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The dynamics of chemical reaction networks often takes place on widely differing time scales—
from the order of nanoseconds to the order of several days. This is particularly true for gene
regulatory networks, which are modeled by chemical kinetics. Multiple time scales in mathematical
models often lead to serious computational difficulties, such as numerical stiffness in the case of
differential equations or excessively redundant Monte Carlo simulations in the case of stochastic
processes. We present a model reduction method for study of stochastic chemical kinetic systems
that takes advantage of multiple time scales. The method applies to finite projections of the chemical
master equation and allows for effective time scale separation of the system dynamics. We
implement this method in a novel numerical algorithm that exploits the time scale separation to
achieve model order reductions while enabling error checking and control. We illustrate the
efficiency of our method in several examples motivated by recent developments in gene regulatory
networks. © 2006 American Institute of Physics. �DOI: 10.1063/1.2397685�

I. INTRODUCTION

Living organisms have evolved complex robust control
mechanisms with which they can regulate intracellular pro-
cesses and adapt to changing environments. Experiments
have shown that significant stochastic fluctuations are
present in these processes. The investigation of stochastic
properties in genetic systems involves the formulation of a
mathematical representation of molecular noise and devising
efficient computational algorithms for computing the rel-
evant statistics of the modeled processes. When devising
computational models for describing these cellular systems,
one must take into consideration that many of the cellular
processes take place far from equilibrium and on time scales
longer than the cell replication cycle. As a result, these pro-
cesses never reach the asymptotic state. Furthermore, char-
acteristic time scales in intracellular processes often differ by
several orders of magnitude. These considerations pose con-
siderable challenges to any computational approach for mod-
eling cellular networks.

The most significant progress has been made when mod-
eling intracellular processes as a series of stochastic chemical
reactions involving proteins, RNA and DNA molecules.
Mathematical formulation for such models is generally pro-
vided by the chemical master equation.1 However, the com-
plexity of gene regulatory networks poses serious computa-
tional difficulties and makes any quantitative prediction a
difficult task. Monte Carlo based approaches are typically
used in getting realizations of the stochastic processes whose
distributions evolve according to the chemical master equa-
tion. One Monte Carlo simulation technique that has gained
wide use is stochastic simulation algorithm.2 Here random

numbers are generated for every individual reaction event in
order to determine �i� when the next reaction will occur and
�ii� which reaction it will be. However, for most systems,
huge numbers of individual reactions may occur, and the
stochastic simulation algorithm can be too computationally
expensive and does not provide guaranteed error bounds. To
address the speed issue, approximations have been devel-
oped that exploit time scale separation or that leap through
several reactions at a time. These are discussed in more de-
tail in the text. However, a different approach is presented by
the recently proposed finite state projection algorithm3 which
gets approximate solutions of the chemical master equation
direction with guaranteed error bounds and often improved
speed.

The finite state projection approach provides an analyti-
cal alternative that avoids many of the shortcomings of
Monte Carlo methods. Thus far the advantages of the finite
state projection have been demonstrated for a number of
problems.3–6 In this paper we show that the applicability of
the finite projection approach can be dramatically enhanced
by taking advantage of tools from the fields of modern con-
trol theory and dynamical systems. In particular, we present a
new approach that utilizes singular perturbation theory in
conjunction with the finite state projection approach to im-
prove the computation time and facilitate model reduction by
taking advantage of multiple time scales. Model reduction
approaches based on singular perturbation theory have been
used in various areas of engineering and science.7–10 When
coupled with the finite state projection method, many of the
advantages of singular perturbation approach find an appli-
cation in the field of stochastic chemical kinetics. The finite
state projection method retains an important subset of the
state space and projects the remaining part �which can be
infinite� onto a single state, while keeping the approximation
error strictly within prespecified accuracy. The resulting fi-
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nite model is given in an analytical form and allows us to
implement reduction techniques based on singular perturba-
tions. When multiple time scales are present, our proposed
singular perturbation approach attains dramatic speedups
without compromising the accuracy of the computation,
which is known a priori and which can be adjusted before
the bulk of calculations is carried out.

