.

Now using the definition of the ME we can determine pieces of the material it
consists of, by intersection of

←
c with pure subpolygons representing material

configuration at t = tn:

Ωn
←
c ,c′

=
←
c ∩Ωn

c′ . (7)

In this paper we assume that
←
c is convex. This assumption is not critical, but if

we allow
←
c to be nonconvex then we need to use more complicated algorithms

for polygon-polygon intersection, and the result of this intersection can be
several disjoint pieces.

Subpolygons Ωn
←
c ,c′

are shown in Fig. 15 (b) in dark grey. In the following

Sections this process will be referred as remapping.

According to the definition of a ME, the mass of the ME does not change
with time. Here we are considering incompressible fluid and it means that
volume (zeroth moment) of the ME does not change. Therefore, we can define
a reference zeroth moment of the dark material for cell c at time t = tn+1 as
follows

M c,n+1
0,ref =

∑
c′∈C(c)

M0

(
Ωn
←
c ,c′

)
. (8)

To use MOF for interface reconstruction at t = tn+1 we also need to define
reference first moment. The first moment is not constant in time. Because of
that we do the following. We trace forward in time (forward tracking 2 from
tn to tn+1 - Fig. 15 (c)) pieces of the materials Ωn

←
c ,c′

, defined by (7). We denote

polygons resulting from this operation as follows
→
Ω
n
←
c ,c′ . Schematically they

are shown in Fig. 15 (c) in dark grey and are located in central cell c. Now we
can define reference first moment as

M c,n+1
1,ref =

∑
c′∈C(c)

M1

(
→
Ω
n
←
c ,c′

)
. (9)

We want to note that polygons
→
Ω
n
←
c ,c′ can slightly overlap each other or there

can be gaps between them. The reason for this is again error related to defining
trajectories as well as result of connecting vertices by segments of straight
lines. The errors in definition of first moment are small and are not corrected

2 again using 4th order Runge-Kutta scheme
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because first moment is used in definition of reference centroid only and not
suppose to be preserved exactly anyway.

In following Sections we often will refer to described moment advection method
as Lagrange+remap strategy.

In the next Section we describe details of moment advection on an unrefined
(uniform) mesh, and in Section 4.4 we extend it to the case of AMR mesh.

4.3 Implementation of moment advection on uniform mesh

First we find cells which will be pure (completely filled by dark material -
fc = 1 at t = tn+1). The simplest situation, when we can guarantee that cell
will be pure (we will call such cells (an a priori pure cells) is when cell c is pure
cell at t = tn and all its nearest neighbors are also pure cells at t = tn. For
such a cell c we perform Lagrangian backtracking step to find

←
c . According

to definition of the material element we are supposed to have that

Ṽ n+1
c = Vol(

←
c ).

Here ˜ indicates that this volume may be not the final volume which will be
assigned to cell c at t = tn+1. As we have mentioned before, the Lagrangian
backtracking procedure is not exact and therefore Ṽ n+1

c maybe not equal to
volume of c as it supposed to be because cell c is declared a pure cell and we
are dealing with an incompressible velocity field.

If Ṽ n+1
c > Vol(c) then this cell is declared overfilled; if Ṽ n+1

c < Vol(c) then this
cell is declared underfilled. Volume Ṽ n+1

c and discrepancy Ṽ n+1
c − Vol(c) are

stored and will be used in repair stage of the algorithm which will be described
later.

Next we consider potentially-mixed cells, i.e. the cells may contain material
interface at t = tn+1. The cell c is a potentially-mixed cell if at least one of
the following conditions is satisfied at t = tn:

(1) cell-c is mixed
(2) some of the immediate neighbors of c are mixed,
(3) cell-c is a pure cell - fc = 1, but at least one of its neighbors is an empty

cell - fc = 0.

The cells satisfying one of the above conditions are flagged as a potentially-
mixed cells (PMCs). PMCs reside within a narrow bands around the interface.
As we will see, not all PMCs will be really mixed cells; instead, some of them
will be pure cells. Once a set of PMCs is identified, we perform Lagrangian
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backtracking for those cells. Next we perform remapping, that is finding of
subpolygons Ωn

←
c , c′

by intersections of
←
c with Ωn

c′ , c
′ ∈ C(c). The volume Ṽ n+1

c

for PMC is defined as

Ṽ n+1
c =

∑
c′∈C(c)

Vol
(

Ωn
←
c , c′

)
.

Now if for all cells c′ we have
←
c ∩c′ ⊂ Ωn

c′ (if cell c′ is empty cell then we set
Ωn
c′ = ∅) then cell c is flagged as pure cell and it can be declared overfilled or

underfilled as it was described before for a priori pure cells.

PMC is also flagged as a pure cell when the following condition is satisfied

Ṽ n+1
c > Vol(c) .

In this case this pure cell is declared to be overfilled.

In all other cases PMCs are declared mixed cells. Mixed cells cannot be over-
filled or underfilled. The preliminary zeroth moment (volume) and final first
moment for dark material in these cells are defined as described in previ-
ous Section. The zeroth moment is preliminary because it may be corrected
at the repair stage to accommodate the discrepancy in the volume for pure
underfilled and overfilled cells.

