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Abstract. We have extended the Sub-Scale Dynamics (SSD) closure model for multi-fluid computational cells.
Volume exchange between two materials is based on the interface area and a notional interface translation veloc-
ity, which is derived from a linearized Riemann solution. We have extended the model to cells with any number
of materials, computing pressure-difference-driven volume and energy exchange as the algebraic sum of pairwise
interactions. In multiple dimensions, we rely on interface reconstruction to provide interface areas and orienta-
tions, and centroids of material polygons. In order to prevent unphysically large or unmanageably small material
volumes, we have used a flux-corrected transport (FCT) approach to limit the pressure-driven part of the volume
exchange. We describe the implementation of this model in two dimensions in the FLAG hydrodynamics code.
We also report on Lagrangian test calculations, comparing them with others made using a mixed-zone closure
model due to Tipton, and with corresponding calculations made with only single-material cells. We find that
in some cases, the SSD model more accurately predicts the state of material in mixed cells. By comparing the
algebraic forms of both models, we identify similar dependencies on state and dynamical variables, and propose
explanations for the apparent higher fidelity of the SSD model.

1 Introduction

Multimaterial ALE and Lagrange calculations may need to
account for mixed cells, which contain multiple pure ma-
terials meeting at one or more interfaces within the cell. In
this case a closure model is required to partition the cell
volume and internal energy. Absent such a model, the vari-
ables associated with the mesh are generally insufficient to
determine that partition uniquely.

We have extended the Subscale Dynamics (SSD) clo-
sure model [1,2] to multiple dimensions and enabled it to
handle any number of materials in a cell. We have imple-
mented it in one and two dimensions in the Lagrange/ALE
hydrocode FLAG [3]. We compare below the performance
of the SSD model with a well-known closure model due to
Tipton [4–7], as also implemented in FLAG. Finding con-
siderable similarity as well as some significant differences
between the two, we discuss the reasons for this in terms
of the equations defining both models.

2 Description of Closure Models

2.1 Notation

Let V be the volume of a single computational cell. Then
within that cell, material i has volume Vi, volume fraction
fi = Vi/V , mass density ρi, pressure pi, sound speed ci and
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compliance (bulk modulus) Bi = ρic2
i . Superscripts denote

instants or intervals within the timestep from tn to tn+1; to
wit, superscript 0 denotes time tn, + is tn+1/2, 1 is tn+1; and
a and b refer to the intervals from tn to tn+1/2 and from tn to
tn+1, respectively.

2.2 Sub-Scale Dynamics (SSD) model

The sub-scale dynamics (SSD) model, inspired by the work
of Delov and Sadchikov [8], Goncharov and Yanilkin [9]
and Barlow [10], estimates the material volume changes
based on interface motion, using a Riemann solution for
velocity. We have extended the model to cells with any
number of materials, computing the pressure-difference-
driven volume and energy change of each material as the
algebraic sum of pairwise interactions. In multiple dimen-
sions, we use interface reconstruction to provide interface
areas. A few of the swept volumes are depicted as rect-
angles in Figure 1, where S ik is the area of the interface
between materials i and k. The corresponding interface ve-
locity (directed from i to k) is

vik =
pi − pk

ρici + ρkck
(1)

so the swept volumes are

Fa
ik = S 0

ik v
0
ik
∆t
2

Fb
ik = S 0

ik v
+
ik ∆t (2)
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Fig. 1. A single mixed cell: material polygons and exchange vol-
umes of the SSD model.

Then the new material volumes at tn+1/2 (predictor step)
and tn+1 (corrector)

V+i = V0
i + ∆Va

i,d + ∆Va
i,p

V1
i = V0

i + ∆Vb
i,d + ∆Vb

i,p
(3)

result from changes

∆V {a,b}i,d = f 0
i ∆V {a,b} (4)

due to dilation (or compression) of the entire zone, and
increments

∆V {a,b}i,p =
∑

k

∆V {a,b}ik =
∑

k

C{a,b}ik F{a,b}ik (5)

resulting from pressure differences between materials. The
limiters C{a,b}ik ∈ [0, 1] multiplying the swept volumes in
the last expression will be defined below.

