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Abstract

Staggered grid Lagrangian schemes for compressible hydrodynamics involve a choice
of how internal energy is advanced in time. The options depend on two ways of
defining cell volumes: an indirect one, that guarantees total energy conservation,
and a direct one that computes the volume from its definition as a function of the
cell vertices. It is shown that the motion of the vertices can be defined so that the
two volume definitions are identical. A so modified total energy conserving staggered
scheme is applied to the Coggeshall adiabatic compression problem, and now also
entropy is basically exactly conserved for each Lagrangian cell, and there is increased
accuracy for internal energy. The overall improvement as the grid is refined is less
than what might be expected.

Key words: Staggered Lagrangian schemes, Volume Consistency, Entropy,
Hydrodynamics.

In this note we construct a modification of the classic staggered grid La-
grangian compressible hydrodynamics scheme as described, for example, in [2].
With this modification we remove the ambiguity in the definition of cell volume
that results from requiring both total energy conservation and the modeling
of the internal energy advance from the differential equation de

dt
+ pd(1/ρ)

dt
= 0.

This is brought about by appropriately relating the motion of cell vertices to
the cell volume change. Our approach is algebraic and simply stated. We then
test this modification on the Coggeshall adiabatic compression problem [5].
We observe that now in addition to energy conservation the cell entropies are
almost exactly conserved.

In the staggered scheme there are two sets of variables. First, for definiteness
specifically in two dimensions, there is a set of indexed nodes or vertices at

Preprint submitted to Elsevier



ACCEPTED MANUSCRIPT 
 which the variables are coordinates (xi, yi), velocities (ui, vi), and nodal masses

mi. Next, there is a set of indexed cells at which the variables are cell volumes
Vj, masses mj , densities ρj , specific internal energies ej , and pressures pj , The
set of cell (resp. node) indexes is J (resp. I). Both sets of data are given
at the start of a time step. Nodal and cell masses are Lagrangian, that is,
independent of time, and ρj = mj/Vj. Pressure is given by an equation of
state, pj = p(ρj , ej). The set of nodes i belonging to the same cell j is Ij .
Likewise the set of cells j sharing the same node i is Ji

Two critical but standard assumptions follow, namely:
(i) the volume of any cell is a computable function of the nodal coordinates;
typically, the volume of a cell will only depend on those nodes that are the
vertices of the cell;
(ii) the velocities are constant during the time step. If those velocities are
(ūi, v̄i), we can define the nodal coordinates as functions of time in the interval
(tn, tn+1 = tn + ∆t) for t ∈ [tn, tn+1] as

xi(t) = xn
i + ūi(t − tn), yi(t) = yn

i + v̄i(t − tn),

so that

xn+1
i = xn

i + ūi∆t, yn+1
i = yn

i + v̄i∆t.

This defines cell volume Vj as a function of time, and we have the identity

V n+1
j − V n

j =
∫ tn+1

tn

dVj

dt
dt, =

∑

i∈Ij

ūi

∫ tn+1

tn

∂Vj

∂xi
dt +

∑

i∈Ij

v̄i

∫ tn+1

tn

∂Vj

∂yi
dt, (1)

Noting that ūi = (xn+1
i −xn

i )/∆t, v̄i = (yn+1
i −yn

i )/∆t, (1) is just another way
of writing the cell volume at time tn+1, V n+1

j , as a function of the coordinates
at time tn+1. Specific instances of this are given in section 2.

We define matrices A,B by their entries

Aji =
∫ tn+1

tn

∂Vj

∂xi

dt, Bji =
∫ tn+1

tn

∂Vj

∂yi

dt, (2)

with j ∈ J and i ∈ I, so that A,B are rectangular sparse sized |J | × |I|
matrices, where |I| is the size of I. They will play a role in the evolution of
the hydrodynamic variables since (1) becomes

V n+1
j − V n

j =
∑

i∈Ij

(Ajiūi + Bjiv̄i) . (3)

An important point to emphasize here is that A and B are not in general
simple time averages of the integrands, except in the case of Cartesian coor-
dinates.
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 1 Momentum, Energy, Entropy

Momentum. The differential equations for momentum are

ρ
du

dt
= −(grad p)x, ρ

dv

dt
= −(grad p)y.