To obtain the final reference volume we use a new variant of the repair process
[47–49]. The repair is a conservative redistribution of a conservative quantity
with the goal of preserving local physical bounds of this quantity. In the con-
text of this paper the conservative quantity is the volume of the dark (and
light) material. The amount of total volume, Vtotal of the dark material at time
t = tn is given by sum of the volumes of the Ωn

c , and we want to preserve this
total volume at t = tn+1:

Vtotal =
∑
c

Vol(Ωn
c ) =

∑
c

Vol(Ωn+1
c ) .

Our assumption is that mesh {←c} covers the computational domain without
gaps and overlaps, and therefore

∑
c

Ṽ n+1
c =

∑
c

∑
c′∈C(c)

Vol
(

Ωn
←
c , c′

)
= Vtotal . (10)

Therefore preliminary volumes Ṽ n+1
c sum to correct total volume. However,

Ṽ n+1
c for pure cells maybe not correct because pure cells maybe overfilled
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or underfilled and have to be repaired. Using terminology of repair process
we need to establish upper, Ub(V

n+1
c ), and lower Lb(V

n+1
c ), bound for V n+1

c .
Clearly for pure cells we have

Ub(V
n+1
c ) = Lb(V

n+1
c ) = Vol(c) .

For mixed cells we only require that

Lb(V
n+1
c ) = 0 , Ub(V

n+1
c ) = Vol(c) .

The goal of repair is conservatively redistribute volume such that resulting
volume for each cell lies in its bounds.

Redistribution is performed among neighbors of the repaired cell.

We will refer to this repair process as local repair as opposed to global repair
which will be needed for AMR meshes. Details of the repair step can be found
in [50].

After the repair we get final reference volumes (zeroth moments) which will
be used in MOF interface reconstruction. The reference centroid is obtained
from reference zeroth moment and first moment obtained using formula (9).

4.4 Moment advection on AMR mesh

In case of an AMR mesh we need more definitions. We will denote AMR
mesh at t = tn by {cn}, where cn refers to generic cell from AMR mesh. For
the purpose of this section, it is not important to distinguish which level of
refinement it represents. The next mesh is an AMR mesh at t = tn+1 for
which we have to define moment data. In case of advection on uniform mesh
{cn+1} = {cn} = {c}. Finally we have mesh {←c

n+1
} which is obtained by

Lagrangian backtracking of mesh {cn+1}.

There are several ways to backtrack AMR mesh. Let us consider a fragment of
an AMR mesh presented in Fig. 16 (a). The central cell and top cell are refined
once (level 1 refinement). The left and the right cell are not refined and have
one “hanging” node at their boundary which comes from the refined central
cell. From a formal point of view, the left and the right cells can be considered
as pentagons with the hanging node being a “degenerate” vertex. There are
no hanging nodes on the boundary of the central and top cells because they
have the same level of refinement.

The correct way of backtracking of an AMR mesh is to move all vertices (in-

23



ACCEPTED MANUSCRIPT 
 

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

(a) Fragment of the {cn+1} AMR mesh (b) Correct backtracking (c) Simplified backtracking

Fig. 16. Lagrangian backtracking of the AMR mesh. Overlap area for simplified
backtracking is shaded by horizontal lines, and gap is shaded by vertical lines.

cluding degenerate vertices) of all cells. The result of correct backtracking is

shown in Fig.16 (b). In this case backtracked mesh {←c
n+1
} covers compu-

tational domain without gaps and overlaps similar to case of advection on
uniform mesh. For correct backtracking advection of moments (including re-
pair) is essentially the same as for uniform mesh. The complications come

from the fact that cells of mesh {←c
n+1
} maybe nonconvex, that is, one needs

to use more complicated algorithm for intersection of polygons; also because

both meshes {←c
n+1
} and {cn} are AMR meshes,the logic of what cells has to

be intersected is more complicated.

There is another simplified way of backtracking AMR mesh when each cell is
backtracked independently, that is, each cell is considered to be square, for
example, hanging nodes are ignored when backtracking left and right cell in
Fig.16 (a). Result of such simplified backtracking is shown in Fig.16 (c). It

may lead to overlaps and gaps in mesh {←c
n+1
}, which is now just collection

of convex quadrilaterals.

In this paper we have chosen to use simplified backtracking and numerically
demonstrate that it still gives very good results.

In Fig. 17 we have shown main stages of moment advection remap on AMR
meshes. These stages are conceptually the same as for advection on a uni-
form mesh. In Fig. 17 the central cell represents the AMR mesh {cn+1} and
neighboring cells represent AMR mesh {cn} with superimposed subpolygons
representing material configuration at t = tn. The main difference of the mo-
ment advection on AMR the mesh in comparison to the advection on uniform
mesh is that, at the previous time step (on backtracked configuration) each
mixed cell on level-0 can have multiple layers of quadtree structure of child
cells, and each mixed child cell can have it own pure subcell configuration.
Hence the polygon/polygon intersection have to be carried out for all child
cells contained in the quadtree hierarchical structure.
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(a) Lagrangian backtracking (b) Polygon intersection-Remapping (c) Forward tracking

Fig. 17. Moment advection on AMR mesh. Moment advection for child cells origi-
nated from the central parent cell is illustrated.

Logic of defining what cells of AMR mesh {cn+1} are pure is exactly the same
as for advection on uniform mesh.