We illustrate our method using two examples arising
from recent experiments with Escherichia coli bacteria: we
analyze the PAP gene regulatory network and cellular heat
shock response. Our method is not limited to biological sys-
tems, and can be applied to any chemical kinetics problem
that is described by a master equation.

This paper is organized as follows: in Sec. II we give a
brief overview of some computational methods that have
been used to study stochastic gene network models. In Sec.
III we describe the mathematical details of our method. In
Sec. IV A we demonstrate how to use time scale separation
together with the finite state projection method, and in Sec.
IV B we provide an example of how our method can be
applied to a realistic gene network problem. In Sec. V we
discuss the advantages of our approach over presently used
methods and, finally, in Sec. VI, we summarize our results
and outline prospects for further research.

II. BACKGROUND

For a system of n chemical species, the state of the sys-
tem inside the cell is specified by copy numbers of each
relevant molecule X= �X1 ,X2 , . . . ,Xn�. Often, these numbers
are relatively small and reactions take place far from the
thermodynamic limit, so that mesoscopic effects, most nota-
bly fluctuations, have to be taken into account. The state
space of the system is not continuous, but a discrete lattice,
where each node corresponds to a different X. The size of the
lattice is limited by the maximum possible populations of the
n chemical species in the finite volume cell.

At the mesoscopic scale one describes the dynamics of
the system in terms of the probability of finding the system
in a given state X, rather than in terms of trajectories in the
state space. The dynamics of the system can be modeled by
the master equation for a Markov process on a lattice1 or
jump Markov process. Although respectable attempts have
been made to introduce deterministic mesoscopic models for
chemical reactions,11 presently stochastic methods are used
almost exclusively in the study of intracellular processes at
the mesoscopic level.

The master equation describes the time evolution of the
probability of finding the system in a particular state X. With
an enumeration X→ i, which maps each possible state to a
single index, the master equation can be written in a familiar
gain-loss form1

dpi�t�
dt

= �
j�i

�wijpj�t� − wjipi�t�� , �1�

where pi is the probability of finding the system in the ith
state, while wij are propensities. The latter define probabili-
ties wijdt that the system will transition from the jth to the ith
state during an infinitesimal time interval dt. The propensi-

ties may be obtained from the chemical reaction rates, which
often can be measured experimentally. Propensities wij are
either constant or may depend on time if the system is in an
external time-dependent field. For simplicity in our presen-
tation we consider only constant propensities, nevertheless
the same formalism applies in the time-dependent case. The
first term on the right hand side of the master equation de-
scribes an increase in the probability pi due to transitions to
the ith state from all other states j, while the second term
describes a decrease in pi due to transitions form the ith state
to other states j. If the system is initially found in a state k,
the initial condition for the chemical master equation can be
written as pi�0�=�ik, where �ik is the Kronecker delta.

The solution for this problem is the probability pi�t� that
the system initially found in state k will be in state i at the
later time t. If we define Aij =wij −�ij�kwki, the chemical
master equation can be written in a more compact form

ṗi�t� = �
j

Aijpj�t� . �2�

Therefore, the chemical master equation on a discrete state
space can be written as a system of countably many ordinary
differential equations. Note that such system is linear even
when the chemical kinetics is governed by nonlinear
processes.1,12

The solution to the chemical master equation generally
can be expressed in terms of evolution operator p�t�
=A�t ,0�p�0�, which in case of a finite A can be written as

p�t� = exp�At�p�0� . �3�

Solving the master equation at first seems to be a rather
simple problem, as there are many efficient methods for
solving systems of linear ordinary differential equations.
However, if we consider, for example, a process involving
three proteins, where each protein comes in, say, 1000 copies
per cell, that gives us up to a billion of different states and a
myriad of possible transitions between them. Carrying out
calculations for a such system without any insight about its
biological structure would be impractical at least.