Staggered grid momentum difference equations have the form

mi
(

un+1
i − un

i

)

=
∑

j∈Ji

pjaij , mi
(

vn+1
i − vn

i

)

=
∑

j∈Ji

pjbij , (4)

where the matrix a involves geometrical grid vectors so that
∑

j∈Ji
pjaij is an

approximation of the integral of the pressure gradient in x direction over cell
indexed j, likewise for b. Matrices a,b are rectangular sparse |I| × |J | 1 . We
now set ūi = 1

2
(un+1

i + un
i ), v̄i = 1

2
(vn+1

i + vn
i ). To each pressure pj there will

be added an artificial viscosity qj to deal with shock waves. However, we take
q to be zero in our analysis and in the example presented later.
Energy. Kinetic energy is a nodal quantity for any time tn, Kn

i = 1
2
mi
(

(un
i )2 + (vn

i )2
)

,
and the total kinetic energy is Kn =

∑

i∈I Kn
i . Then since

1

2
mi
(

(

un+1
i

)2
− (un

i )
2
)

+
1

2
mi
(

(

vn+1
i

)2
− (vn

i )2
)

= ūi

∑

j∈Ji

pjaij + v̄i

∑

j∈Ji

pjbij ,

that is to say Kn+1
i −Kn

i = ūi
∑

j∈Ji
pjaij + v̄i

∑

j∈Ji
pjbij, the change in total

kinetic energy is

Kn+1 − Kn =
∑

i∈I

ūi

∑

j∈Ji

pjaij +
∑

i∈I

v̄i

∑

j∈Ji

pjbij.

The total energy is taken to be the sum of the total nodal kinetic energy and
total cell internal energy, that is, E =

(

∑

j∈J mjej

)

+K. Then energy conser-

vation requires that (En+1 − En) = 0, that is to say
(

∑

j∈J mj(e
n+1
j − en

j )
)

+

(Kn+1 − Kn) = 0, or

∑

j∈J



mj(e
n+1
j − en

j ) + pj

∑

i∈Ij

ūiaij + pj

∑

i∈Ij

v̄ibij



 = 0.

Thus a sufficient condition for energy conservation, no matter how the a,b
matrices have been defined, is that for any cell, the internal energy evolution

1 In [4] the momentum equations corresponding to (4) can be seen on page 575

equation (2.1); it involves the “corner force” entity: ~fp
z for a zone/cell z and a

point/node p of z. Indeed we urge the reader to consult section 2 of [4] pages
575-577 to get a detailed description of the original staggered Lagrangian scheme
viewed from a different perspective. The corner force in x direction from this work
corresponds in our notation to 1

∆tpjaij .

3



ACCEPTED MANUSCRIPT 
 be 2

mj

(

en+1
j − en

j

)

+ pj

∑

i∈Ij

(ūiaij + v̄ibij) = 0. (5)

Entropy. For adiabatic flows the entropy S satisfies T dS
dt

= de
dt

+ pd(1/ρ)
dt

= 0.
The Lagrangian difference expression of this, according to (3), is

mj

(

en+1
j − en

j

)

+pj

(

V n+1
j − V n

j

)

≡ mj

(

en+1
j − en

j

)

+pj

∑

i∈Ij

(ūiAji + v̄iBji) = 0.

(6)
It can now be seen that there are two implied volume definitions 3 , following
from (5) and (6). They will be identical if for all i ∈ I, j ∈ J

aij = Aji and bij = Bji. (7)

and then we will have both total energy conservation and (6).

This is different from the approach in, e.g. [1], where the a,b matrices are
chosen in order to satisfy some symmetry conditions and then the A,B ma-
trices are defined by (7), in which case (3) cannot be expected to hold. Indeed,
the discrepancy between

∑

i∈Ij
(ūiaij + v̄ibij) and (V n+1

j − V n
j ) for the Area-

Weighted scheme of [1] and its effect on stability is the subject of [4].

2 Two Geometries

For specific examples we need to indicate the relation between nodes and cells
and we have to compute the volume change matrices A,B.