The main difference is how to perform repair. The main problem here comes

from the fact that mesh {←c
n+1
}, has gaps and overlaps and therefore

∑
c

Ṽ n+1
c =

∑
c

∑
c′

Vol
(

Ωn
←
c , c′

)
6= Vtotal . (11)

This fact makes the use of local repair very difficult, and we use another
version of repair which is called global repair, [47]. In this case one compute the
discrepancy in the total volume and distributes it among all cells proportional
to the amount they can accept. Again details are presented in [50].

4.5 Time-stepping

The dynamic test cases presented in this paper use a one-step method time
integration, i.e. the material configuration only at the present time step tn is
used for computing the material configuration at the next time step tn+1. In
the one-step method, the AMR-MOF routine keeps two different meshes. One
represents the material configuration at time tn, and the other for reconstruct-
ing the material configuration at time tn+1. The AMR mesh representing the
material configuration at time tn is used as the reference for the moment ad-
vection for reconstructing material configuration on new AMR mesh at time
tn+1.

Construction of AMR mesh at t = tn+1 starts with uniform mesh (that is,
level-0 refinement). Clearly, more sophisticated strategy for de-refinement can
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be developed to save the computational time in the de-refinement step, e.g.
selective de-refinement for re-cycling the AMR structure at the previous time.

For coupled simulation with flow solvers, this one-step approach is enough for
one-step time integrators, such as a second-order accurate trapezoidal scheme.
If a flow solver employs multi-step time integrators, such as the second-order
accurate backward difference formula (BDF2), the material configurations at
the previous time steps tn−1, tn−2, · · · can be easily incorporated with minor
memory overhead.

In an AMR-MOF computation, the mesh is being refined locally. Hence, the
time steps ∆t based on local cell size differs over the computational domain.
For adaptively refined meshes, two different strategies for time integration
can be used. First, successively refined time steps ∆tAMR, like the uniformly
refined meshes, can be used depending on the maximum level of refinement
allowed. The second option is using the fixed time step ∆t0 as in the level-0
mesh regardless of the maximum level of refinement allowed. Of course, any
combination of the above two strategy can be used. If the time scale to resolve
the flow feature also has to be refined as the mesh refines, then the first strategy
∆tAMR can be used. If not and the moment advection scheme is robust and
accurate to handle the time step ∆t0 corresponding to level-0 mesh, then the
second strategy would be preferred. In our results, we prefer ∆t0 to ∆tAMR

but both of the time steps are tested with AMR-MOF method and the results
are compared with uniform refinement cases in the next section.

4.6 Test problems - Numerical results

We start this section with investigation of how the quality of initial interface
reconstruction affects accuracy for dynamic problems, Section 4.6.1. Next in
Section 4.6.2 we consider a classic example of advection, namely, Zalesak’s
notched disk. On this example we show how accuracy depends on the allowed
level of refinement. To compare results obtained by our new method with pub-
lished results, we consider the reversible vortex problem [22] with short period
T = 2 - Section 4.6.3. The reversible vortex problem with long period T = 8
is considered in Section 4.6.4. Additionally, results for new examples, namely
droplet deformation case and S-shape flow case are presented in Sections 4.6.5
and 4.6.6.

4.6.1 Effect of quality of the initial interface representation

The accurate representation of material configuration at the initial stage is ex-
tremely important for long term evolving interfaces because the entire dynamic
simulation depends on the quality of initial configuration. The significance of
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Fig. 18. Initial interface reconstruction effect. Reversible vortex case with long pe-
riod (T = 8) as described in Section 4.6.4. Left–no AMR-MOF interface reconstruc-
tion at the initial stage, right – AMR-MOF interface reconstruction at the initial
stage. Both cases are computed with same AMR-MOF from the first advection step
to the final stage. Etol = 1.e-20 is used as the refinement criterion.

initial AMR-MOF interface reconstruction is demonstrated in Fig. 18. The ini-
tial material configuration is a circle, a relatively simple geometry which can
be easily represented by any interface reconstruction method. The given cir-
cle is deformed under the nonlinear divergence-free reversible vortical velocity
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field (see, for example, [22]):

v (x, y, t) =

 sin2(πx) sin(2πy)

− sin2(πy) sin(2πx)

 cos
(
πt

T

)
(12)

where T is the period of reversing vortical flow. T = 8 is used for this case.

The effect of initial interface quality is estimated by two different initial mate-
rial reconstructions: one with initial standard MOF and the other with initial
AMR-MOF interface reconstruction. For both cases, the same AMR-MOF ad-
vection and interface reconstruction is performed from the first time step to
the last. At the final reversed time moment, the two results are compared and
the error Esd is computed with respect to the exact. It is clear that the initial
AMR-MOF interface reconstruction results in much more accurate final ma-
terial configuration for long term evolution of volume-tracking computation.

We note that the final material configuration, for the case started with initial
standard MOF, is as accurate as the initial material configuration and even
slightly more accurate. We believe that this is mostly because the AMR-MOF
moment advection scheme is very accurate and the error generated during
the advection is several orders of magnitude smaller than the error of initial
standard interface reconstruction and also partly because of the possible error
cancellation during successive time steps (total number of time steps, nt = 256
for the period of T = 8). The effect of the initial interface reconstruction
quality is further clarified with Fig. 19. The error Esd at the final stage is
measured with different levels of AMR-MOF computation while the initial
interface is reconstructed only by standard MOF on level-0 mesh. The Fig. 19
clearly shows that the accuracy at final stage is bounded by the accuracy of
the initial interface reconstruction. This confirms that regardless of the level
of refinement, the accuracy of the final material configuration is bounded by
the accuracy of the initial material configuration.

