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Abstract

Stochasticity is well recognized to be of crucial importance
in the analysis of gene regulatory problems. This importance
stems from the fact that extremely rare but important regu-
latory molecules often cause a great amount of intrinsic noise
within a cell. Such systems are frequently modeled at the
mesoscopic level as jump Markov processes, whose probability
distributions evolve according to the chemical master equa-
tion (CME). In this paper we review a number of attempts
that have been made to solve the CME. These include various
kinetic Monte Carlo approaches, such as the Stochastic Sim-
ulation Algorithm (SSA) and its deviates, as well as systems
theory based analytical solutions to the CME, such as the
Finite State Projection (FSP) method and various moment
closure techniques.

1 Introduction

The cellular environment is abuzz with noise. The origin of
this noise is attributed to the random events that govern the
motion of cellular constituents at the molecular level. Cellu-
lar noise not only results in random fluctuations within indi-
vidual cells, but it is also a source of phenotypic variability
among clonal cellular populations. In some instances these
fluctuations are suppressed downstream through an intricate
dynamical network that acts to filter the noise, much like a
low pass filter attenuates high frequency signals. Yet in other
instances, noise induced fluctuations are exploited to the cell’s
advantage. Researchers are only now beginning to understand
that the richness of stochastic phenomena in biology depends
directly upon these interactions of dynamics and noise and
upon the mechanisms through which these interactions occur.
Intriguing examples of mechanisms that rely on noise include
stochastic switches, coherence resonance in oscillators, and
stochastic focusing for the amplification of signals [1].

Given the importance of noise induced stochastic fluctua-
tions in the cell, the quantitative modeling and analysis of
these fluctuations is of paramount importance for the under-
standing and synthesis of biological networks. While mathe-
matical models of genetic networks often represent gene ex-
pression and regulation as deterministic processes with con-
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tinuous variables, the stochastic nature of cellular noise neces-
sitates an approach that models these variables as discrete and
stochastic. The continuous and deterministic approach makes
sense when large numbers of molecules justify a continuous
valued concentration description using mass-action kinetics.
In this case, chemical reactions are modeled as reaction diffu-
sion processes, and their dynamics can be found with partial
differential equations (PDEs). When the reacting chemical
solutions are well-mixed, these PDEs can then be well approx-
imated with ordinary differential equations (ODEs). On the
other hand, the cellular milieu is often home to key molecules
that can be found in very small integer populations. Indeed
in a typical living cell, it is not uncommon for some of the key
molecules have ten or fewer copies. Clearly, in these instances
the concentration description is meaningless, and a discrete
stochastic model of the chemical species is essential. The
choice between the two modeling approaches is not always
clear. What is clear, however, is that as the size of the sys-
tem of interacting species decreases, intrinsic noise becomes
increasingly important (a relative change of one molecule is
very important when there are only ten to begin with). At
the sub-cellular level where gene regulatory networks reside,
crucial chemical species such as DNA, RNA, and regulatory
proteins may be present in only one or two copies per cell
[2]. In these networks, which affect all aspects of life, stochas-
tic effects have been found to play a significant and often a
detrimental role in various aspects of cell function.

As a simple example, Fig. 1 represents a generic gene reg-
ulatory network comprised of only three mechanisms: tran-
scription, translation, and regulatory feedback. With intrin-
sic noise, even this simple system can exhibit a rich variety of
behaviors. For example, consider an open-loop system where
transcription is slow, but translation is very fast. Such a
strategy, which may be used to conserve energy [3], can re-
sult in systems where the transcripts may be entirely absent
from the cell most of the time. However, because of efficient
translation, one of these rare transcripts may occasionally re-
sult large bursts of proteins [3, 4]. Because such events can
happen in some cells and not in others, they may account for
huge variation in phenotype despite isogenic populations [4].
Conversely, if transcription were much faster and translation
slower, the same average amount of protein may be found,
but the variation could be far less [3].

Chemical regulators may also induce phenotypical variation
despite homogenous genotypes. One excellent example of this
can be found in the pap switch in E. coli [5, 6, 7]. In that
system, DNA adenine methylase (DAM) applies irremovable
methyl groups at some key regulatory regions of the DNA. In
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Figure 1: Schematic representation of gene transcription,
translation and regulation. When in an “on” configuration
the gene will transcribe mRNA molecules (stars). These, in
turn, are translated to produce regulatory proteins, which
can regulate the gene, turning it “off” in the case of negative
feedback or “on” in the case of positive feedback.

one location, these methyl groups can help activate the pap
gene; in another location, the methyl group will deactivate the
gene [6]. The system is further affected by the intrinsic noise
due to a transcriptional feedback mechanism similar to that
illustrated in Fig. 1. In this case, the pap-encoded protein
PapI works in conjunction with Leucine-responsive regulator
protein (Lrp) to block Dam from methylating the sites which
turn the gene expression off.