1D Spherical Coordinates. Each cell at half-index i+ 1
2

has vertices ri and

ri+1. The volume of the cell is Vi+ 1

2

= 1
3

(

r3
i+1 − r3

i

)

, so

V n+1
i+ 1

2

− V n
i+ 1

2

=

(

ūi+1

∫ tn+1

tn

(

rn
i+1 + ūi+1(t − tn)

)2
dt − ūi

∫ tn+1

tn
(rn

i + ūi(t − tn))2 dt

)

=
(

Ai+ 1

2
,i+1 ūi+1 + Ai+ 1

2
,i ūi

)

, (8)

where

Ai+ 1

2
,k =



























−∆t
3

(

(rn
i )2 +

(

rn+1
i

)2
+ rn

i rn+1
i

)

if k = i

∆t
3

(

(

rn
i+1

)2
+
(

rn+1
i+1

)2
+ rn

i+1r
n+1
i+1

)

if k = i + 1

0 if k 6= i, k 6= i + 1

2 Equation (5) can be seen in [4] (equation (2.2) p.575), or in [2] (equations (12-13)
p.234-235).
3 See the discussion in [2] subsection 2.3 pages 244-245 where this volume incon-
sistency is refered as to an entropy error.
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 By (7) the momentum equation must therefore be given by:

mi(un+1
i − un

i ) = ai,i+ 1

2

pi+ 1

2

+ ai,i− 1

2

pi− 1

2

≡ Ai+ 1

2
,i pi+ 1

2

+ Ai− 1

2
,i pi− 1

2

,

or,

mi(un+1
i − un

i ) = −∆t
1

3

(

(rn
i )2 +

(

rn+1
i

)2
+ rn

i rn+1
i

)

(

pi+ 1

2

− pi− 1

2

)

. (9)

Then, in order to get the volume consistency in 1D spherical symmetry the
approximate pressure gradient must be given by the right hand side of (9). As
seen in section 1 it uniquely implies the discretization of the energy equation
(5) to get total energy conservation.

2D Cylindrical Coordinates. In cylindrical r− z coordinates, for a generic
quadrilateral cell Vj with counter-clockwise ordered vertices (1, 2, 3, 4) with
coordinates (ri, zi) (functions of t) 4 , the cell volume is (with indices defined
by periodicity)

Vj =
1

6

4
∑

i=1

(

r2
i + r2

i+1 + riri+1

)

(zi+1 − zi). (10)

Looking at vertex i,
∂Vj

∂ri
= 1

6
((2ri + ri+1)(zi+1 − zi) + (2ri + ri−1)(zi − zi−1)).

However, the volume also is

Vj =
1

6

4
∑

i=1

(rizi+1 + ri+1zi + 2(rizi + ri+1zi+1)) (ri+1 − ri), (11)

so
∂Vj

∂zi
= 1

6
((2ri + ri+1)(ri+1 − ri) + (2ri + ri−1)(ri − ri−1)). Now we just need

to use the fact that for two functions α(s) and β(s) linear in [0, 1]

∫ 1

0
α(s)β(s)ds =

1

6
[α(0)β(1) + α(1)β(0) + 2 {α(0)β(0) + α(1)β(1)}] .

Thus, if we define

Ri→j =
(

2rn
i + rn

j

) (

zn+1
j − zn+1

i

)

+
(

2rn+1
i + rn+1

j

) (

zn
j − zn

i

)

+2
{(

2rn
i + rn

j

) (

zn
j − zn

i

)

+
(

2rn+1
i + rn+1

j

) (

zn+1
j − zn+1

i

)}

,

Zi→j =
(

2rn
i + rn

j

) (

rn+1
j − rn+1

i

)

+
(

2rn+1
i + rn+1

j

) (

rn
j − rn

i

)

+2
{(

2rn
i + rn

j

) (

rn
j − rn

i

)

+
(

2rn+1
i + rn+1

j

) (

rn+1
j − rn+1

i

)}

,

it is seen that

4 For example see Fig.1 in [4] page 575.
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 V n+1

j − V n
j =

∆t

36

{ (

ū1 [R1→2 − R1→4] + ū2 [R2→3 − R2→1] + ū3 [R3→4 − R3→2] + ū4 [R4→1 − R4→3]
)

+
(

v̄1 [Z1→2 − Z1→4] + v̄2 [Z2→3 − Z2→1] + v̄3 [Z3→4 − Z3→2] + v̄4 [Z4→1 − Z4→3]
)}

,

and this defines the matrix elements of (3). A,B being defined, it uniquely
implies the discretizations of (4)-(5) in order to get volume consistency and
total energy conservation.
The above expressions were easily incorporated into the ALE-INCUBATOR
[3] code in order to obtain the computations in section 3.