This problem may be ameliorated by using a Monte
Carlo type of computation.13 The idea behind this approach
is to start from some initial probability distribution pj�0�
=� jk, then using some probabilistic rule we choose which
reaction will take place next, and compute the new state j
where the system will be found at some later time t. The
probabilities of picking a particular reaction are given by
propensities wij. The hope is that after sufficiently many cal-
culations like this the histogram containing all outcomes will
approximate well the solution of the chemical master equa-
tion p�t�. The advantage of this approach is that we do not
need to calculate the whole matrix A. Instead, we calculate
on the fly only those matrix elements that are required for the
computation at hand. Furthermore, this method is broadly
applicable as it requires little knowledge about the details of
the system under consideration. It has been demonstrated2

that in the limit case of infinitely many runs the Monte Carlo
solution approaches the exact solution to the chemical master

204104-2 Peleš, Munsky, and Khammash J. Chem. Phys. 125, 204104 �2006�

Downloaded 29 Nov 2006 to 128.111.70.62. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



equation. Therefore the accuracy of the computation can be
increased by simply generating more Monte Carlo simula-
tions.

On the downside Monte Carlo methods are notorious for
their slow convergence,13 and the amount of computation
necessary to get an accurate result may be too large to be
completed in a reasonable amount of time. Also, computers
cannot produce truly random numbers, so one has to gener-
ate something that is as close as possible. Programs called
random number generators14 create periodic sequences of
numbers with a large period, which imitate series of random
numbers. If the period is too short, periodic patterns will
create numerical artifacts in the calculation. On the other
hand, high quality random number generators, such as
RANLUX,15 take significantly more computer processing time
to execute.

Despite their shortcomings Monte Carlo methods remain
an important tool for the study of intracellular processes.
Over the years a variety of specialized Monte Carlo
implementations16–22 that address the above mentioned is-
sues has been developed.

An alternative approach known as the finite state
projection3,4,6 has been proposed recently by Munsky and
Khammash. The method is based on a simple observation
that some states are more likely to be reached in a finite time
than are others. One can then aggregate all improbable states
in �2� into a single sink, and consider all transitions to those
states as an irreversible loss. This method automatically pro-
vides a guaranteed error bound that may be made as small as
desired.3 With some intuition about the system’s dynamics,
such as knowing the macroscopic steady state, one can de-
velop an efficient system reduction scheme. It has been dem-
onstrated for a number of biological problems3,4 that in this
way the system �2� can be reduced to a surprisingly small
number of linear ordinary differential equations, thereby dra-
matically reducing the computation time. The reduced sys-
tem can be treated analytically, and the method does not
require computationally expensive random number genera-
tion.

By discarding unlikely states in a systematic way, the
finite state projection method provides for a bulk system re-
duction, but the original finite state projection stops far short
from what can be achieved. For example, the method does
not consider how transitions between the remaining states
take place. Transition rates between different states typically
vary over several orders of magnitude, and by treating them
equally one may waste considerable time performing com-
putations to obtain a precision that far outstrips the models
accuracy.

Low probability transitions occur infrequently, so the
processes involving them take place over long time scales,
while high probability transitions correspond to fast intracel-
lular processes. Different time scales can pose computational
problems, as the system of ordinary differential equations �2�
becomes stiff. On the other hand, depending on the length of
the observation time, the system can be further simplified.
For short times, slow processes may be neglected; for long
times, the effects of fast processes can be averaged.

In what follows we introduce a computational method

that addresses these shortcomings by taking advantage of
multiple time scales in the master equation to simplify the
system of equations and reduce the computation time. This
method is in a sense complementary to the finite state pro-
jection. It can be used independently, but significant benefits
may be achieved when the two methods are combined.

III. TIME SCALE SEPARATION

In order to define a proper chemical master equation,
matrix A has to satisfy some general properties. Since by
definition propensity functions wij �0, all off-diagonal ele-
ments of A are non-negative. For the same reason, all diag-
onal elements of A are nonpositive.

