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1. Introduction. The main goal of this paper is to establish convergence of
mimetic discretizations of the first-order system that describes linear stationary diffu-
sion on unstructured polyhedral meshes. The main idea of the mimetic finite difference
(MFD) method is to mimic the underlying properties of the original continuum dif-
ferential operators, e.g., conservation laws, solution symmetries, and the fundamental
identities and theorems of vector and tensor calculus. For the linear diffusion prob-
lem, this means that the mimetic discretizations mimic the Gauss divergence theorem
needed for the local mass conservation, the symmetry between the continuous gra-
dient and divergence operators needed for proving symmetry and positivity of the
resulting discrete operator, and the null spaces of the involved operators needed for
stability of the discretizations.

The MFD method has been successfully employed for solving problems of con-
tinuum mechanics [19], electromagnetics [14], gas dynamics [8], and linear diffusion
on simplicial and quadrilateral meshes in both the Cartesian and polar coordinates
[15, 13, 20, 17]. Recent advances in extending the mimetic discretizations to general
polygonal meshes [16] have inspired us to develop the rigorous convergence theory for
unstructured polygonal and polyhedral meshes.

The polyhedral elements appear naturally in reservoir models simulating thin-
ning or tapering out (“pinching out”) of geological layers. The pinchouts are modeled
with mixed types of mesh elements, pentahedrons, prisms, and tetrahedrons which
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are frequently obtained by collapsing some of the elements in a structured hexahedral
or prismatic mesh.

Other sources of polyhedral meshes are the adaptive mesh refinement methods.
A necessity to have a conformal mesh results in an abundant mesh refinement, e.g.,
in the methods using the red-green refinement strategy. However, the locally refined
mesh may be considered as the conformal polyhedral mesh with degenerate elements
(for instance, when the angle between two faces is 180◦). If we know how to discretize
a problem on a general polyhedral mesh, the superfluous mesh refinements can be
avoided. A similar argument can be applied to nonmatching meshes which frequently
may be treated as conformal polyhedral meshes with degenerate elements. This is the
way followed, for instance, in [16] for two-dimensional (2D) meshes.

Allowing arbitrary shape for a mesh element provides greater flexibility in the
mesh generation process, especially in the regions where the geometry is extremely
complex. Even in the case of an unstructured hexahedral mesh, it may be beneficial
to split the curvilinear faces into triangles in order to use more accurate discretization
methods and to get a smaller number of unknowns relative to a tetrahedral partition.
It is obvious that by splitting each face of a hexahedron into four triangles we get a
24-face polyhedron which is frequently nonconvex.

Some of the simulations in the fluid dynamics indicate that the polyhedral meshes
may lead to superior convergence rates and accuracy relative to tetrahedral meshes.
We refer readers to the CD-adapco group website (www.cd-adapco.com/news/18/
newsdev.htm) for more detail. The polyhedral meshes are also used in a number of
radiation–hydrodynamics applications [21, 22, 7]. For instance, one of the approaches
to increase robustness of arbitrary Lagrangian–Eulerian simulations is to change the
mesh connectivity which leads obviously to general polyhedral meshes.

The diffusion-type (elliptic) problems appear in many applications, for instance,
the temperature equation in heat diffusion or the pressure equation in flow problems.
The necessity to solve such problems arises in numerical methods for radiation trans-
port coupled with hydrodynamics, mesh smoothing algorithms, etc. In this paper,
we consider a diffusion problem formulated as a system of two first-order equations,
which is suitable for deriving locally conservative discretizations.

The mimetic discretizations have demonstrated excellent robustness and accuracy
in simulations; however, a rigorous convergence proof has always been lacking. The
original approach to prove the convergence of these discretizations has been based
on establishing the relationship between the MFD and mixed finite element meth-
ods [2, 3] which is certainly not enough for many interesting applications. In this
paper, we developed a novel technique for proving convergence estimates which may
be applied to the case of meshes consisting of arbitrary types of elements, e.g., tetra-
hedrons, pyramids, hexahedrons, degenerate polyhedrons, etc. The restrictions on a
polyhedron shape imposed in section 2 still allow extremely complex elements which
cover the majority of meshes used in applications. Note that the developed method-
ology can be applied to 2D diffusion problems on unstructured polygonal meshes with
minor modifications.

The paper is organized as follows. In section 2, we describe the problem under
consideration and the class of polyhedral meshes used in the convergence analysis.
In section 3, we formulate the MFD method. In section 4, we prove the stability
result. In section 5, we prove the convergence of mimetic discretizations. One of
the key elements used in our technique, the lift property, is discussed in detail in the
appendix.
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Fig. 2.1. Two possible elements and the normal to their faces.

2. The assumptions on the problem and on the mesh. Let us consider a
model elliptic boundary value problem

div F = b,(2.1)

F = −K grad p.(2.2)

Here p denotes a scalar function that we refer to as the pressure, F denotes a vector
function that we refer to as the velocity, K denotes a full symmetric tensor, and b
denotes a source function. The problem is posed in a bounded polyhedral domain
Ω ⊂ R

3, and is subject to appropriate boundary conditions on ∂Ω. For simplicity, we
assume that the homogeneous Dirichlet boundary conditions are imposed on ∂Ω. We
also assume that K satisfies the following regularity and ellipticity property.
P1 (regularity and ellipticity of K). Every component of K is in W 1

∞(Ω) and K is
strongly elliptic, meaning that there exist two positive constants κ∗ and κ∗

such that

κ∗‖v‖2 ≤ vTK(x)v ≤ κ∗‖v‖2 ∀v ∈ R
3 ∀x ∈ Ω.(2.3)

Let Th be a nonoverlapping conformal partition of Ω into polyhedral elements E.
For every element E, we denote by |E| its volume and by hE its diameter. Similarly,
for each face e we denote by |e| its area and for every edge � we denote by |�| its
length. Depending on context, we shall use ∂E either for the boundary of E or the
union of element faces. We also set as usual

h = sup
E

hE .

The elements E are assumed to be closed simply connected polyhedrons, rather
general in shape (see, for instance, Figure 2.1). However, we need some basic assump-
tions of shape regularity. As we shall see, the assumptions are formally complicated
sometimes, but they will hold for practically all partitions which are not totally un-
reasonable.
M1 (assumptions on the domain Ω). We assume that Ω is a polyhedron with a

Lipschitz continuous boundary.
M2 (number of faces and edges). We assume that we have two positive integers Ne

and N� such that every element E has at most Ne faces, and each face e has
at most N� edges.

M3 (volumes, areas, and lengths). We assume that there exist three positive con-
stants v∗, a∗, and l∗ (for volume, area, and length, respectively) such that for
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.
Me

Fig. 2.2. A star-shaped face with the circle of radius ρ∗ centered at Me.

every element E we have

v∗ h
3
E ≤ |E|, a∗ h

2
E ≤ |e|, l∗ hE ≤ |�|(2.4)

for all faces e and edges � of E.
M4 (star-shaped faces). We assume that the mesh faces are flat and that there exists

a positive number γ∗ such that for each element E and for each face e ∈ ∂E
there exists a point Me ∈ e such that e is star-shaped with respect to every
point in the disk of radius γ∗hE centered at Me.