3 The Full Predictor Corrector Scheme and the Coggeshall Cylin-

drical Adiabatic Compression Problem

This is a modification of the predictor corrector scheme of [2]. The scheme
solves the implicit system

mi
(

un+1
i − un

i

)

=
∑

j∈Ji

pjaij , mi
(

vn+1
i − vn

i

)

=
∑

j∈Ji

pjbij , (12)

xn+1
i = xn

i + ūi∆t, yn+1
i = yn

i + v̄i∆t. (13)

This is solved by simple substitution, keeping the pressures fixed. That is,
predict the nodal coordinates in the right sides of (12) to get predicted ū and
v̄, and then use (13) to obtain corrected coordinates. Let us call this the inner
consistency iteration. This produces the new cell volumes V n+1

j which can then
be entered in the internal energy equation (6) to get a new internal energy and
then a new pressure. But then we can iterate on the pressure (outer iteration),

putting pj = 1
2

(

pn+1
j + pn

j

)

. The currently used method does the consistency

iteration to convergence 5 , and then just one outer corrector iteration 6 .

The Coggeshall Problem. The ALE-INCUBATOR [3] code is used to ob-
tain the following numerical tests. The code is run without artificial viscosity
and without anti-hourglass forces (see [3] and the references therein), so that
only pressure forces enter the calculation as described in this note.
The choice of numerical tests is limited to tests free of shock waves and hour-
glass spurious modes; the Coggeshall adiabatic compression is described in [6].

5 That is to say if ν is the iteration indice and xi = (xi, yi), convergence of the

inner consistency iteration is attained if ǫ =

∑

i∈I
‖xν+1

i
−x

ν
i
‖2

∑

i∈I
‖xν+1

i
‖2

≤ 10−10.

6 The predictor-corrector scheme from [2] simply does one inner iteration and one
outer iteration. In the case of cylindrical geometry, in [2] the Cartesian geometrical
vector ~a1 (see Fig.4 page 249) is modified into ~a1(3r1 + r2)/4 on page 261: This
can not fulfill consistency of volumes and total energy conservation. In this new
method ~a1 is replaced by 1

6

((

2
3r∗1 + 1

3r∗2
)

(2~a∗1 + ~an
1 ) +

(

2
3rn

1 + 1
3rn

2

)

(~a∗1 + 2~an
1 )
)

with
∗ refering to the most updated value from the inner consistency iteration.

6
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 The geometry is 2D r−z cylindrical. A sphere of initial radius R = 1.0 is filled

with a perfect gas (γ = 5/3) in motion leading to the following exact solution

uex(t) = − r(t)
1−t

, vex(t) = − z(t)
4(1−t)

, ρex(t) = (1 − t)−9/4, eex(t) =
(

3z(t)
8(1−t)

)2
. At

each boundary, the exact velocity is imposed up to the final time tn = 0.7.
Initial and final meshes can be seen [6] 7 . We then look at various errors,
comparing Consistent control Volume (CV) method, as described in this note,
to the original discrete compatible formulation of Lagrangian hydrodynamics
scheme, refered as in Consistent control Volume method and labeled (iCV)
see [1]-[2]. The grid is rectangular polar made of nr × nz nodes, and refined
several times in r and z directions by a factor 2.

Entropy, density and specific internal energy errors. For any mesh we
compute the error in density ρ, entropy S and energy e, (the number of cells
being nc, xj = (rj , zj)

t and Q stands for ρ, S, or e) as:

εn
Q =

1

nc

∑

j∈J

|Qex(xj, t
n) − Qn

j |
/

max
j∈J

|Qex(xj , t
n)|.

Fig.1 compares the errors εn
Q as functions of time (tn ≤ 0.7) for different mesh

sizes. This figure shows that: (i) errors decrease as the mesh is refined for iCV
and CV, (ii) asymptotically, a ratio 2 (first order convergence) is obtained
for any variable, (iii) CV is nearly exact for entropy and more accurate for
internal energy, but density accuracy is not increased.

Finally then, we have proposed a staggered Lagrangian numerical scheme with
the following properties:
• It is volume consistent: there is no ambiguity in the cell volume definition
• Total energy is conserved
• For the adiabatic compression Coggeshall problem, with the artificial vis-

cosity set to zero, cell entropies are almost exactly conserved.
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