We like to emphasize that the initial configuration is relatively simple. If the
initial material configuration is described with more complex geometries (e.g.
sharp corners or filaments with subcell size thickness), the quality of initial
interface reconstruction must be even more crucial for the accuracy of entire
dynamic simulation. For the rest of test cases in this paper, we employ AMR-
MOF starting with initial representation of the material configuration.

4.6.2 Zalesak’s notched circle

As the first case of dynamic test, we consider the rigid body rotation of Zale-
sak’s notched circle. The initial configuration of the Zalesak’s case is described
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Fig. 19. Reduction of error Esd by AMR-MOF computation while the initial inter-
face is reconstructed by the standard MOF on level-0 mesh. The initial interface
reconstruction error is fixed because no mesh refinement is allowed at the initial
stage, and the error at the final stage is decreasing for first a few levels of refine-
ment but eventually bounded by the accuracy of the initial interface reconstruction.

Fig. 20. Initial configuration of Zalesak’s notched disk. Using the triangulation of the
initial configuration, the reference moment data and Esd by area of the symmetric
difference can be easily computed.

in [51], and its body fitted unstructured triangulation is displayed in Fig. 20.
The circular perimeter is defined by the circle centered at (0.5, 0.75) with ra-
dius r = 0.15. The vertical notch is produced with the width of w = 0.05
and the maximum vertical thickness of the upper connection is also 0.05, i.e.
the maximum height of the notch is h = 0.85. The initial geometry is tri-
angulated so that the advection and reconstruction error can also be easily
computed in the sense of symmetric difference between the true (original) and
reconstructed configurations.
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Fig. 21. Rotation test of Zalesak’s notched disk. Top row shows close-up view of
the initial reconstruction before the rotation. Middle row shows the snap shots at
0
4 , 1

4 , 2
4 , and 3

4 of a full rotation along the counter-clock-wise direction starting
from the top. Bottom row shows close-up view of the final configuration after one
full rotation. Different levels of refinement is allowed. From the left, refinement is
performed up to level-0 (32×32), level-2, and level-4. Value of Etol = 1.e-20 is used.

The actual AMR-MOF interface reconstruction and advection results are dis-
played in Fig. 21. The top row shows the initial AMR-MOF interface recon-
struction with various level of refinement, and the bottom row shows the result
of AMR-MOF advection and interface reconstruction method after one full ro-
tation. Total number of time step nt = 128 is taken for all cases. 32×32 mesh
is used as the level-0. The centroid error tolerance of etol = 1.e-20 is used for
all cases, i.e. mixed cells with e > etol are refined up to the maximum allowed
refinement level. The error measured by the area of symmetric difference is
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Fig. 22. Error of Zalesak’s notched disk. The error in computed by the area of
symmetric difference between the original material configuration as shown in Fig. 20
and the material configuration by AMR-MOF interface reconstruction and moment
advection as shown in Fig. 21. The order of accuracy is same for both before (initial)
and after (final) the rotation.

refinement level 0 1 2 3 4

Esd Esd Esd Esd Esd

initial 3.571e-04 1.099e-04 4.578e-05 1.042e-05 1.472e-06

final 2.438e-03 7.475e-04 1.744e-04 4.561e-05 1.150e-05
Table 1
Error by symmetric difference between the original geometry (shown in Fig. 21)
and AMR-MOF computation (reconstruction and advection as shown in Fig. 22).
Level-0 mesh is 32× 32 covering [0, 1]2 computational domain.

listed in Table. 1.

Each level of refinement reduces error approximately by a factor of four, i.e.
second order accuracy. The quadratic reduction of error Esd with respect to the
level of refinement is also displayed in Fig. 22. The slight over/under quadratic
convergence of the initial reconstruction error is attributed to the sharp corner
effect of the notch. The difference of the errors between the initial interface re-
construction and the final material configuration after one full rotation clearly
indicates the error gained by the advection and reconstruction. This result in-
dicates that the AMR-MOF advection and interface reconstruction preserves
the second order accuracy of the initial AMR-MOF interface reconstruction.
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max. refinement level initial (time = 0.0) final (time = 2.0)

Esd Esd / ∆V

0 1.736e-04 5.908e-04 / 1.282e-13

1 4.061e-05 1.161e-04 / 8.154e-14

2 1.279e-05 2.329e-05 / 1.811e-14
Table 2
Reversible vortex with short period (T = 2): error computed by the area of sym-
metric difference between AMR-MOF computation and reference solution obtained
by front tacking and mesh generation. Total volume gain/loss is also indicated by
∆V = Vfinal − V initial.

4.6.3 Reversible vortex: Short period (T = 2)

The reversible vortex case was described by Rider and Kothe [22]. The initial
configuration of the material is defined by a circle with radius r0 = 0.15
centered at (0.50, 0.75) within the square domain of [0, 1]2. The circular region
deforms under the nonlinear unsteady velocity field defined by the following
stream function,

Ψ(x, y, t) =
1

π
sin2 (πx) sin2 (πy) cos

(
πt

T

)
, (13)

which results in the nonlinear divergence-free vortical velocity field as de-
scribed in Eq. (12).