In a closed system the probability has to be conserved,
so that �ipi�t�=const for all times. That means

d

dt
�

i

pi�t� = 0 ⇒ �
i

�
j

Aijpj�t� = 0, �4�

and hence

�
j
��

i

Aij�pj�t� = 0, �5�

for any probability distribution p�t�= �p1�t� , . . . , pN�t��. Here
with N we denote the number of all possible states where the
system can be found.36

Therefore it must hold that �iAij =0, i.e., the sum of the
elements in each column of A must be zero. In other words
vector 1= �1,1 , . . . ,1� is a left eigenvector of A with associ-
ated eigenvalue zero,

1TA = 0. �6�

This further means that for the matrix A there exists at least
one right eigenvector v with the zero eigenvalue,

Av = 0. �7�

The eigenvector v represents the steady state probability dis-
tribution for the system, and is the nontrivial solution to �2�.
Furthermore it can be shown1 that other eigenvalues of A
have negative real parts if the matrix A is irreducible, i.e., it
cannot be written in a block diagonal form.

Note that we are interested here in the nontrivial solution
to �2�, which exists since det A=0. There also exists a trivial
solution p=0, but we can discard it as nonphysical since it
does not satisfy the normalization condition �p�=1.

In gene networks we can often identify clusters of states
within which transitions occur quite frequently, while transi-
tions between the clusters are relatively rare. The chemical
master equation that corresponds to such a situation has a
nearly block diagonal structure, so the matrix A in �2� can be
written in the form

A = H + �V , �8�

where H is a block diagonal matrix describing transitions
within the clusters, matrix V describes transitions from one
cluster to another, and ��0 is a small parameter.

In the limit case, �→0, the system remains in one cluster
of states for an infinitely long time, and the probability for
the system to be found in one of the states within the original
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cluster is one. Therefore, same as the matrix A, each block of
H should define a proper master equation. Each block of H
has one zero eigenvalue with associated eigenvector vi,
which describes the steady state probability distribution in
the ith cluster, while all other eigenvalues of the block have
negative real parts.

It is relatively inexpensive to compute the full eigensys-
tems for the smaller blocks of H. From the eigenvectors for
each block, one can then easily construct a matrix S that
diagonalizes H,

S−1HS = �, � = diag��1, . . . ,�N� . �9�

Matrix S has the same block diagonal structure as H. This
procedure is further simplified if some blocks of H are iden-
tical, as is often the case. We label eigenvectors and eigen-
values of H so that Re	�1
�Re	�2
¯ �Re	�N
. The first m
eigenvalues are then equal to zero ��i�m=0� and the rest
have negative real parts.

In order to keep our presentation streamlined, we shall
assume that for all negative eigenvalues �Re	�i�m
���. This
is always satisfied if it is possible to make a clear distinction
between fast and slow reactions. This assumption can be
relaxed and similar results obtained, as we shall demonstrate
later.

By applying now S−1 to both sides of �2� we obtain

ẋ = �� + �Ṽ�x , �10�

where x=S−1p, and Ṽ=S−1VS. The equation above can be
written in the component form as

ẋi = �ixi + ��
j=1

N

Ṽijxj . �11�

From singular perturbation theory �see Appendix� there ex-
ists a near identity transformation

x = �I + �G�y , �12�

which removes all O��� terms, which depend on xi�m, from
the first m equations �i�m�. In other words, Eq. �11� where
�i=0 can be decoupled from the rest of the system by a
coordinate transformation �12� through the order O���. In the
new coordinates the first m equations become

ẏi = ��
j=1

m

Ṽijyj + O��2� . �13�

By truncating O��2� terms in �13� we reduce our system of
equations to an m-dimensional problem. The reduced system
still approximates well the dynamics of the full system, but it
is computationally less expensive to solve. Because �11� has
a stable fixed point solution, if initially �x�0�−y�0��=O���,
then for all times t�0 it holds �x�t�−y�t��=O���.