The topic of this paper is the mathematical modeling and
analysis of systems of discrete stochastic chemically react-
ing systems, with an eye on applications to gene regulatory
networks. We aim to provide a brief overview of the vari-
ous approaches that have been recently proposed in this area.
In the next section, we begin by providing a review of the
chemical problem on the mesoscopic scale and derive what is
commonly referred to as the Chemical Master Equation. This
equation governs the evolution of the probability densities of
the system states. In Section 3, we review a few of the recent
Kinetic Monte Carlo approaches for generating sample trajec-
tories. In Section 4 we discuss analytical techniques for the
solution of the CME. In particular, we present a new direct
approach for computing the relevant statistics, which involves
the projection of the solution of the CME onto finite sub-
sets. We illustrate the algorithm underlying our Finite State
Projection approach and describe some system theory based
modifications and enhancements that enable large reductions
and increased efficiency with little to no loss in accuracy. In
Section 5 we summarize and make some concluding remarks.

2 Formulation of Stochastic Chemi-
cal Kinetics

Gillespie’s 1992 paper [8], provides a good background on the
stochastic chemical kinetics problems and its major result:
the chemical master equation (CME). For convenience, we
provide a much simplified and less rigorous outline of his ar-
gument. Consider two molecules s1 and s2 moving around
in a system of volume V . Suppose that molecule s1 moves
with the speed u, but in randomly changing directions. Sup-

pose that a reaction s1+s2 → s3 will occur when the center of
molecule s1 comes within a distance r of the center of molecule
s2. In some small fraction of time, dt, the molecule s1 will
cover a distance udt and will sweep a region dV whose volume
is approximately πr2udt. If the center of s2 is in dV then a
reaction will occur; otherwise it will not. Since the system is
well mixed, the probability that s2 is in that region and that
a reaction will occur is πr2uV −1dt. If there were ξ1 molecules
of s1 and ξ2 molecules of s2, then the probability that any
such reaction will occur is given by ξ1ξ2πr2uV −1dt.

For a chemical solution of N species, {s1, . . . , sN}, one can
define the system state as x = [ξ1, . . . , ξN ]. Each µth reac-
tion is a transition from some state xi to some other state
xj = xi + νµ, where νµ is known as the stoichiometric vec-
tor. Following the methodology above, each reaction also
has a propensity function, aµ(x)dt, which is the probability
that the µth reaction will happen in a time step of length dt.
For example, the reaction s1 + s2 → s3 discussed above has
the stoichiometric vector ν = [−1,−1, 1]T , and a propensity
a(x)dt = ξ1ξ2πr2uV −1dt.

The stoichiometry and propensity functions for each of the
M possible reactions fully define the system dynamics and
are sufficient to find sample trajectories with the Monte Carlo
methods of Section 3. However, for many interesting gene reg-
ulatory problems individual system trajectories are not the
best description. Instead, it is desirable to analyze the dy-
namics in terms of probability distributions. For this it is
useful to derive the chemical master equation.

Suppose that one knows the probability of all states xi at
time t, then the probability that the system will be in the state
xi at time, t+dt, is equal to the sum of (i) the probability that
the system begins in the state xi at t and remains there until
t+dt, and (ii) the probability that the system is in a different
state at time t and will transition to xi in the considered time
step, dt. This probability can be written as:

p(xi; t + dt) = p(xi; t)

(
1−

M∑
µ=1

aµ(x)dt

)

+
M∑

µ=1

p(xi − νµ; t)aµ(xi − νµ)dt. (1)

If one enumerates all possible xi and defines the probability
distribution vector P(t) = [p(x1; t), p(x2; t), . . .]T , then it is
relatively easy to derive the set of linear ordinary differential
equations, known as the chemical master equation (CME) [9]:

Ṗ(t) = AP(t). (2)

In the next two sections, this CME is solved using first Monte
Carlo Methods and then a few analytical approaches.