We recall that e is star shaped with respect to a point P ∈ e if every
straight ray exiting from P (in the plane of e) intersects ∂e only once. In
what follows we shall often use the notation

ρ∗ = γ∗hE ,(2.5)

which is illustrated in Figure 2.2.
M5 (the pyramid property). With the notation of Assumption M4, we further assume

that for every E ∈ Th, and for every e ∈ ∂E, there exists a pyramid P e
E

contained in E such that its base equals e, its height equals γ∗hE , and the
projection of its vertex onto e is Me.

M6 (star-shaped elements). We assume that there exists a positive number τ∗ such
that for each element E there exists a point ME ∈ E such that E is star
shaped with respect to every point in the sphere of radius τ∗hE centered at
ME .

As before, we say that E is star shaped with respect to a point P ∈ E if
every straight ray exiting from P intersects ∂E only once.

3. MFD method. Let us introduce an operator G , G p = −Kgrad p, which we
refer to as the flux operator. Furthermore, we introduce the following scalar products:

(F, G)X =

∫
Ω

F · K−1GdV(3.1)
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and

(p, q)Q =

∫
Ω

pq dV(3.2)

in the space X of velocities and in the space Q of pressures, respectively. Using the
above notation, we may rewrite the Green’s formula∫

Ω

F · (K−1G p) dV =

∫
Ω

pdiv FdV(3.3)

in the equivalent form

(F, G p)X = (p, div F)Q.

The last expression clearly states that the flux and divergence operators are adjoint
to each other:

G = div∗.

The MFD method produces discretizations of these operators which are adjoint to each
other with respect to scalar products in the discrete velocity and pressure spaces.

The first step of the MFD method is to specify the degrees of freedom for physical
variables p and F and their location.

We consider the space Qd of discrete pressures that are constant on each poly-
hedron E. For q ∈ Qd we shall denote by qE (or by (q)E) its (constant) value on
E. The dimension, NQ, of Qd is obviously equal to the number of polyhedrons in Th.
In what follows, we shall denote by Qd either the vector space R

NQ or the space of
piecewise constant functions depending on context. The identification will be obvious
and no confusion should arise.

The definition of the space of discrete velocities requires some additional consid-
erations. To every element E in Th and to every face e of E we associate a number
F e
E and the vector field F e

E ne
E , where ne

E is the unit normal to e that points outside
of E. We clearly make the continuity assumption that for each face e shared by two
polyhedra E1 and E2, we have

F e
E1

= −F e
E2

.(3.4)

We denote the vector space of face-based velocity unknowns by Xd. The number,
NX , of our discrete velocity unknowns is equal to the number of boundary faces plus
twice the number of internal faces. In our theoretical discussion, we shall consider Xd

as the subspace of R
NX which verifies (3.4).

For a discrete velocity field G we will denote by GE its restriction to the boundary
of E, and by Ge

E (or by (GE)e) the restriction of GE ·nE to a face e belonging to the
boundary of E. It will be convenient sometimes to use the notation

Xd
E := {restrictions of Xd to the element E}.(3.5)

It is clear that, in practice, condition (3.4) will make the number of true indepen-
dent unknowns equal the total number of mesh faces. This means that, in a computer
program, we shall prescribe one direction for the normal to each internal face e, and
assign a single unknown Ge to each face, assuming that each of the two Ge

E coin-
cides either with Ge (when the outward normal nE on e coincides with the prescribed
direction) or with −Ge (otherwise).
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To summarize, one pressure unknown is defined on each polyhedron and the
discrete velocities are defined as face-based normal components. Once we get the
degrees of freedom in Qd and in Xd, we can define interpolation operators from the
spaces of smooth enough scalar- and vector-valued functions to the discrete spaces Qd

and Xd, respectively. To every function q in L1(Ω) we associate the element qI ∈ Qd

defined by

(qI)E :=
1

|E|

∫
E

q dV ∀E ∈ Th.(3.6)

Similarly, for every vector-valued function G ∈ (Ls(Ω))3, s > 2, with div G ∈
L2(Ω), we define GI ∈ Xd by

(
GI

E

)e
:=

1

|e|

∫
e

G · nE dS ∀E ∈ Th ∀ e ∈ ∂E.(3.7)

In the next section, we shall prove that this interpolation operator is well defined
and uniformly bounded. In what follows, we shall use bold capital letters either for
vectors from Xd or for continuous vector functions depending on context and leaving
no room for confusion.

The second step of the MFD method is to equip the spaces of discrete pressures
and velocities with scalar products. The scalar product on the vector space Qd is
given by

[p, q]Qd =
∑
E∈Th

pE qE |E| ∀p, q ∈ Qd.(3.8)

In order to define the scalar product in Xd, we first define a scalar product [F, G]E
for every element E ∈ Th in the following way. Let e1, e2, . . . , ekE

be a numbering
of the faces of the element E (where kE is clearly the total number of faces). We
assume that we are given (for each E) a symmetric positive definite kE × kE matrix
ME ≡ {ME,i,j}, and we set

[F, G]E =

kE∑
i,j=1

ME,i,j (FE)ei (GE)ej ∀F, G ∈ Xd ∀E ∈ Th.(3.9)

Some minimal approximation properties for the scalar product (3.9) are required.
The construction of the matrix ME is a nontrivial task for a polyhedral element. We
shall return to this problem in section 5. For the time being, we just assume that the
scalar product (3.9) has the following property.
S1 (stability of [·, ·]E). We assume that there exist two positive constants s∗ and S∗

independent of h and E such that, for every G ∈ Xd and for every E ∈ Th,
one has

s∗
∑
e∈∂E

(Ge
E)2 |E| ≤ [G, G]E ≤ S∗

∑
e∈∂E

(Ge
E)2 |E|.(3.10)

From (3.9) we can easily construct the scalar product in Xd by setting

[F, G]Xd =
∑
E∈Th

[F, G]E ∀F, G ∈ Xd.(3.11)
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The third step of the MFD method is to derive an approximation to the divergence
operator. The discrete divergence operator, DIVd : Xd → Qd, naturally arises from
the Gauss divergence theorem as

(DIVd F)E
def
=

1

|E|
∑
e∈∂E

F e
E |e|.(3.12)

We point out that our interpolation operators, in some sense, commute with the
divergence operator. Indeed, for every vector field G smooth enough, we can use
(3.12), (3.7), the Gauss divergence theorem, and (3.6) to obtain

(3.13)

(DIVd GI)E =
1

|E|
∑
e∈∂E

(
GI

E

)e|e|= 1

|E|

∫
∂E

G · nE dS =
1

|E|

∫
E

div GdV = (div G)IE

for every element E in Th.
The fourth step of the MFD method is to define the discrete flux operator,

Gd : Qd → Xd, as the adjoint to the discrete divergence operator, DIVd , with respect
to scalar products (3.8) and (3.11), i.e.,

[F, Gd p]Xd = [p, DIVd F]Qd ∀p ∈ Qd ∀F ∈ Xd.(3.14)

Using the discrete flux and divergence operators, the continuous problem (2.1), (2.2)
is discretized as follows:

DIVd Fd = b,(3.15)

Fd = Gd pd,(3.16)

where b ≡ bI is the vector of mean values of the source function b.

4. Stability analysis. In this section we analyze the stability of the MFD dis-
cretization (3.15)–(3.16) following the well-established theory of saddle-point problems
[5]. More precisely, we prove the coercivity condition (4.4) and the inf-sup condition
(4.5).