During the corrector step, internal energies are also up-
dated by adding work terms

E1
i − E0

i = p+i ∆Vb
i,d −

∑
k

p+ik∆Vb
ik (6)

in terms of the Riemann pressure

pik =
Wi pi +Wk pk + ∆uik

Wi +Wk
(7)

in which we define an averaging weight Wi = 1/(ρici) and
a normal velocity difference ∆uik = (ui − uk) · n̂ik, where
ui is the velocity at the centroid of material i, and n̂ik is the
unit normal to the interface, directed from i to k.

It is necessary to limit material volume changes;
physics requires that V+i ≤ V+, and for numerical stabil-
ity we desire that f +i ≥ ε f 0

i for some number ε ∈ [0, 1]
(taken equal to 0.25 in our calculations). This is achieved
by computing the limiters in equation (5) in an FCT-like
way. For the predictor step,

Qhi
i = V+

(
1 − f 0

i

)
Qlo

i = V+ f 0
i (1 − ε) (8)

Phi
i =

∑
k:Fik>0

Fa
ik Plo

i =
∑

k:Fik<0

∣∣∣Fa
ik

∣∣∣ (9)

C{hi,lo}
i =


Q{hi,lo}

i

P{hi,lo}
i

if P{hi,lo}
i > 0

1 if P{hi,lo}
i = 0

(10)

Ca
ik =

min
(
Chi

i ,C
lo
k , 1

)
if Fa

ik > 0
min

(
Clo

i ,C
hi
k , 1

)
if Fa

ik < 0
(11)

The corrector-step limiters Cb
ik are computed in the same

way, replacing V+ → V1, Fa
ik → Fb

ik and Ca
ik → Cb

ik.

2.3 Tipton model

A simple heuristic to motivate the Tipton closure model is
that if we linearize equations of state as

p(ρ, s) = p(ρ0, s) + B(ρ − ρ0), B ≡ ∂p/∂ρ|s (12)

we can solve for the equilibrium pressure and volume frac-
tions in the cell. In order to prevent instantaneous relax-
ation to pressure equilibrium, the model uses a rescaled
compliance

Di = Bi

(
1 +

L
ci∆t

)
(13)

in which the second parenthesized term is motivated by
artificial-viscosity-like considerations, and L is a charac-
teristic length scale (width) of the computational cell. For
this model is it useful to define the averaging weight wi =
fi/Di and mean rescaled compliance and pressure

D̄ =
∑
wiDi∑
wi

p̄ =
∑
wi pi∑
wi

(14)

Then the predictor step (as implemented in FLAG) is

∆ f a
i = f 0

i

 p0
i − p̄0

αD0
i

+

 D̄0

D0
i

− 1
 ∆Va

V0

 (15)

where α is a stability parameter ≤ 1, and the result is lim-
ited so that |∆ f a

i | ≤ 0.25 f 0
i .

The corrector step could be done by computing ∆ f b
i as

in (15), based on the updated material state p+i , D+i . How-
ever, for efficiency reasons the implementation in FLAG
simply approximates ∆ f b

i = 2∆ f a
i .

Internal energy is updated by adding the work

E1
i − E0

i = −peff

(
V0 + V1

2

)
∆ f b

i (16)

done by a zonal-average effective pressure at tn+1/2

peff = p̄0 − αD̄0∆Va

V0 (17)

Note that Tipton’s model uses no subcell geometrical in-
formation.

3 Test Problems

3.1 Expanding Bubble

We have tested the SSD model in the FLAG hydrocode
(which also contains the Tipton model). Figure 2, colored
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Fig. 2. Expanding bubble calculation, colored by specific energy.

by specific internal energy, shows 2D Lagrange calcula-
tions of an expanding gas bubble surrounded by lower-
pressure gas. We made SSD and Tipton model calculations
on a regular rectangular mesh with premixed cells at the
bubble surface, while the pie mesh pertains to a calcula-
tion with no mixed cells. We see that the SSD model pre-
dictions are similar to those of the unmixed calculation,
and possibly a little better than those of the Tipton model.

3.2 Test with a Three-material Zone

We would expect the SSD model to treat cells contain-
ing three or more materials better than the Tipton model
does; in such a cell, there are so many possible geometri-
cal arrangements of materials and interfaces that a model
that lacks subcell geometrical information has little hope
of doing the right thing. Figure 3 shows a physically one-
dimensional shock tube calculation, in which the left ma-
terial is set up as two different materials with identical
properties and initial states. The problem includes a three-
material cell and a large number of two-material cells. A
short time into the calculation, we see that the SSD model
(Figure 4) has allowed all the vertical interfaces to advance
to the right by the same distance, thus appropriately main-
taining planar symmetry. The Tipton model (in Figure 5)
breaks that symmetry. For comparision, we have also run
the same problem without multimaterial cells (Figure 6).