3 Monte Carlo algorithms for the
CME

Because the CME is often infinite dimensional, it is usually
impossible to solve exactly. For this reason, the majority
of analyses at the mesoscopic scale have been conducted us-
ing Monte Carlo (MC) algorithms. The most widely used



of these algorithms is Gillespie’s Stochastic Simulation Algo-
rithm (SSA) [10], but there are also a number of approxima-
tions to the SSA [11, 12, 13, 14, 15, 16, 17, 18, 19]. These are
discussed in the following subsections.

3.1 Gillespie’s Stochastic Simulation Algo-
rithm

Gillespie Stochastic Simulation Algorithm (SSA) [10] is the
most common tool in use for stochastic analyses at the meso-
scopic level. This is to be expected, because once one defines
the propensity functions and the stoichiometry for each of
the M reactions, the SSA is very easy to apply. Each step
of the SSA begins at a state x and a time t and is com-
prised of three tasks, (i) generate the time until the next re-
action, (ii) determine which reaction happens at that time,
and (iii) update the time and state to reflect the previous
two choices. For a single reaction with propensity function,
a(x), the time of the next reaction, τ , is an exponentially
distributed random variable with mean (a(x))−1. For M dif-
ferent possible reactions with propensities {aµ(x)}, τ is the
minimum of M such random variables, or, equivalently an
exponentially distributed random variable with mean equal

to
(∑M

µ=1 aµ(x)
)−1

. To determine which of the M reactions
occurs at t + τ , one must generate a second random variable
from the set µ = {1, 2, . . . ,M} with the probability distribu-

tion given by P (µ) = aµ(x)
(
(
∑M

µ=1 aµ(x)
)−1

. Once τ and µ

have been chosen the system can be updated to t = t+ τ and
x = x + νµ.

The SSA approach is exact in the sense that its result is
a random variable with a probability distribution exactly
equal to the solution of the corresponding CME. However,
each run of the SSA provides only a single, not necessarily
representative, trajectory; should one actually wish to
reproduce the probability distribution, the SSA must be
run many times. For this reason, researchers have proposed
many accelerated approximations of the SSA.

3.2 System partitioning methods

In the first type of approximation to the SSA, the system is
partitioned into slow and fast portions. This partitioning has
been approached in a number of different manners. In [11]
the system is separated into slow “primary” and fast “inter-
mediate” species. This method uses three random variables
at each step: first, the primary species’ populations are held
constant, and the population of the intermediate species is
generated as a random variable from its quasi-steady-state
(QSS) distribution. The dynamics of the “primary” species
are then found with two more random variables, similar to the
SSA above but with propensity functions depending upon the
chosen populations of the intermediates species. The more re-
cently developed Slow-Scale SSA (ssSSA) [12] is very similar
in that the system is again separated into sets of slow and fast
species. The ssSSA differs in that it does not explicitly gener-
ate a realization for the fast species, but instead uses the QSS
distribution to scale the propensities of the slow reactions.

So-called hybrid methods such as [13] and [14] also separate
the system into fast and slow reactions, but these methods
do not then rely upon a QSS approximation. Instead, the
fast reactions are approximated with deterministic ODEs
or as continuous valued Markov processes using Langevin
equations, and the slow reactions are treated in a manner
similar to the SSA except now with time varying propensity
functions.

3.3 τ leap methods

In a second approach to accelerating the SSA, researchers fre-
quently assume that propensity functions are constant over
small time intervals. With this “τ leap assumption” one can
model each of the M reaction channels as an independent
Poisson random process [15]. Beginning at time t and state
x(t), the state at the end of a time step of length τ is ap-
proximated as x(t + τ) = x(t) +

∑M
µ=1 kµνµ, where each kµ

is a random variable chosen from the Poisson distribution
kµ ∈ P(aµ(x(t)), τ). The accuracy of τ leaping methods de-
pends only upon how well the τ leap assumption is satisfied.
Naturally, the τ leap assumption is best satisfied when all
species have sufficiently large populations and all propensities
functions are relatively smooth. Otherwise small changes in
populations could result in large relative changes in propensi-
ties. Ignoring these changes can easily lead to unrealistic pre-
dictions of negative populations and/or numerical stiffness.
One may avoid negative populations by using a Binomial τ
leap strategy [16] or by adaptively choosing the size of each τ
leap [17]. One can also ameliorate the problem of numerical
stiffness using implicit methods such as that in [18].