The AMR-MOF advection and interface reconstruction results are displayed
in Fig. 23. The top row shows the initial interface reconstruction, the middle
row shows the material configuration at maximum stretch (time = 1.0), and
the bottom row shows the final reversed material configuration (time = 2.0).
Total number of time steps nt = 64 (i.e. ∆t = 1

32
) is used for all cases. A

322 mesh is used as the level-0, and adaptive mesh refinement is allowed up
to level-2, i.e. maximum effective mesh resolution is 128× 128. The error Esd
computed by the area of symmetric difference is summarized in Table 2. The
total volume error ∆V with respect to the initial stage is also listed at the
final stage.

A different measure of the error Evf , the error based on cell-wise volume frac-
tion difference, is computed in the following way for comparison as summarized
in Table 3,

Evf =
∑
c∈M
Vc|f refc − factc | (14)
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Fig. 23. Single vortex flow (period, T = 2). The top row shows the material configu-
ration at the initial stage (time = 0.0), middle row shows the material configuration
at maximum stretch (time = 1.0), and the bottom row shows at the reversed con-
figuration (time = 2.0). 32×32 mesh is used as the level-0, and result with different
maximum level of refinement is displayed. Etol = 1.e-20 is used as the refinement
criterion

where M is the set of all cells and Vc is the volume of cell-c (area in 2D),
and f refc is the reference (initial) volume fraction and factc is the actual (final)
volume fraction at the reversed stage. We note that the above error definition
is different from our previous error Esd based on the symmetric difference as
expressed in Eq. (6) in two reasons. First, Evf computed by Eq. (14) measures
a relative error with respect to the initial material configuration not to the
exact material configuration. This error is a measure of error that occurred
during the advection process between the initial and the final reversed stage.
Second, the error Evf is blind to the subcell interface configuration in the cell.
The intra-cell interface configuration cannot be captured by this error. For
the above reasons, we prefer the error Esd by symmetric difference to Evf by
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Fig. 24. Mesh convergence study: MOF vs. AMR-MOF. For adaptive meshes, mesh
resolution is taken by the maximum level of refinement. The error Evf is computed
with Eq. (14). ∆tref refers to the time step that is also refined as the mesh re-
fines. ∆tfix refers to the fixed time of level-0 mesh that is used regardless of mesh
refinement.

volume fraction. For comparison purpose, however, we also provide the error
Evf .

For comparison with previous works [22,52,53], the reversible vortex case is
presented first with a relatively short period of time, T = 2. The mesh conver-
gence study is performed for AMR-MOF as well as uniform mesh MOF. For
322 level-0 mesh, time step of ∆t = 1

32
is used. For uniformly refined meshes,

time step is also successively refined by the factor of two, i.e. uniform 642 mesh
case uses time step ∆t = 1

64
.

The convergence of the error Evf , obtained from the present MOF and AMR-
MOF computation, are displayed in Fig. 24. For AMR-MOF, the error Evf is
computed on level-0 mesh by summation of the signed error, because of the
non-uniform distribution of mesh resolution, and we note that this may result
in minor error cancellation effect for AMR-MOF cases. Our present results
(both the error and CPU time) are summarized in Table 3 and also compared
with other results published in literature. This table shows that even the
results from the standard MOF using uniform meshes show much less error
compared to other published results. For AMR-MOF, the error shows even
less with successively refined time steps. We believe this may attribute to the
error cancellation effect on level-0 mesh where the error Evf is computed for
AMR-MOF cases. For AMR-MOF with fixed time steps, the error is even less.
We speculate that this is due to less frequent interface reconstruction (hence,
less error from inexact interface representation) compared to the refined time
step cases, which needs more interface reconstruction.

34



ACCEPTED MANUSCRIPT 
 

Resolution (a) (b) (c) (d) (e) (f)

Evf Evf Evf Evf Evf Evf

(CPU time) (CPU time) (CPU time)

322 2.36e-3 2.37e-3 1.09e-3 5.22e-4 5.22e-4 5.22e-4

(level-0) (7.22) (7.22) (7.22)

642 5.85e-4 5.65e-4 2.80e-4 1.10e-4 1.02e-4 8.27e-5

(level-1) (34.62) (22.52) (13.96)

1282 1.31e-4 1.32e-4 5.72e-5 2.20e-5 1.61e-5 1.25e-5

(level-2) (183.72) (107.36) (27.10)
Table 3
Mesh convergence study and comparison with other published results. First three
columns (a–c) are from others, and last three columns (d–f) are from the present
results (MOF and AMR-MOF). The error Evf computed by Eq. (14) is presented
at the first row for each mesh resolution, and the CPU time in [sec] is presented
within the parenthesis at the second row of each corresponding mesh resolution. For
AMR-MOF, mesh resolution is taken by the finest level of mesh. The column (a) is
taken from Rider and Kothe [22], the column (b) is from Harvie and Fletcher [52],
the column (c) is from Scardovelli and Zaleski [53]. The column (d) is from standard
MOF using uniform meshes, and column (e–f) is from AMR-MOF. The column (e)
is AMR-MOF with the refined time step, i.e. time step is also refined for each mesh
refinement. Finally, column (f) is AMR-MOF with fixed time step, i.e. the time step
computed on level-0 mesh is used for all levels of AMR-MOF computation.

level of refinement # of cells % with respect to uniform mesh

0 1024 100 %

1 1237 30.2 %

2 1672 10.2 %
Table 4
Total number of cells required for AMR-MOF and its comparison to the uniform
mesh case. For AMR-MOF, maximum number of cells are taken.