Using the discrete Green’s formula (3.14), we rewrite (3.15) and (3.16) in a form
more suitable for analysis:

[Fd, G]Xd − [pd, DIVd G]Qd = 0 ∀G ∈ Xd,(4.1)

[DIVd Fd, q]Qd = [b, q]Qd ∀q ∈ Qd.(4.2)

Let us introduce the following mesh norms on discrete spaces Xd and Qd:

|||p|||2Qd := [p, p]Qd , |||F|||2Xd := [F, F]Xd ,

and

|||F|||2div := |||F|||2Xd +
∑
E∈Th

h2
E ‖DIVd F‖2

L2(E).(4.3)

Let V d be the space of divergence-free discrete fluxes:

V d = {F ∈ Xd : DIVd F = 0}.
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We begin the stability analysis by noticing that the scalar product (3.11) is con-
tinuous. It is also obvious that the scalar product satisfies the V d-ellipticity condition:

[F, F]Xd ≥ |||F|||2div ∀F ∈ V d.(4.4)

The analysis of the inf-sup condition is more involved. Following [5], for every
q ∈ Qd, we have to find a vector G ∈ Xd such that

[DIVd G, q]Qd ≥ β∗|||G|||div |||q|||Qd ,(4.5)

where β∗ is a positive constant independent of q, G, and Th. Let us denote by
qh ∈ L2(Ω) the piecewise constant function on Th with values given by the entries
of the vector q (so that (qh)I ≡ q). It is obvious that ‖qh‖L2(Ω) = |||q|||Qd . Let us
consider the homogeneous Dirichlet boundary value problem

Δψ = qh in Ω.

Since Ω has a Lipschitz-continuous boundary, there exist an s > 2 and a constant C∗
Ω

such that

‖ψ‖W 1
s (Ω) ≤ C∗

Ω ‖qh‖L2(Ω).(4.6)

Let H = ∇ψ, so that we have immediately

div H = qh,(4.7)

and from (4.6)

‖H‖(Ls(Ω))3 +

( ∑
E∈Th

h2
E ‖div H‖2

L2(E)

)1/2

≤ (C∗
Ω + h)‖qh‖L2(Ω).(4.8)

We now set

G := HI ≡ (∇ψ)I ,(4.9)

where the interpolation operator is still the one defined in (3.7). Thanks to the
commutative property (3.13) and to (4.7), we have

DIVd G = (qh)I ≡ q.(4.10)

Thus, inequality (4.5) is reduced to

|||q|||Qd ≥ β∗|||G|||div.(4.11)

At this point we need the following technical lemma.
Lemma 4.1. Under Assumptions M1–M6 and S1, for every s > 2, there exists a

positive constant β∗
s such that

|||GI |||div ≤ β∗
s

⎧⎨⎩‖G‖(Ls(Ω))3 +

( ∑
E∈Th

h2
E ‖div G‖2

L2(E)

)1/2
⎫⎬⎭(4.12)

for every G ∈ (Ls(Ω))3 with div G ∈ L2(Ω), and where GI is defined in (3.7).
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Collecting (4.9) and (4.12), we get

|||G|||div = |||HI |||div ≤ β∗
s

⎧⎨⎩‖H‖(Ls(Ω))3 +

( ∑
E∈Th

h2
E ‖div H‖2

L2(E)

)1/2
⎫⎬⎭ .

This, together with (4.8), implies (4.11), and hence (4.5), with β∗ = (β∗
s (C∗

Ω + h))
−1

.
Therefore, we have just to prove Lemma 4.1.

Proof of Lemma 4.1. From (3.13) we immediately have

|||DIVd GI |||Qd = |||(div G)I |||Qd ≤ ‖div G‖L2(Ω).(4.13)

Therefore, in view of (4.3), it is sufficient to prove that there exists a constant β̃∗
s such

that

|||GI |||Xd ≤ β̃∗
s

⎧⎨⎩‖G‖(Ls(Ω))3 +

( ∑
E∈Th

h2
E‖div G‖2

L2(E)

)1/2
⎫⎬⎭ .(4.14)

The desired result (4.12) follows from (4.14) with β∗
s = β̃∗

s + 1. In the following
discussion, we shall make a wide use of the conjugate exponent t, depending on s
through the usual formula

1

s
+

1

t
= 1.(4.15)

Assumption (3.10) implies clearly that

[GI , GI ]Xd ≤ S∗
∑
E∈Th

|E|
∑
e∈∂E

(
Ge

E

)2
,(4.16)

so that we have to estimate the (Ge
E)’s in terms of G, or, rather, in terms of the norm

of G appearing in (4.12). Our basic instrument for that is called the lift property.
The main difficulty, in various cases, will be to prove that the lift property holds true.
LP (lift property). For every t < 2 there exists a constant λ∗ = λ∗(t) such that for

every E ∈ Th and for every e ∈ ∂E there exists a function ϕe
E from E to R

that verifies

ϕe
E = 1 on e, ϕe

E = 0 on ∂E \ e(4.17)

and ∥∥ϕe
E

∥∥
L2(E)

≤ λ∗h
3/2
E ,

∥∥∇ϕe
E

∥∥
(Lt(E))3

≤ λ∗h
3/t−1
E .(4.18)

The lift property LP is proved in the appendix.
Up to an approximation of G by smooth functions, and passage to the limit, we

have, using (3.7), (4.17), the Green’s formula,

Ge
E =

1

|e|

∫
e

G · nE dS =
1

|e|

∫
∂E

ϕe
EG · nE dS

=
1

|e|

∫
E

G · ∇ϕe
E dV +

1

|e|

∫
E

ϕe
E div GdV.

(4.19)
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Using the Hölder inequality and (4.18) in (4.19), we then have

|e|Ge
E ≤ ‖G‖Ls(E)

∥∥∇ϕe
E

∥∥
Lt(E)

+ ‖div G‖L2(E)

∥∥ϕe
E

∥∥
L2(E)

≤ λ∗ {(hE)3/t−1‖G‖Ls(E) + (hE)3/2 ‖div G‖L2(E)

}
.

Taking the squares and remembering that (a + b)2 ≤ 2(a2 + b2), we have

|e|2
(
Ge

E

)2 ≤ 2 (λ∗)2
{
(hE)6/t−2‖G‖2

Ls(E) + (hE)3 ‖div G‖2
L2(E)

}
.(4.20)

On the other hand, using conditions (2.4), we easily obtain

|E| ≤ h3
E = h−1

E

(
h2
E

)2 ≤ h−1
E (a∗)−2|e|2.(4.21)

We can now join (4.21) with (4.20) to deduce that

|E|
(
Ge

E

)2 ≤ h−1
E (a∗)−2|e|2

(
Ge

E

)2
≤ σ∗{(hE)6/t−3‖G‖2

Ls(E) + (hE)2 ‖div G‖2
L2(E)

}
,

(4.22)

where σ∗ = 2 (λ∗)2 (a∗)−2. Now we can sum (4.22) over all faces e of E and then
over all elements E of Th. We use (4.16) and Assumption M2 on the number of faces
per element to get

|||GI |||2Xd ≤ Ne S
∗ σ∗

{ ∑
E∈Th

(hE)6/t−3‖G‖2
Ls(E) +

∑
E∈Th

h2
E ‖div G‖2

L2(E)

}

≤ Ne S
∗ σ∗

⎧⎨⎩
( ∑

E∈Th

{
(hE)6/t−3

}r

)1/r ( ∑
E∈Th

‖G‖sLs(E)

)2/s

+
∑
E∈Th

h2
E‖div G‖2

L2(E)

}
,

(4.23)

where in the last step we applied the Hölder inequality with r, the conjugate exponent
of s/2,

1

r
+

2

s
= 1.(4.24)

A simple algebraic manipulation using (4.15) and (4.24) gives∑
E∈Th

{
(hE)6/t−3

}r
=

∑
E∈Th

h3
E ≤ v−1

∗ |Ω|,(4.25)

where we have also used (2.4) in the last step. Inserting (4.25) into (4.23), we finally
get

|||GI |||Xd ≤ β̃∗
s

⎧⎨⎩‖G‖(Ls(Ω))3 +

( ∑
E∈Th

h2
E‖div G‖2

L2(E)

)1/2
⎫⎬⎭,(4.26)

where β̃∗
s depends only on λ∗(t), S∗, v∗, a∗, and Ne. This proves the assertion of the

lemma.
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5. Convergence analysis.