3.3 Two-material Shock Tube Problems

We also investigated how the two closure models compare
in two-material cells. For clarity, we used Lagrangian cal-
culations of physically one-dimensional problems to inves-
tigate this. One setup was the Sod shock tube, containing
gamma-law gases with gamma values and initial condi-
tions as given in Table 1. In another setup, we replaced
the low-pressure gas with a Grüneisen-law fluid [11] with
properties typical of copper; details are shown in Table 2.
(We shall refer to this problem as the “Cu” shock tube

Fig. 3. Initial mesh (central portion), two-material shock tube set
up as three materials. Yellow lines are reconstructed interfaces,
not mesh edges.

Fig. 4. SSD model calculation, two-material shock tube set up as
three materials.

Fig. 5. Tipton model calculation, two-material shock tube set up
as three materials.

Fig. 6. Unmixed calculation, two-material shock tube set up as
three materials.

problem.) Both shock tube problems were run in Lagrange
mode in three different ways—with no mixed zones and
no closure model (“clean”), and with mixed zones at the
interface, with both closure models. The initial mesh for
the Sod problems is shown in Figure 7.

The Sod shock tube calculations with the Tipton clo-
sure model became unstable and halted with a tangled
mesh. To improve stability, model parameter α was de-
creased from 1 to 0.5 and finally to 0.25 before the prob-

Table 1. Initial conditions for Sod shock tube problem (CGS
units).

γ-Law Gas 1 γ-Law Gas 2

γ = 2. γ = 1.4
ρ = 1. ρ = 0.125
e = 2.5 e = 2.
p = 2.5 p = 0.1

Table 2. Initial conditions for shock tube problem with
Grüneisen-law fluid (CGS units).

γ-Law Gas Grüneisen-Law Fluid

γ = 2. γ = 1.96 cv = 3.835e-6
ρ = 1. ρ = 8.93 k1 = 1.372
e = 2.5 e = 0. k2 = 1.751
p = 2.5 ρ0 = 8.93 k3 = 5.642

T0 = 294
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Fig. 7. Central section of initial mesh for Sod shock tube prob-
lems. For the “clean” calculations, the yellow rectangle encloses
two unmixed zones. For the closure model calculations, it is a
single two-material zone. Figures 8-10 show the state of the ma-
terials in that rectangle as functions of time.

Fig. 8. Pressure at interface in Sod shock tube versus time, in
γ-law gases 1 (left plot) and 2 (right plot).

Fig. 9. Density at interface in Sod shock tube versus time, in γ-
law gases 1 and 2.

Fig. 10. Specific energy at interface in Sod shock tube versus
time, in γ-law gases 1 and 2.

lem would run to completion. In the “Cu” shock tube runs,
it was not necessary to decrease α.

Time histories of pressure, density and specific energy
for the Sod problem are shown in figures 8-10. For the
clean calculations, the state of the zones adjoining the in-
terface are plotted. For the mixed calculations, the state of
each material in a mixed zone are shown. (In all calcula-
tions that ran to completion, the four zones on one side of
the interface, or straddling it for mixed runs, had identical
histories.) We see from Figure 8 that all completed cal-
culations attained the same equilibrium pressure, but the

Fig. 11. Pressure at interface in “Cu” shock tube versus time, in
γ-law gas (left plot) and Cu-like fluid (right plot).

Fig. 12. Density at interface in “Cu” shock tube versus time, in
γ-law gas and Cu-like fluid.

Fig. 13. Specific energy at interface in “Cu” shock tube versus
time, in γ-law gas and Cu-like fluid.

approach to equilibrium differed. Regarding the clean cal-
culation as likely the most accurate, the SSD model was
more accurate than the Tipton model, and the latter be-
came less accurate as α was decreased to attain stability.
Similar conclusions follow from the results for density and
energy, although the material 2 equilibrium density and en-
ergy may be a little better in the Tipton model calculation.