We note that the larger time step can also be used for uniform mesh cases with
extra computational overhead. This will require extended stencil for the ad-
vection scheme. The advection with larger time step will also incur additional
computational cost for extended search for polygon intersection algorithms.

The efficiency of the AMR-MOF is demonstrated with the comparison of com-
putational cost, CPU time as summarized in Table 3 and also total number
of cells involved as listed in Table 4.

Table 4 shows the total number of cells produced in the AMR-MOF compu-
tation. Since the number of cells are changing as the evolution of the material
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Fig. 25. Computational cost: AMR-MOF vs. standard MOF. ∆tref refers to the
time step is also refined as the mesh refines. ∆tfix refers to the fixed time step
regardless of mesh refinement.

interface (the number of cells increases as vortex stretches, and vice versa),
the maximum number of cells produced around the maximum stretch mo-
ment are counted for AMR-MOF cases. The total number of cells increases
quadratically for uniform mesh cases, but only sub-linearly for the AMR-MOF
case. This is because the mesh refinement is carried only on the mixed cells
with high centroid errors. For example, in the level-2 mesh case, the maximum
number of cells for the AMR-MOF is only about 10% of the uniform mesh
case. This is a clear indication that AMR-MOF uses much less memory spaces.

Next, the actual CPU time is compared with uniform mesh MOF and AMR-
MOF cases. The machine used for this benchmark test is an Opteron 2 GHz
with 24 GB memory running 64 bit Fedora Core 3 as its operating system. For
MOF with uniform mesh computations, the CPU time quadruples for every
refinement (at each uniform refinement, roughly the number of mixed cell
doubles and also the total number of time stepping doubles with halved ∆t).
For AMR-MOF with refined time steps, the CPU time also quadruples however
much less CPU time is required compared to the uniform mesh refinement
case. This is because AMR-MOF use much less number of cells compared
to the uniform mesh case, as listed in Table 4. Finally the AMR-MOF with
fixed time steps (not refined time step) shows only linear increases in CPU
time for every increment of refinement level, and the amount of CPU time is
less than 15% of it for 1282 uniform mesh MOF. This is clear that AMR-MOF
significantly improves both accuracy and also decreases the computational cost
for volume-tracking evolving interface computation.
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Resolution Rider/Kothe Harvie/Fletcher AMR-MOF

Evf Evf Evf

322 (level-0) 4.78e-2 3.72e-2 2.33e-2

642 (level-1) 6.96e-3 6.79e-3 3.15e-3

1282 (level-2) 1.44e-3 1.18e-3 5.04e-4
Table 5
Comparison with results published in literature [22,52] for long period (T = 8)
vortex case. For the present AMR-MOF, mesh resolution is taken by the finest level
of the mesh. The error Evf is computed with Eq. (14). The first column is taken
from Rider and Kothe [22], the second column is from Harvie and Fletcher [52]. For
AMR-MOF, time step computed on level-0 mesh, ∆t = 1

32 , is used for all cases.

4.6.4 Reversible vortex, long period (T = 8)

The reversible vortex problem is presented with longer period, T = 8. Time
steps of ∆t = 1

32
(total number of time steps, nt = 256) are used for all AMR-

MOF computations. First, for comparison purpose with uniform mesh results,
published in literature [22,52], the maximum level of refinement is allowed up
to level-2 (to be consistent with the mesh resolution of others [22,52]) start-
ing with 322 level-0 mesh. The errors are computed using Evf as defined in
Eq. (14). The results are summarized in Table 5. Due to the non-uniform cell
distribution of adaptively refined mesh, the Evf is computed on level-0 mesh
for AMR-MOF cases. This could result in minor error cancellation of adap-
tively refined mesh. However, we note that the AMR-MOF with maximum
level-0 refinement (essentially a fixed mesh MOF on 322 mesh) already shows
the most accurate result. Like for the short period (T = 2) vortex case, AMR-
MOF gives the most accurate result in long period (T = 8) vortex example.

Next, a more aggressive refinement is allowed for this long period vortex case.
The result of AMR-MOF computation, with maximum refinement up to level-
4, is displayed in Fig. 26 at various time steps. Each snapshot taken symmet-
rically with respect to the maximum stretch for showing the reversing vortex.

The close up views are also shown in Fig. 27 at three critical time steps,
namely initial (time = 0), at maximum stretch (time = 4), and final time
steps (time = 8). The close up views at the initial and final configuration is
focused around upper region of the circle, the material region corresponds to
the tail of the vortex at the maximum stretch.