5.1. Consistency assumption. In order to prove error estimates, we need some
assumptions on the scalar product (3.11), and more precisely on the relationships
between the continuous scalar product (3.1) and its discrete counterpart (3.11). Our
basic assumption will be the following one.
S2 (consistency of [·, ·]E). For every element E, every linear function q1 on E, and

every G ∈ Xd, we have[(
K̃∇q1

)I
, G

]
E

=

∫
∂E

q1 GE · nE dS −
∫
E

q1 (DIVd G)E dV,(5.1)

where (·)I is the interpolation operator (3.7) and K̃ is a constant tensor on
E such that

sup
x∈E

sup
i,j

|{K(x)}i,j − {K̃}i,j | ≤ C∗
K hE ,(5.2)

where C∗
K is a constant independent of E.

Note that K̃ may be any reasonable piecewise constant approximation of K. In
practice, we use either the value of K at the polyhedron mass center or its mean value.

Condition (5.1) is rather new and requires some comments. First, we point out
that for divergence-free vectors, G ∈ V d, it reads

[(K̃∇q1)I , G]E =

∫
∂E

q1 GE · nE dS(5.3)

showing the remarkable property of using only boundary integrals. However, as
DIVd G is constant in each E and q1 is supposed to be linear, the volume inte-
gral appearing in (5.1) is not difficult to compute. Taking G = (K̃∇q̃1)I (with q̃1

another polynomial of degree ≤ 1) in (5.3), we conclude that Assumption S2 implies
that the scalar product (3.11) gives an exact value for the integral of two constant
velocities.

In the context of the local MFD method [13], and taking for simplicity K̃ = I,
condition (5.1) means that the discrete gradient operator is exact for linear functions,
i.e., Gd (q1)I is a constant vector whose entries are equal to ∇q1. This property
has been used in [18] to build a one-parameter family of symmetric positive definite
matrices ME for a triangle. As a particular case, this family includes the mass ma-
trix appearing in the finite element discretizations with the Raviart–Thomas finite
elements.

What is still remarkable in (5.1) is that it does not require the construction of a
lifting operator from the values Ge

E on ∂E to the interior of E. It is not difficult to
show, however, that if we have any reasonable lifting operator RE , then the choice

[F, G]E :=

∫
E

K̃−1RE(FE) ·RE(GE) dV

will automatically satisfy (5.1) as well as (3.10). We have indeed the following theo-
rem.

Theorem 5.1. Assume that for every element E ∈ Th we have a lifting operator
RE acting on Xd

E (the restriction of Xd to E) and with values in (L2(E))3 such that

RE(GE) · nE ≡ GE · nE on ∂E,

divRE(GE) ≡ (DIVd G)E in E
(5.4)
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for all G ∈ Xd, and

RE

(
GI

E

)
= G(5.5)

for all G constant on E. Then the choices

{K̃}i,j :=
1

|E|

∫
E

{K}i,j dV(5.6)

and

[F, G]E :=

∫
E

K̃−1RE(FE) ·RE(GE) dV(5.7)

will automatically satisfy (5.2) and (5.1). If, moreover, there exist two positive con-
stants c∗R and C∗

R, independent of E such that

c∗R

(
|E|

∑
e∈∂E

(
Ge

E

)2)1/2

≤ ‖RE(G)‖(L2(E))3 ≤ C∗
R

(
|E|

∑
e∈∂E

(
Ge

E

)2)1/2

(5.8)

for all G ∈ Xd, then (3.10) will also hold with constants s∗ and S∗ depending only
on c∗R, C∗

R, and on the constants κ∗, κ
∗ from (2.3).

Proof. The validity of (5.2) is immediate. The validity of (5.1) is also easily
checked:

[(K̃∇q1)I , G]E =

∫
E

K̃−1RE((K̃∇q1)IE) ·RE(GE) dV (use (5.5) and ∇q1 = const)

=

∫
E

K̃−1K̃∇q1 ·RE(GE) dV (use K̃−1K̃ = Id)

=

∫
E

∇q1 ·RE(GE) dV (integrate by parts)

=

∫
∂E

q1 RE(GE) · nE dS −
∫
E

q1 divRE(GE) dV (use (5.4))

=

∫
∂E

q1 GE · nE dS −
∫
E

q1 (DIVd G)E dV.

Finally, (3.10) follows immediately from (5.7), (2.3), and (5.8) after noting that (2.3)
is equivalent to

(κ∗)−1‖v‖2 ≤ vTK−1(x)v ≤ (κ∗)
−1‖v‖2 ∀v ∈ R

3 ∀x ∈ Ω.(5.9)

This ends the proof of the theorem.
A possible way of getting (5.1) is, therefore, to construct a lifting operator RE

satisfying (5.4), (5.5), and (5.8), and then define ME following (5.7). For instance,
the way followed in [16] for polygonal domains can be interpreted as the construction
of a lifting operator satisfying (5.4) and (5.5).

In general, we may consider assumption (5.1) as a system of linear equations
where the unknowns are the coefficients of ME , and use it, in each element E, to
construct the matrix ME . Since the matrix ME should be symmetric and positive
definite, this is a problem with nonlinear constraints. An analytical solution has been
found only for triangular elements [18].
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Let us see this in more detail. We consider an element E having kE faces. Equa-
tion (5.1) should then hold for kE different possible choices of GE and three possible
choices of q1 corresponding to q1 =x, q1 = y, and q1 = z. Note that for q1 = 1, (5.1) is
automatically satisfied as it is reduced to our definition of the operator DIVd . We
have, therefore, 3kE equations. It can be shown that only 3kE − 3 equations are
linearly independent. Since K̃, and hence ME , is symmetric, the number of unknown
coefficients of ME is kE(kE + 1)/2, that is, bigger than 3kE − 3 as soon as kE ≥ 4.
The system will always be compatible, since we could always define a lifting RE first
by solving, for each GE , the Neumann problem

Δχ = DIVd GE in E,

∂χ/∂nE = GE · nE on ∂E,

then by taking RE(GE) := ∇χ, and finally by defining ME through (5.7). This would
be totally impractical but shows that at least a solution ME of (5.1), symmetric and
positive definite, exists (although, in general, the solution will not be unique).

A sparsity structure could be imposed on ME in order to reduce the number
of unknowns. For instance, we can require that each face interacts only with a few
neighboring faces, reducing the number of unknowns to 3kE − 3, which equals the
number of equations and makes the linear system much easier to solve on the computer
(see [6] for more detail).

An advantage of this approach is that it can be rather easily extended to faces
that are not flat. This is a case in which the construction of an explicit lifting operator
might prove to be very difficult. We shall consider meshes with curved faces in the
future publications.