When the populations are very large, and the propensity
functions are very smooth, the chemical species may be more
easily modeled with continuous variables using the chemi-
cal Langevin equation [19]. In this solution scheme, one as-
sumes that many reactions will occur in the macroscopic in-
finitesimal times step dt without violating the τ leap assump-
tion. One can therefore replace the Poisson distributions with
Gaussian distributions, and treat the resulting process as a
stochastic differential equation driven by white noise [19].

4 Analytical solutions to the CME

Each of the previous methods relied upon Monte Carlo simu-
lations to explore the system dynamics and provides only one
process realization at a time. To gain a probabilistic descrip-
tion of how likely the system is to exhibit certain behaviors
at certain times, one would have to compile the results from
simulations. Unfortunately, Monte Carlo algorithms have a
very poor rate of convergence; even with an exact method
such as the SSA, the error decreases with the number of runs
only according to ε = O(N− 1

2 ). For this reason, an analytical
solution to the CME is highly desirable.

4.1 The Finite State Projection solution

We recently presented the Finite State Projection algorithm
for the solution of the CME [20]. In this approach we rec-
ognized two very important properties of the CME. First,



any system ṖFSP (t) = AJPFSP (t) corresponding to a trun-
cation of (2) provides a lower bound on the solution to
(2). Second, probability distributions are non-negative and
sum to exactly one. As a result if the truncated solution,
PFSP (t) = exp(AJ t)PJ(0), sums to (1−ε), then the true so-
lution, P(t) is within ε of PFSP (t). Therefore, if one wishes
to solve the CME to within a prespecified error tolerance, ε,
one need only include enough rows and columns of A in AJ

such that exp(AJ t)PJ(0) has a sum greater than (1−ε). (For
complete proofs and details, see [20]).

This FSP approach has effectively reduced the infinite
dimensional CME to a finite dimensional set of linear time
invariant ODEs. At this point, additional system theoretic
tools can also be applied to evaluate stochastic gene regula-
tory networks. Furthermore, these tools lead to even stronger
reductions of the CME and expand the realm of solvable
problems.

4.1.1 Projection based reductions of the FSP

Even after projecting the CME onto a finite space, it is often
useful to project the system onto an even lower dimensional
space. For systems in which there is a clear separation of
time-scales, one can utilize perturbation theory to average
over the fast dynamics and project the system onto its slow
manifold [21, 22, 23]. This approach is similar to the ssSSA
[12] discussed above, in that the existence of “fast” and “slow”
species do indeed result in a separation of time scales in the
CME. However, time-scale based reductions to the master
equation are more general in that they may be possible even
in the absence of clear separations of fast and slow species.

For a second reduction, one can assume that the proba-
bility distribution varies linearly over some portions of the
configuration space, solve the FSP problem on a coarse grid,
and then interpolate to find the distributions at intervening
points. This approach has shown great promise for certain
problems as we have shown in [23]. Like the original FSP
and its slow manifold approximation, this method does not
explicitly make use of initial conditions or desired outputs.
The advantage of this is that many different initial conditions
or outputs can be considered with no extra computational
cost. However, when this flexibility is not required, further
reductions are possible.

Often one is not interested in the full solution to the CME.
Instead, perhaps one desires only key information regarding
that solution such as the likelihood of important events or
statistical moments of important chemical species. In these
cases one can define an output for the system y(t) = CP(t),
and reduce the system to its minimal observable realization
as explored in [24, 23]. In a third reduction approach one may
utilize the initial condition PFSP (0) and use a Krylov-based
projection approach to solve directly for the matrix-vector
product, exp(AJ t)PFSP (0). This approach taken by Burrage
and coauthors in [25] is particularly useful when taken in
conjunction with a multiple time step algorithm as discussed
next.

4.1.2 Multiple time step solutions of the FSP

In addition to using secondary projections to speed up the
FSP solution, one can reduce computational effort with mul-
tiple time step routines. In both [25] and [26], it was inde-
pendently observed that the probability distributions of some
systems may travel over large portions of the state space, yet
they may be only sparsely supported during any given instant
in time. By splitting the full time interval into many small
subintervals, one can consider much smaller portions of the
state space for each time increment.