The difference between the initial and the final configuration cannot be de-
tected visually even in close up views as displayed in Fig. 27. Hence, we com-
puted the error by using a series of reference solution. The reference solution,
as displayed in Fig. 28, is prepared using the front-tracking technique and
mesh generation in lieu of the exact solution. First, the interface is tracked
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Fig. 26. AMR-MOF computation of reversible vortex problem, T = 8. Level-0 mesh
is 322 covering the domain of [0, 1]2. Adaptive refinement is performed up to level-4
(maximum effective mesh resolution is 5122).
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Fig. 27. Single vortex flow, T = 8. Level-0 mesh is 322 and maximum 4 level of
AMR is allowed (maximum effective mesh resolution is 5122). Etol = 1.e-20 is used
as the refinement criterion

by 2,000 equi-distributed points on the circular interface of the initial con-
figuration. These points are advected with 4th-order accurate Runge-Kutta
(RK4) method with time step of ∆t = 1

3200
, which is 1

100
-th of the time step

used for AMR-MOF advection. At the intermediate time steps corresponding
to those of AMR-MOF computation, unstructured triangular meshes are gen-
erated and used as the reference solution for those particular time steps. Total
17 meshes are generated for being used as the reference solution at the time
index of it = 0, 8, 16, · · · , 128 for covering the first half of the period (note the
total number of time stepping is nt = 256). The same meshes are used in the
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(a)time = 0.0 (b)time = 1.0 (c)time = 4.0

Fig. 28. Reference material configuration for the error (Esd), the area of the symmet-
ric difference, computation. The reference solution is prepared by front tracking and
mesh generation at each time step. Three representative time steps are chosen for
display. Initially 2,000 points are equally distributed on the circular interface of the
initial material configuration. Each points are tacked with RK4 scheme with time
step of ∆ = 1/3200, i.e. 100 time steps are taken for each time step of AMR-MOF.
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Fig. 29. Error Esd computed by the area of symmetric difference between reference
solution (as shown in Fig. 28) and AMR-MOF computation with refinement up to
level-4 (as shown in Fig. 26).

reversing order for the second half of the period.

By using the set of reference material configuration, the error Esd is computed
at the intermediate time steps of the AMR-MOF computation. The evolution
of error is displayed in Fig. 29 for a full period computation. The errors from
AMR-MOF computation with different refinement levels are also listed in
Table 6 at three representative time steps: initial (time = 0.0), maximum
stretch (time = 4.0), and final (time = 8.0) time steps. It is interesting to
note that the error increases until the maximum stretch (in the first half of
the period) and then decreases in the reversing phases.
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max. refinement level time = 0.0 time = 4.0 time = 8.0

Esd Esd Esd / ∆V

0 1.736e-04 3.402e-02 2.342e-02 / 1.423e-13

1 4.061e-05 5.826e-03 3.313e-03 / -1.761e-14

2 1.279e-05 9.722e-04 5.781e-04 / 6.591e-15

3 2.906e-06 1.311e-04 1.224e-04 / -6.591e-15

4 7.129e-07 3.401e-05 2.010e-05 / -5.551e-17
Table 6
Errors computed by the area of symmetric difference between reference solution
and AMR-MOF computation. From the left, the errors at initial (time = 0.0),
maximum stretch (time = 4.0), and finally reversed (time = 8.0) stages are listed.
Total volume gain/loss is also indicated by ∆V = Vfinal−V initial. 322 mesh is used
as level-0 and AMR is performed up to level-4.
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Fig. 30. Reduction of error Esd, as summarized in Table 6, with respect to the
maximum level of refinement allowed. The 322 mesh is used as level-0 and refinement
is allowed up to level-4.

The reduction of error Esd with respect to the level of refinement is displayed in
Fig. 30. This shows that errors at three representative time steps are converg-
ing with second order accuracy. This also suggests that our reference material
configuration, as displayed in Fig. 28 is adequate to be used as the reference.
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Fig. 31. Droplet flow. Level-0 mesh is 322 covering the domain of [0, 1]2. Maximum
5 levels of refinement is allowed (maximum effective mesh resolution is 10242).
Etol = 1.e-20 is used as the refinement criterion

4.6.5 Droplet flow

In addition to the more classical test cases, we introduce two new test cases.
The first case is a divergence free nonlinear velocity field

v =

 1
8
(8x− 4)

1
8
{−(8y − 4)− 4− (1− (8x− 4)2 − (8x− 4)4)}

 (15)

deforming a circular region to a droplet shape with two sharp edges.

The initial configuration is a circular region of radius r0 = 0.125 center at the
center of [0, 1]2 domain. The final time is T = 0.75, and the total number of
time steps are nt = 75, i.e. ∆t = 0.01. Since the initially circular material
region develops very sharp edges, it is a very appropriate test case for demon-
strating the sharp corner as well as filament resolving capability of AMR-MOF
method.

The actual computation is displayed in Fig. 31 for different time moments. For
better visualization of final material configuration, the close up view of the
primary material region is compared with the reference material configuration
as shown in Fig. 32.

The reference material configuration is prepared by front tracking of interface
points and mesh generation. Since the deformation rate is severe in this ex-
ample, 10,000 points are equidistributed along the initial circular interface.
Each points are tracked by RK4 scheme with a time step of ∆t = 0.75

7500
which

is 1
100

-th of the time step used for AMR-MOF advection. At the final time
step, the tracked points are selectively removed so that the minimum distance
between the neighboring points are ∆smin = πr0

1000
. This results in a total 6, 036

points on the boundary of the final material configuration and also makes the
size of the final mesh much smaller.
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Fig. 32. Final configuration (time = 0.75) of droplet flow case. Left – AMR-MOF
advection and interface reconstruction. Level-0 mesh is 322, and maximum effective
mesh resolution is 10242 (level-5). Right – Mesh generated in the domain obtained
by front tracking of boundary points.

max. refinement level initial (time = 0.00) final (time = 0.75)

Esd Esd / ∆V

0 1.506e-04 1.348e-02 / -1.513e-13

1 4.718e-05 3.352e-03 / -6.559e-14

2 1.010e-05 7.202e-04 / -3.767e-14

3 3.008e-06 1.664e-04 / -2.574e-15

4 7.267e-07 2.660e-05 / 6.931e-15

5 2.211e-07 5.549e-06 / -9.756e-15
Table 7
Droplet case: error computed by the area of symmetric difference between AMR-
MOF computation and reference solution obtained by front tacking and mesh gen-
eration. Total volume gain/loss is also indicated by ∆V = Vfinal − V initial.