5.2. Error estimate for the vector variable. Using Assumption S2, we are
going to prove error estimates for our discretization. Let (p, F) be the exact solution
of (2.1) and (2.2), let (pd,Fd) be the discrete solution (see (3.15) and (3.16)), and let
pI and FI be the interpolants of the exact solution. Finally, for every element E, we
denote by p1

E a suitable polynomial of degree ≤ 1 that approximates p, and that will
be decided later on. We notice first that from (2.1), (3.13), and (3.15), we easily have

DIVd (FI − Fd) = b − b = 0.(5.10)

Using (2.2) and (3.16), then (3.14), and finally (5.10), we get

[FI − Fd, FI − Fd]Xd = [(−K∇p)I , FI − Fd]Xd − [G dpd,F
I − Fd]Xd

= [(−K∇p)I , FI − Fd]Xd − [pd, DIVd (FI − Fd)]Qd

= [(−K∇p)I , FI − Fd]Xd .(5.11)

Then, adding and subtracting the terms, we have

|||FI − Fd|||2Xd = [(−K∇p)I + (K∇p1)I , FI − Fd]Xd + [(−K∇p1)I , FI − Fd]Xd

= I1 + [(−K∇p1 + K̃∇p1)I , FI − Fd]Xd + [(−K̃∇p1)I ,FI − Fd]Xd

= I1 + I2 + [(−K̃∇p1)I , FI − Fd]Xd

= I1 + I2 + I3.(5.12)



CONVERGENCE OF MFD METHOD ON POLYHEDRAL MESHES 1885

Using (5.1) and (5.10), the third term reads

I3 =
∑
E∈Th

{∫
∂E

p1
E (FI − Fd)E · nE dS −

∫
E

p1
E (DIVd (FI − Fd))E dV

}

=
∑
E∈Th

∫
∂E

p1
E (FI − Fd)E · nE dS.(5.13)

We are, therefore, left with the problem of estimating I1, I2, and I3. A first
estimate of I2 is trivial. From (5.2) we immediately have

I2 ≡ [(−K∇p1 + K̃∇p1)I , FI − Fd]Xd ≤ C∗
Kh |||(∇p1)I |||Xd |||FI − Fd|||Xd ,(5.14)

where p1 still has to be defined.
Let us recall some known properties of the approximation theory. For the sake of

simplicity, we assume that our solution p is in H2(Ω). Note that with a little additional
effort we could use a weaker regularity and get a lower order of convergence.

We first recall that, under Assumption M6 (star-shaped elements), it is possible
to find a constant C∗

app, depending only on τ∗, such that for every element E and for
every p ∈ H2(E) there exist a constant p0

E and a polynomial p1
E of degree ≤ 1 such

that ∥∥p− p0
E

∥∥
L2(E)

≤ C∗
app hE ‖p‖H1(E),(5.15)

∥∥p− p1
E

∥∥
L2(E)

≤ C∗
app h

2
E ‖p‖H2(E),

∥∥p− p1
E

∥∥
H1(E)

≤ C∗
app hE ‖p‖H2(E)(5.16)

(see [4, Lemma 4.3.8]). Concerning the error on faces, we can use a result due to
Agmon made popular in the numerical analysis community by Arnold [1]. Applied to
our case, it says that there exists a constant C∗

agm, depending only on the constant
γ∗ of Assumption M4, such that for every pyramid P e

E (as described in Assumption
M5), and for every function χ ∈ H1(P e

E), we have

‖χ‖2
L2(e) ≤ C∗

agm

(
h−1
E ‖χ‖2

L2(P e
E) + hE ‖χ‖2

H1(P e
E)

)
.(5.17)

It is then immediate to derive from (5.17) that

‖∇χ‖2
L2(e) ≤ C∗

agm

(
h−1
E ‖χ‖2

H1(P e
E) + hE ‖χ‖2

H2(P e
E)

)
(5.18)

for every χ ∈ H2(E). Applying this to the difference p− p1
E , and using (5.16), we get∥∥p− p1

E

∥∥2

L2(e)
+ h2

E

∥∥∇(
p− p1

E

)∥∥2

L2(e)
≤ C∗

face h
3
E ‖p‖2

H2(E),(5.19)

where C∗
face depends only on τ∗ and γ∗.

Now, we can finish the estimate of I2. Note that ∇p1 is a constant vector. Then,
(5.16) and the triangle inequality give

|||
(
∇p1

E

)I |||Xd=
∥∥∇p1

E

∥∥
L2(E)

≤‖∇p‖L2(E)+
∥∥∇(p−p1

E)
∥∥
L2(E)

≤
(
1+hEC

∗
app

)
‖p‖H2(E).

Thus, we obtain immediately from (5.14) that

I2 ≤ C∗
I2 h ‖p‖H2(Ω) |||FI − Fd|||Xd ,(5.20)
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where C∗
I2

equals (1 + hE C∗
app)C

∗
K with C∗

K given in (5.2).
The estimate of I1 is obtained in the following lemma.
Lemma 5.2. Let p ∈ H2(Ω) and let, in each E ∈ Th, p1 be such that (5.16) holds.

Let (·)I be the interpolation operator defined in (3.7), and let finally G ∈ Xd. Then

[(−K∇p)I + (K∇p1)I , G]Xd ≤ C∗
I1 h ‖p‖H2(Ω) |||G|||Xd ,(5.21)

where the constant C∗
I1

is independent of p, G, and h.
Proof. The proof follows immediately from (3.10), the definition of the interpo-

lation operator (3.7), the Cauchy–Schwarz inequality, and the approximation results
quoted above. Indeed, we have

|||(−K∇p)I + (K∇p1)I |||2Xd ≤ S∗
∑
E∈Th

∑
e∈∂E

(
((−K∇p)I + (K∇p1)I)eE

)2 |E|

≤ S∗
∑
E∈Th

∑
e∈∂E

(
1

|e|

∫
e

K∇
(
p− p1

E

)
· nE dS

)2

|E|

≤ S∗
∑
E∈Th

∑
e∈∂E

1

|e|
∥∥K∇

(
p− p1

E

)∥∥2

L2(e)
|E|

≤ C∗
I1 h

2 ‖p‖2
H2(Ω),

where C∗
I1

depends only on a∗ given in (2.4), S∗ given in (3.10), κ∗ given in (2.3), Ne

from Assumption M2, and C∗
face obtained in (5.19).

The following lemma gives an estimate for I3.
Lemma 5.3. Let p ∈ H2(Ω) and let, in each E ∈ Th, p1 be such that (5.16) holds.

Moreover, let G ∈ Xd. Then∑
E∈Th

∫
∂E

p1 GE · nE dS ≤ C∗
I3 h ‖p‖H2(Ω) |||G|||Xd ,(5.22)

where the constant C∗
I3

is independent of p, G, and h.
Proof. The first (crucial) step of the proof uses the continuity of p and the fact

that GE · nE takes opposite values for the two elements sharing a common internal
face. Then, the result follows with usual instruments such as the Cauchy–Schwarz
inequality and approximation results (5.16):∑

E∈Th

∫
∂E

p1
E GE · nE dS =

∑
E∈Th

∫
∂E

(
p1
E − p

)
GE · nE dS

≤
∑
E∈Th

∑
e∈∂E

∥∥p− p1
E

∥∥
L2(e)

∥∥Ge
E

∥∥
L2(e)

=
∑
E∈Th

∑
e∈∂E

∥∥p− p1
E

∥∥
L2(e)

∣∣Ge
E

∣∣ |e|1/2
≤ v

−1/2
∗ (C∗

face)
1/2

∑
E∈Th

hE‖p‖H2(E)

∑
e∈∂E

∣∣Ge
E

∣∣ |E|1/2

≤ C∗
I3 h‖p‖H2(Ω) |||G|||Xd ,

where C∗
I3

= (v−1
∗ s−1

∗ C∗
face)

1/2Ne. This proves the assertion of the lemma.
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Combining (5.12) with (5.20), (5.21), and (5.22), we finally get the main
convergence result.