In [25] Burrage et. al observe that computing the full
matrix exponential is more expensive than computing the
product of that exponential with the initial distribution vec-
tor. This observation motivates the use of Roger Sidje’s
Krylov-based software package [27]. By adapting expokit to
perform inexact matrix-vector products at each intermediate
time step, the Krylov-based FSP algorithm of [25] only con-
siders a portion of the state space during any one step, and
is much more efficient than the original FSP. The tradeoff is
that this solution is valid only for a specific initial distribution
and must be recomputed for every different initial condition.

Our own Multiple Time Step FSP algorithm [26] takes a
very different approach to improve the efficiency of the FSP.
As in the previous method, we recognized that the solution of
the full exponential is more work than necessary if one is only
interested in the transition from an initial distribution at t to
final distribution at t+τ . However, it is also important to note
that the matrix exponential contains far more information
than the transition from one specific vector to another. In
particular, each column of this exponential gives an estimate
of a probability distribution at time t + τ conditioned on a
specific state at time t. With this in mind, one can break
the distribution at the beginning of each time step into many
single-element initial vectors, solve these independently of one
another and then apply the property of superposition. By
restricting all time steps to the same length, many matrix
exponentials can be reused from one time step to the next as
well as for different initial conditions.

For further improvements in efficiency, either of these mul-
tiple time step solutions of the FSP can readily be combined
with the projection based reductions of the previous subsec-
tion.

4.2 Moment closure techniques

One can also approximate the solution of the CME by repre-
senting the population of each species as a continuous variable
and solving for the means and variances of the multi-variate
distribution under closure assumptions. The first and most
common such approach is the Linear Noise Approximation
(LNA) [9, 28, 29]. In the LNA, one expands the solution of the
master equation in a Taylor series about the macroscopic tra-
jectory. The first order terms correspond to the macroscopic
rate equations, and the second order terms approximate the
system noise. The end result is a first order Fokker Planck
equation, which is far more readily solved than the CME. In
[30] a similar approach is taken except that the computation
of the mean is coupled with that of the variances; this mass
fluctuations kinetics (MFK) approach allows one to capture
fluctuations where the mean deviates from the macroscopic



equation. This is particularly important for systems that ex-
hibit stochastic focusing [1].

In a similar approach, the dynamics of each uncentered mo-
ment of the CME can be shown to depend linearly upon the
rest to form an infinite dimensional moment dynamics linear
ODE equivalent to the CME [31]. By assuming that the distri-
butions are normal, lognormal, poisson, binomial, or another
common form, one can approximate higher order moments in
terms of the lower moments and effectively truncate the dy-
namics. Abhi and Hespanha review a few of these approaches
for the stochastic logistic model in population biology [31]. In
the same paper, Abhi and Hespanha also introduce an effec-
tive moment closure technique, which does not make an a
priori assumption on the distribution shape, but instead de-
fines a moment closure scheme in which they match the time
derivatives of the truncated moment dynamics to the full mo-
ment dynamics at the initial time t0.

Problems with a single macroscopic steady state often re-
sult in unimodal distributions and can be expressed with only
the first few moments. For these, the above techniques are
very well suited. However, problems that exhibit multi-modal
distributions, such as switching systems, will require many
higher order moments, and the applicability of these methods
may quickly degrade.

5 Conclusions

Stochasticity is a very important concern in the numerical
study of gene regulatory networks, and there has been signifi-
cant attention given to developing the necessary mathematical
tools. At the heart of these tools is the chemical master equa-
tion (CME). This infinite dimensional linear ODE is usually
impossible to solve exactly, but there have been many suc-
cessful attempts to simulate and approximate its solution.

This paper has reviewed a number of Monte Carlo (MC) al-
gorithms as well as analytical approaches to solving the CME.
For the MC approaches, the classic stochastic simulation al-
gorithm (SSA) persists as the most commonly used tool, but
many recent approximations to the SSA, such as τ leaping
methods and system partitioning methods, are quickly gain-
ing popularity. In terms of analytical approaches to solving
the CME, our recent finite state projection (FSP) method
has reduced the CME to a finite dimensional problem and
has opened the door for many secondary reductions. In an
entirely different direction, other researchers have recast the
CME as an infinite dimensional moment dynamics problem,
to which they apply moment closure techniques and reduce to
a finite dimensional space before solving. At present no one
method is sufficient for all systems, and the choice of which
method to use in which circumstance depends primarily on
the scale of the problem. However, as researchers continue to
adapt the advanced tools of systems theory to these impor-
tant stochastic chemical problems, more methods will become
available, and computational researchers will be better able to
approach a broader range of interesting biological questions.
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