Figures 11-13 show the results of the “Cu” shock tube
problem. As before, the SSD model is closer than Tipton’s
model to the “clean” results. For this shock tube, the Tip-
ton model does not get the right density and energy even
in the late-time limit. We speculate that this poorer perfor-
mance (compared with the Sod problem) may be due to the
fact that the Grüneisen-law pressure is not proportional to
density [11]. In fact, Tipton’s model predicts a mechani-
cally impossible pressure in the Grüneisen material in the
two-material zone. We can see this in Figure 14, which
shows mesh plots of the central region of each of the three
“Cu” shock tube calculations, colored by pressure. Figure
15 shows pressure as a function of time in both sections of



New Models and Hydrocodes for Shock Wave Processes in Condensed Matter

Fig. 14. Central portion of meshes from “Cu” shock tube cal-
culations at t = 0.01, colored by pressure. Material interfaces
are in magenta. Black boxes enclose two-material cells at the in-
terface, to which two cells of the clean calculation correspond.
Note that the Tipton model has underestimated the pressure of
the Grüneisen material in the two-material cells. White rectan-
gles refer to Figure 15.

the two-material cell and in the two single-material cells to
the left and right of that cell (or, for the clean calculation,
in the three cells on each side of the material interface).
We see that the Grüneisen material in a two-material zone
maintains for a considerable period a lower pressure than
either the γ-law gas to its left in the same cell or the pure
Grüneisen material in the cell on its right—even though
it started with a pressure intermediate between those two
neighboring pressures. This is mechanically impossible.
However, the SSD model does not exhibit this anomaly;
it matches the clean calculation well.

4 Algebraic Comparison of Closure Models

We would like to understand the differences in behavior
between the Tipton and SSD models—but upon compar-
ing model philosophies, let alone equations, it is not clear
why the two models should have any similarities at all. Tip-
ton’s model is based on the pressure equilibrium state, and
deliberately relaxes toward it, while the SSD model has no
notion of the pressure equilibrium state. The Tipton model
depends explicitly on the preexisting material volume frac-
tions within each cell, while the SSD model does not even
refer to them. On the other hand, the SSD model uses inter-
face areas and orientations and the velocities of individual
materials (by interpolating mesh velocity to the centroid of
each material polygon), and estimates interface velocities.
The Tipton model knows nothing of material velocities or
the geometry or motion of the interfaces. How can such
dissimilar models behave similarly at all?

4.1 Volume Relaxation

In order to facilitate algebraic comparison of the models,
we note that the Tipton model volume change can be ex-
pressed in the form (3) if we approximate ∆Vb = 2∆Va

and neglect ∆Vb∆ f b
i . Then the zone-dilation and pressure-

driven terms are

Fig. 15. Pressure versus time for material near interface in “Cu”
shock tube, for material at positions indicated by white rectan-
gles in Figure 14. Traversing a white rectangle from left to right
corresponds to plot colors magenta → red → green → blue. In
the Tipton plot, the position of the green curve below all the oth-
ers shows that the predicted state of the Grüneisen material in the
mixed zone is unphysical for many cycles.

∆Vb
i,d =

D̄0

D0
i

f 0
i ∆Vb (18)

∆Vb
i,p =

2V0

α
w0

i

(
p0

i − p̄0
)

(19)

Clearly, both models will give the same material volumes
at tn+1/2 if they have the same values of ∆Vb

i,d and ∆Vb
i,p.

The volume changes ∆Vb
i,d due to zone dilation are given

by equations (4) and (18), so those quantities will be of
the same order of magnitude, and approximately equal if
the materials in the zone have roughly equal scaled com-
pliances Di, that is, roughly equal compliances and sound
speeds [see Eqn. (13)]. It remains to understand the term
∆Vb

i,p that accounts for pressure-driven exchange of vol-
umes between materials.

Consider a cell containing only two materials, the most
common situation requiring closure modeling. We simplify
the comparison by observing that the timestep must be
bounded by the Courant limit, so the second parenthesized
term in (13) dominates the first. If we neglect the first term,
the pressure-driven volume change in the Tipton model be-
comes

∆Vb
1,p =

2
α

V0

L0

p0
1 − p0

2
ρ0

1c0
1

f 0
1
+
ρ0

2c0
2

f 0
2

∆t (20)

while for the SSD model we get

∆Vb
1,p = Cb

12 S 0
12

p+1 − p+2
ρ+1 c+1 + ρ

+
2 c+2
∆t (21)

We find that both expressions give the volume change as
a product of a dimensionless number of the order of one,
an area, the pressure difference divided by a combination
of state variables, and the timestep. Thus, in this approx-
imate treatment of the two-material case, the differences
in pressure relaxation between the two models boil down
to differences in the first three of those factors (since the
fourth, ∆t, is the same for both models).