Theorem 5.4. Under Assumptions P1, M1–M6, and S1–S2, let (p, F) be the
solution of (2.1)–(2.2), and let (pd, Fd) be the discrete solution, given by (3.15)–(3.16).
Moreover, let FI be the interpolant of F, introduced in (3.7). Then, we have

|||FI − Fd|||Xd ≤ C∗ h ‖p‖H2(Ω),(5.23)

where C∗ depends only upon the various constants appearing in Assumptions P1,
M1–M6, and S1–S2.

5.3. Error estimates for the scalar variable. In order to derive estimates
on the scalar variable pd, we shall go back to the proof of inf-sup condition (4.5). For
the sake of simplicity, we assume that Ω is convex. Let ψ be the solution of

−div(K∇ψ) =pI − pd in Ω,

ψ= 0 on ∂Ω,

where, for simplicity, we identified pd−pI with the corresponding piecewise constant
function. The convexity of Ω implies that there exists a constant C∗

Ω, depending only
on Ω, such that

‖ψ‖H2(Ω) ≤ C∗
Ω |||pd − pI |||Qd .(5.24)

We now set

H = K∇ψ(5.25)

and define G ∈ Xd as G = HI , so that

DIVd G = pd − pI .(5.26)

Finally, we denote by ψ1 a piecewise linear approximation of ψ that satisfies (5.16)
for each E ∈ Th. Using (5.26), then (4.1), then (3.6) and (3.13), then integrating by
parts, and finally integrating once again by parts and using (2.1) and (2.2), we get

|||pd − pI |||2Qd = [DIVd G, pd − pI ]Qd

= [Fd, G]Xd − [DIVd G, pI ]Qd = [Fd, G]Xd −
∫

Ω

pdiv(K∇ψ) dV

= [Fd, G]Xd +

∫
Ω

K∇ p · ∇ψ dV

= [Fd, G]Xd +

∫
Ω

b ψ dV.

Now, using the definition of G and adding and subtracting the terms, we have

|||pd − pI |||2Qd = [Fd, (K∇ψ)I − (K∇ψ1)I ]Xd + [Fd, (K∇ψ1)I ]Xd +

∫
Ω

b ψ dV

= J1 + [Fd, ((K − K̃)∇ψ1)I ]Xd + [Fd, (K̃∇ψ1)I ]Xd +

∫
Ω

b ψ dV

= J1 + J2 + [Fd, (K̃∇ψ1)I ]Xd +

∫
Ω

b ψ dV.(5.27)
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Using (5.21), the term J1 can be easily bounded by

J1 ≡ [Fd, (K∇ψ)I − (K∇ψ1)I ]Xd ≤ C∗
I1 h |||Fd|||Xd ‖ψ‖H2(Ω).(5.28)

The term J2 is bounded as in (5.14), (5.20) by

J2 ≡ [Fd, ((K − K̃)∇ψ1)I ]Xd ≤ C∗
I2 h |||Fd|||Xd ‖ψ‖H2(Ω).(5.29)

For the third term in the last line of (5.27), we can use (5.1) to obtain

[Fd, (K∇ψ1)I ]Xd =
∑
E∈Th

∫
∂E

ψ1(Fd)E · nE dS −
∫

Ω

bψ1 dV.(5.30)

With the help of (5.22), we then get

∣∣∣∣[Fd, (K̃∇ψ1)I ]Xd +

∫
Ω

b ψ dV

∣∣∣∣ ≤ C∗
I3 h |||Fd|||Xd ‖ψ‖H2(Ω) +

∣∣∣∣∫
Ω

(b ψ − bψ1) dV

∣∣∣∣ ,
(5.31)

where the last term is easily bounded by 2C∗
app h ‖b‖H1(Ω) ‖ψ‖H1(Ω). Collecting

inequalities (5.27)–(5.31), we obtain

|||pd − pI |||2Qd ≤ C∗ h
{
|||Fd|||Xd + ‖b‖H1(Ω)

}
‖ψ‖H2(Ω),(5.32)

which, combined with estimates (5.24), Theorem 5.4, and Lemma 4.1, gives the proof
of the second convergence result.

Theorem 5.5. Under assumptions of Theorem 5.4, plus the convexity of Ω, we
have

|||pd − pI |||Qd ≤ C∗ h (‖p‖H2(Ω) + ‖b‖H1(Ω)),(5.33)

where the constant C∗ depends only on the constants appearing in Assumptions P1,
M1–M6, and S1–S2, on C∗

Ω appearing in (5.24), and on β∗
s appearing in (4.12).

It is interesting to note that, assuming that in each element E we had a suitable
lifting RE , a better estimate for the scalar variable could be obtained. We have indeed
the following theorem.

Theorem 5.6. Together with the assumptions of Theorem 5.5, assume, moreover,
that for each element E we have a lifting operator RE with properties (5.4), (5.5), and
(5.8) such that

‖RE(GI) − G‖L2(E) ≤ C∗
Ra hE ‖G‖(H1(E))3 ∀G ∈ (H1(E))3 ∀E ∈ Th,(5.34)

where C∗
Ra is a constant independent of G and hE. Then, the choice

[F, G]E :=

∫
E

K−1RE(FE) ·RE(GE) dV(5.35)

will give

|||pd − pI |||Qd ≤ C∗ h2
(
‖p‖H2(Ω) + ‖b‖H1(Ω)

)
,(5.36)

where the constant C∗ depends only on the constants appearing in Assumptions P1,
M1–M6, and S1–S2, on C∗

Ω appearing in (5.24), on β∗
s appearing in (4.12), and on

C∗
Ra from (5.34).
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Proof. Let R(G) be such that R(G)|E = RE(GE). Following essentially [11] and
using (5.26), then (4.1), (3.6), and (3.13) (as in the previous proof) with (5.4), then
integrating by parts, and finally using (2.2) and (5.35), we get

|||pd − pI |||2Qd = [DIVd G, pd − pI ]Qd

= [Fd, G]Xd −
∫

Ω

pdivR(G) dV

= [Fd, G]Xd +

∫
Ω

∇ p ·R(G) dV = [Fd, G]Xd +

∫
Ω

K−1K∇p ·R(G) dV

=

∫
Ω

K−1(R(Fd) − F)R(G) dV.