By using the reference material configuration, the error Esd is computed at
the start and end of the AMR-MOF computation with different refinement
levels and summarized in Table 7. The reduction of the error with successive
refinement is also displayed in Fig. 33.
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Fig. 33. Reduction of error Esd, as summarized in Table 7, with respect to the
maximum level of refinement allowed. The 322 mesh is used as level-0 and refinement
is allowed up to level-5.

4.6.6 S-shape flow

The last example problem is character S-shape flow. It is also a divergence-free
nonlinear velocity field

v =

 1
4
{(4x− 2) + (4y − 2)3}
−1
4
{(4y − 2) + (4x− 2)3}

 (16)

deforming a circular region to a character S shape.

The initial configuration is a circular region of radius r0 = 0.25 center at the
center of [0, 1]2 domain. The velocity field is defined as follows: The final time
is T = 3.0, and total number of time steps are nt = 120, i.e. ∆t = 0.025.
Since the initially circular material region develops thin filament region as
well as sharp edges, it is also a very appropriate test case for demonstrating
the capabilities of AMR-MOF method.

The actual AMR-MOF computation is displayed in Fig. 34 for different time
moments. The refinement is performed up to level-4. For better visualization
of final material configuration, the close up view of the primary material region
is compared with the reference material configuration as shown in Fig. 35.

The reference material configuration is prepared in the same way as the pre-
vious droplet case. Since the deformation rate is also very severe example
(especially in the central filament region), 10,000 points are equidistributed
along the initial circular interface. Each point is tracked by a RK4 scheme
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Fig. 34. Superman flow. Level-0 mesh is 322 covering the domain of [0, 1]2. Maxi-
mum 4 levels of refinement is allowed (maximum effective mesh resolution is 5122).
Etol = 1.e-20 is used as the refinement criterion

Fig. 35. Final configuration (time = 3.0) of S-shape flow case. Left – AMR-MOF
advection and interface reconstruction. Level-0 mesh is 322, and maximum effective
mesh resolution is 5122 (level-4). Right – Mesh generated in the domain obtained
by front tracking of boundary points.

with time step ∆t = 3
12000

which is 1
100

of the time step used for AMR-MOF
advection. At the final time step, the points are selectively removed so that
the minimum distance between the boundary points are ∆smin = πr0

1000
. This

results in total 5, 470 point on the boundary of final material configuration
and also makes the size of final mesh much manageable.

By using the reference material configuration, the error Esd is computed at the
initial and final configuration of the AMR-MOF computation with different
levels of refinement, and it summarized in Table 8. The reduction of the error
with successive refinement is displayed in Fig. 36, and confirms the second
order accuracy both at the initial and final configurations.
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max. refinement level initial (time = 0.0) final (time = 3.0)

Esd Esd / ∆V

0 1.887e-04 2.878e-02 / 1.848e-13

1 4.043e-05 2.503e-03 / 5.842e-14

2 1.203e-05 5.403e-04 / 6.783e-14

3 2.907e-06 9.642e-05 / -3.608e-15

4 8.583e-07 2.683e-05 / 1.074e-14
Table 8
S-shape flow case: Error Esd computed by the area of symmetric difference between
reference solution and AMR-MOF computation is listed. Total volume gain/loss is
also indicated by ∆V = Vfinal − V initial.
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Fig. 36. Reduction of error Esd, as summarized in Table 8, with respect to the
maximum level of refinement allowed. The 322 mesh is used as level-0 and refinement
is allowed up to level-4.

5 Conclusion

A new adaptive mesh refinement strategy based on the moment-of-fluid method
was presented. The new method uses information about the material volume
fraction and the material centroid position for interface reconstruction. Ad-
vection of these quantities is based on a cell-based semi-Lagrangian algorithm.
We have presented a new advection algorithm for centroids. The AMR-MOF
method uses new refinement criterion based on error in centroid position.
Numerical examples demonstrate that the error in the centroid position can
correctly detect not only regions with high curvature of the interface but also
regions with subcell structures like filaments.

46



ACCEPTED MANUSCRIPT 
 

We have demonstrated that new AMR-MOF method significantly improves
the accuracy of volume-tracking evolving interface computations in compar-
ison with other published results and the standard MOF method, which al-
ready gives more accurate result than any published results. The advantage
of the AMR-MOF method is also strengthened by its superior efficiency (less
computational cost) compared to the standard MOF method using uniform
meshes.

In [54] we have coupled standard MOF without AMR with incompressible
Navier-Stokes solver for two materials. In the future, we are planning to couple
AMR-MOF with incompressible Navier-Stokes AMR solver for two materials.
The extension towards multi-material (i.e. the number of material nmat ≥
3) cases and also coupled simulation of incompressible multi-material flow is
expected in our forthcoming research.
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