The initial, dimensionless, factor is Cb
12 in the SSD

model; this is unity unless FCT-like limiting is required, in
which case it is between 0 and 1. The corresponding factor
in Tipton’s model is 2/α, which is never less than 2. This
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is presumably one reason why we found the initial rate of
volume relaxation in the Tipton model calculations to be
greater than that of the SSD model, and why it increased
with decreasing α (Figure 9).

The area factor is the interface area S 0
12 in the SSD

model, consistent with the picture that the interface sweeps
out a volume ∆Vb

i,p as it moves through space. However,
the area factor V0/L0 in the Tipton model is simply the
cell volume divided by a characteristic length of the cell
(L0 =

√
V0 in two-dimensional FLAG calculations), which

may be regarded as an order-of-magnitude approximation
to the interface area. Lacking all information about subcell
geometry, the Tipton model can do no better than this.

The third factor, depending on the states of the two ma-
terials, is remarkably similar between the two models. One
difference is that the SSD model depends on the predictor-
step state at tn+1/2, while the Tipton model uses the state at
tn; this is due to the way the latter model was implemented,
as described earlier. The other difference is the appearance
of volume fractions in the Tipton denominator. If the vol-
ume fractions are about equal, the Tipton expression looks
very much like the SSD expression.

Note that in the Tipton model, if f 0
1 � 1, then ∆Vb

1,p ∼

f 0
1 , which is useful in avoiding the unphysical result V1

1 <
0. It is partly due to the lack of this desirable feature that
the SSD model requires limiters Cik.

4.2 Energy Partition

In both models, the energy partition among materials is
specified by a pdV work expression. Here again the Tipton
model suffers from a lack of information about the internal
structure of the zone, and is forced to use a single effective
pressure (17) in its work calculation (16). The SSD model
uses a more plausible work calculation (6) in which the
volume dilation term for each material uses that material’s
pressure, and the pairwise volume exchange terms each use
the corresponding pairwise Riemann pressure.

5 Conclusions

The sub-scale dynamics model has been extended to treat
mixed cells with any number of materials, and to mul-
tiple dimensions. FCT-like limiters have been introduced
for robustness and stability. The model has been imple-
mented and tested in FLAG, and found to give results
comparable to and in some cases superior to those of Tip-
ton’s model. Although its derivation from interface geom-
etry and dynamics is very different from the approach to
pressure equilibrium that motivates the Tipton model, we
have found close algebraic correspondence between the
two models as applied to two-material cells. Their anal-
ogous form explains the observed similarity between SSD
and Tipton model calculations. Nevertheless, to the extent
that interface reconstruction faithfully represents subcell
morphologies, and the Riemann solution, subcell dynam-
ics, the SSD model expressions are better suited to predict

the resulting state of the cell. The Tipton model relies on
overall cell properties (area, pressure) as surrogates for the
subcell information it lacks.

In the Tipton model, p̄ is a weighted mean of material
pressures (see Eq. 14), and we have expressed the Riemann
pressure (7) in the SSD model in a similar way. One differ-
ence between models emerges from a comparison of the
weight factors used in those means. The SSD weight Wi
depends only on material states, implying that the inter-
face moves as if it separated two infinite media. The aver-
aging weight wi in the Tipton model depends explicitly on
volume fraction, implying that every interface can “feel”
the extent of the materials it separates. As we noted above,
this should enable the Tipton model to avoid “overshoots”
when one volume fraction is very small. On the other hand,
when each material has a volume comparable to the cell
volume, the interface should not detect the far boundaries
of the materials within a Courant-limited timestep. In most
cases, we expect this issue to confer an advantage on the
SSD model.

Clearly there is much more to be understood about
these models, and closure modeling in general. The test
calculations presented here indicate strengths and weak-
nesses to be explored further. By extending the algebraic
analysis, we should be able to isolate and understand
model dependence on single phenomena and independent
variables. In addition, we must study the SSD model in
ALE hydro, which is the most common environment re-
quiring closure modeling.
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