Adding and subtracting H defined in (5.25), we get

|||pd − pI |||2Qd =

∫
Ω

K−1(R(Fd) − F) (R(G) − H) dV +

∫
Ω

K−1(R(Fd) − F)HdV

= J3 +

∫
Ω

(R(Fd) − F)∇ψ dV = J3 −
∫

Ω

ψ div(R(Fd) − F) dV

= J3 −
∫

Ω

(bI − b)ψ dV

= J3 −
∫

Ω

(bI − b)(ψ − ψI) dV = J3 + J4.(5.37)

In their turn, J3 and J4 can be easily bounded using the previous estimates and
the usual arguments. Indeed, the triangle inequality, then (3.10) and (5.8), and finally
(5.23) and (5.34) imply that

‖R(Fd) − F‖(L2(Ω))3 ≤ ‖R(Fd − FI)‖(L2(Ω))3 + ‖R(FI) − F‖(L2(Ω))3

≤ C∗
Rs

−1/2
∗ |||Fd − FI |||Xd + ‖R(FI) − F‖(L2(Ω))3

≤ C h ‖p‖H2(Ω).(5.38)

Using assumption (5.34) and (5.24), we get

(5.39)

‖R(G)−H‖(L2(Ω))3 = ‖R(HI)−H‖(L2(Ω))3 ≤ C∗
Rah‖H‖(H1(Ω))3 ≤ Ch|||pd − pI |||Qd .

The approximation property (5.15) gives the following estimates:

|‖bI − b‖L2(Ω) ≤ C∗
app h‖b‖H1(Ω)(5.40)

and

‖ψ − ψI‖L2(Ω) ≤ C∗
app h‖ψ‖H1(Ω) ≤ C∗

appC
∗
Ω h |||pd − pI |||Qd .(5.41)

Inserting estimates (5.38)–(5.41) into (5.37), we immediately get the result.
Remark 5.1. It is very likely that our additional assumption (5.34) is not needed,

as it should be possible to deduce it from (5.4), (5.5), possibly with minor additional
assumptions on the geometry. However, in essentially all cases in which RE can be
explicitly built, it is easy to prove directly that (5.34) holds true. Therefore, we decided
that it would be simpler to just assume it.



1890 F. BREZZI, K. LIPNIKOV, AND M. SHASHKOV

6. Conclusion. In this paper, we have considered the MFD method for the
mixed formulation of the diffusion problem on polyhedral meshes. We have proved
the stability of the mimetic discretizations and the optimal convergence rates for the
scalar and vector variables. The key elements of our methodology are the consistency
Assumption S2 and the lift property LP. In future work, we plan to extend the
convergence results to polyhedral meshes with curved faces.

Appendix. Proof of the list property. The purpose of this appendix is to
prove the lift property (4.17)–(4.18), which we recall for convenience of the reader.

LP (lift property). For every t < 2 there exists a constant λ∗ = λ∗(t) such that for
every E ∈ Th and for every e ∈ ∂E there exists a function ϕe

E from E to R

that verifies

ϕe
E = 1 on e, ϕe

E = 0 on ∂E\e(A.1)

and ∥∥ϕe
E

∥∥
L2(E)

≤ λ∗h
3/2
E ,

∥∥∇ϕe
E

∥∥
(Lt(E))3

≤ λ∗h
3/t−1
E .(A.2)

A traditional way would be to assume that there exist a finite number of reference
elements Ê1, . . . , Ê1 and a positive constant L∗ such that for each E ∈ Th there is an
Êk and a bi-Lipschitz map ΦE

k from Êk to E such that∣∣ΦE
k

∣∣
W 1

∞(Êk)
≤ L∗,

∥∥ΦE
k

∥∥
L∞(Êk)

≤ L∗ hE(A.3)

and ∣∣(ΦE
k )−1

∣∣
W 1

∞(E)
≤ L∗,

∥∥(ΦE
k

)−1∥∥
L∞(E)

≤ L∗ h−1
E .(A.4)

Then, for each reference element Êk and for each face ê of Êk we could construct
the harmonic function ϕ̂ê

Êk
with boundary value 1 on ê and zero on the other faces,

and verify that it belongs to W 1
t (Êk) for every t < 2. Finally each function ϕe

E could
be constructed by combining one of the reference functions ϕ̂ê

Êk
with the corresponding

map ΦE
k . This is surely feasible but will become rather cumbersome if we want to

consider a big variety of possible shapes for our elements.

We decided here to follow a different path that requires only the fact that the
faces are star shaped (M4) and the pyramid property (M5), which are possibly more
difficult to explain but much easier to check and to enforce. The general idea is first
to build a function ϕ̂1 on the unit cone C1; then, for every h, to build a function ϕh

on a cone Ch obtained by scaling the unit cone; and finally, for each element E and
for each face e, to map the cone Cγ∗hE

(where γ∗ is given in Assumption M4) into the
pyramid P e

E described in Assumption M5 with a Lipschitz continuous mapping. This
will give us a function ϕ = ϕe

E on the pyramid, having the right norms. This function
will finally be extended by zero to the whole element E, and still it will have the right
norms. But let us look at the procedure in more detail.

For each element E and for each face e of E we want to build a function ϕ = ϕe
E

with the following properties.

• The support of ϕ is contained in the pyramid P = P e
E satisfying Assumption

M5.
• ϕ ≡ 1 on e and ϕ ≡ 0 on the other faces of P e

E .
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• ϕ satisfies the following estimates:

||ϕ||L2(P ) ≤ λ∗ h
3/2
E and ||∇ϕ||(Lt(P ))3 ≤ λ∗ h

3/t−1
E ,(A.5)

where the constant λ∗ is independent of E and e.
As we said before, we start our work on cones: for ρ > 0 we shall refer to the

solid

Cρ ≡ {(x, y, z) : 0 ≤ z ≤ ρ and x2 + y2 ≤ (ρ− z)2}

as the circular cone of radius ρ.
Lemma A.1. Let C1 be the circular cone of radius 1, and let ϕ̂1 be the harmonic

function that takes value 1 on the base and 0 on the lateral boundary. Then ϕ̂1 belongs
to L∞(C1) and ∇ϕ̂1 belongs to (Lt(C1))

3 for all t < 2.
Proof. The first part of the statement follows from the maximum principle, which

gives 0 ≤ ϕ̂1 ≤ 1. The second part of the statement follows immediately from the
known results concerning domains with corners (see, e.g., [12] or [10]).

In view of the previous lemma, we set

Ĉt := ‖∇ϕ1‖(Lt(C1))3 .(A.6)

It is clear that Ĉt depends on t and hence on s through (4.15).
Lemma A.2. For every positive real number h, let Ch be a circular cone of radius

h. Then, there exists a function ϕh taking value 1 on the base, value zero on the
lateral surface, and satisfying

||ϕh||L2(Ch) ≤ |Ch|1/2 and ||∇ϕh||(Lt(Ch))3 ≤ h3/t−1Ĉt,(A.7)

where |Ch| is the volume of Ch.
Proof. The proof follows with the usual scaling arguments (see, e.g., [9, Theorem

3.1.2]).
Consider now a face e of E. For convenience, we assume that (a) the face e lies in

the plane z = 0, (b) Me, defined in Assumption M4 (star-shaped faces), is the origin of
the axes, and (c) the polyhedron E is locally in the half-space z > 0. By Assumptions
M4 and M5 (the pyramid property), there exists a γ∗ such that the circular cone Ch
having its base on the face e (with center in Me), and radius h = ρ∗ = γ∗ hE , is
strictly contained in the pyramid P e

E having the same vertex and base equal to e.
Hence, Ch is contained in E.

Let us show that Assumption M4 implies the existence of a radial mapping in the
plane z = 0 which maps the disk Dρ∗ with center in Me and radius ρ∗ onto the face
e, is one-to-one, Lipschitz continuous together with its inverse, and with W 1

∞ norms
bounded in terms of γ∗ and the number of edges of e.

Lemma A.3. Under Assumption M4 there exists a map Φ2, mapping the disk
Dρ∗ onto the face e, which is Lipschitz continuous together with the inverse map Φ−1

2 .
Moreover,

‖Φ2‖W 1
∞(Dρ∗ ) ≤ C∗

e and ‖Φ−1
2 ‖W 1

∞(e) ≤ C∗
e ,(A.8)

where C∗
e depends only on the constant γ∗ from Assumption M4.

Proof. To show this, we note that the plane z = 0 can be split in a finite number
of sectors by the vertices of e. Each sector corresponds to the straight rays coming
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O

ρ∗

Fig. A.1. The splitting of e in sectors.

out of the origin Me and intersecting the edge �k (see Figure A.1). For each point
P ∈ Dρ∗ , we first consider the ray emanating from the origin and passing through P.
This ray intersects ∂e at a point V(P). Our mapping is defined as follows:

P̃ ≡ Φ2(P) :=
|V(P)|

ρ∗
P.(A.9)

It is clear that Φ2 maps every point P onto a point P̃ on the same ray so that

V(P) = V(P̃) ∀P ∈ Dρ∗ .(A.10)

It is immediate to check that, on each ray, the map is continuous and monotone,
and that it maps the points of the circumference of radius ρ∗ onto the corresponding
points of ∂e on the same ray. Hence it maps Dρ∗ onto e in a one-to-one way. It is
also clear that the map is globally continuous, invertible, and the inverse map

P ≡ Φ−1
2 (P̃) :=

ρ∗
|V(P)| P̃ ≡ ρ∗

|V(P̃)|
P̃(A.11)

is also continuous and maps e onto Dρ∗ . Note that we used (A.10) in the last step.
In order to show the Lipschitz continuity, we have to bound the distance between

the images |P̃ − Q̃| by a constant time the distance |P − Q|. For this, we note that
Assumption M4 implies

1 ≤ |V|
ρ∗

≤ hE

γ∗ hE
=

1

γ∗
for every V ∈ ∂e.(A.12)

As shown in Figure A.2, it also implies that for every point V on an edge � of ∂e, the
angle αV between � and the ray passing through V verifies

| sinαV | =
|H�|
|V| ≥ ρ∗

|V| ≥ γ∗,(A.13)

where H� is the orthogonal projection of the origin Me on the line containing �, and
we used (A.12) in the last step.

The Lipschitz continuity is obvious when P and Q are on the same ray:

|P̃ − Q̃| =
|V(P)|

ρ∗
|P − Q| ≤ 1

γ∗
|P − Q|.(A.14)
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O

V

αV

H�

ρ∗

Fig. A.2. Lower bound on |sinαV|.

O

V(P)

V(Q)

P

R

Q

KQ

Fig. A.3. Lipschitz continuity within a sector.

If P and Q are on two different rays in the same sector, we first denote by KQ

and R (respectively) the orthogonal projections of V(P) (respectively, of P) on the
ray containing Q (see Figure A.3). Then, applying the Thaletes theorem, we get

|V(P) − KQ|
|V(P)| =

|P − R|
|P| ≤ |P − Q|

|P| .(A.15)

Collecting (A.15), (A.13), and (A.12), we have

|V(P) − V(Q)| =
|V(P) − KQ|∣∣sin (

αV (Q)

)∣∣ ≤ |P − Q|
γ∗|P| |V(P)| ≤ |P − Q|

(γ∗)2|P| ρ∗,(A.16)
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where obviously the role of P and Q can be interchanged. Finally, the triangle
inequality together with (A.9) and (A.16) gives

|P̃ − Q̃| =

∣∣∣∣ |V(P)|P − |V(Q)|Q
ρ∗

∣∣∣∣ ≤ |V(P) − V(Q)|
ρ∗

|P| + |V(Q)|
ρ∗

|P − Q|

≤ |P − Q|
(γ∗)2

+
1

γ∗
|P − Q| =

1 + γ∗
(γ∗)2

|P − Q|.

(A.17)

The case of P and Q belonging to different sectors can be easily deduced by
inserting suitable intermediate points at the boundaries of the sectors and then using
the triangle inequality.

In a similar way, we can show that the inverse mapping is also Lipschitz contin-
uous. For instance, using (A.11) we get

|P − Q| =

∣∣∣∣ ρ∗

|V(P̃)|
P̃ − ρ∗

|V(Q̃)|
Q̃

∣∣∣∣ =
ρ∗

|V(P̃)| |V(Q̃)|
||V(Q̃)|P̃ − |V(P̃)|Q̃|.(A.18)

Then, adding and subtracting |V(P)|P and using the triangle inequality, we have

||V(Q̃)|P̃ − |V(P̃)|Q̃| ≤ |V(P̃) − V(Q̃)| |P̃| + |V(P̃)| |P̃ − Q̃|.(A.19)

On the other hand, we can apply the argument of (A.16) to obtain

|V(P̃) − V(Q̃)| ≤ |P̃ − Q̃|
(γ∗)2|P̃|

ρ∗.(A.20)

Collecting (A.18), (A.19), and (A.20), and using (A.12) (this time as ρ∗/|V| ≤ 1), we
finally obtain

|P − Q| ≤ 1

(γ∗)2
|P̃ − Q̃| + |P̃ − Q̃| =

1 + (γ∗)
2

(γ∗)2
|P̃ − Q̃|.(A.21)

This proves the assertion of the lemma.
Now, we can construct a mapping Φ3 from the cone Ch (having Dρ∗ as the base

and with height equal to ρ∗) onto the pyramid P e
E (having e as the base and with the

same vertex as Ch), which is Lipschitz continuous with its inverse, by taking

(x̃, ỹ) = Φ2(x, y), z̃ = z.(A.22)

Again, the Lipschitz norms of the map Φ3 and of its inverse depend only on γ∗. This
proves the following lemma.

Lemma A.4. Under Assumption M4 there exists a map Φ3, mapping the cone
Ch onto the pyramid P e

E, which is Lipschitz continuous together with the inverse map
Φ−1

3 . Moreover,

‖Φ3‖W 1
∞(Ch) ≤ C∗

pyr and
∥∥Φ−1

3

∥∥
W 1

∞(P e
E)

≤ C∗
pyr,(A.23)

where C∗
pyr depends only on the constant γ∗ of Assumption M4.

The last step is to construct, for each element E and for each face e ∈ ∂E, the
function ϕe

E satisfying (A.5) (with the right boundary conditions). Let

ϕe
E(x, y, z) = ϕh

(
Φ−1

3 (x, y, z)
)
,
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where ϕh is the function from Lemma A.2 defined for the circular cone of radius
h = ρ∗ = γ∗ hE . It is clear that ϕe

E will be in L2(P e
E), that ∇ϕe

E will be in (Lt(P e
E))3,

and that their norms will be bounded by∥∥ϕe
E

∥∥
L2(P e

E)
≤ C∗

pyr h
3/2
E and

∥∥∇ϕe
E

∥∥
(Lt(P e

E))3
≤ Ĉt C

∗
pyrh

3/t−1
E ,(A.24)

where Ĉt is given in (A.6) and C∗
pyr depends only on γ∗. Hence ϕe

E satisfies (A.5) as
required. Finally, we take the prolongation of ϕe

E (that we call again ϕe
E) by zero in

E\P e
E .

This ends the proof of the lift property (A.1)–(A.2).
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