Note that if �i is smaller or of the same order as �, the
near-identity transformation �12� and its inverse introduce
corrections to the ith equation that is only of order O��2�.
Therefore we do not need to find the exact form of the near-
identity transformation, we can simply truncate all terms
containing xi�m from the system �11�.

The first m equations can be solved now independently
of the rest of the system, and their solution can be written as

yi�t� = �
j=1

m

�exp��Ṽ�t��ijyj�0� , �14�

where Ṽ� is m	m principal submatrix of Ṽ, with elements

Ṽi,j�m. In many cases of interest, solving �13� is a manage-
able problem, unlike getting general solution for the chemi-
cal master equation �2�. Since in the long time limit

lim
t→


xi�m�t� = O��� , �15�

as we show in the Appendix, we claim that from the solution
to the truncated system �14�, we can easily construct an ap-
proximation to the full solution of the chemical master equa-

tion �3�. To do so, we first define an evolution operator Ṽ�t�
such that Ṽij�t�= �exp��Ṽ�t��ij for i , j�m, and Ṽij�t�=0 oth-
erwise. In a block matrix form this is

Ṽ�t� = �exp��Ṽ�t� 0

0 0
� . �16�

The price we pay for simplicity here is that Ṽ�0� is not an
identity matrix, so the initial condition yi�m�0� also gets trun-
cated. That results in an additional transient error that is gen-

erally larger than O���. Also, note that neither Ṽ nor Ṽ� are

generators for the evolution operator Ṽ, so their eigenvectors
cannot be used directly to compute the steady state probabil-
ity distribution for p�t�. Finally, by performing the inverse S

transformation on Ṽ�t�, we obtain

V�t� = SṼ�t�S−1, �17�

which leads to the O��� approximation to the asymptotic
solution of the chemical master equation �2�, that is

lim
t→


�p�t� − V�t�p�0�� = O��� . �18�

We can extend this result to finite times �see Appendix� since
we are guaranteed that there exists a finite time T��� after
which the transient truncation error becomes smaller than
O���. That time can be estimated from the leading nonzero
eigenvalue as

T��� � ln �/Re	�m+1
 . �19�

If the time scale separation in �8� is done accurately, this
transient is negligible for all practical purposes. However,
time scale separation in a large system is not always obvious,
and may be error prone. We discuss this further as we for-
mulate our algorithm.

A. Computational algorithm

Due to the truncation of Ṽ, only contributions of the first
m columns of S and m rows of S−1 affect the approximate
solution. As a result the computation can be greatly
simplified—instead of calculating full eigensystems for each
block Hi, it suffices to find only the eigenvectors vi associ-
ated with the zero eigenvalues. Instead of S we use the N
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	m matrix SR, whose columns are made up of the right
eigenvectors of H, while instead of S−1 we use the m	N
matrix SL, whose rows are made up of the left eigenvectors
of H. Note that the left eigenvectors are always 1i

T, provided
all �vi�=1, so the matrix SL is obtained at no computational
cost. The accuracy of the calculation is known a priori to be
O��� for all t�T���.

To improve the reliability and robustness of our calcula-
tion, we can optionally add a transient time check to our
algorithm. To do so we first need to find eigenvalues for all
blocks Hi. This comes at a relatively small computational
cost, and can be performed before all the other calculations.
The transient time needed to obtain the desired accuracy is
estimated from the leading negative eigenvalue �m+1 accord-
ing to �19�. If the transient is too long, that can be remedied
by expanding matrices SR and SL to include the right and left
eigenvectors corresponding to �m+1, respectively. The tran-
sient time is then governed by next negative eigenvalue �m+2.
This procedure can be repeated until the desired accuracy is
achieved, thereby sacrificing computational time for preci-
sion. Note that in this case the right eigenvectors correspond-
ing to nonzero eigenvalues cannot be obtained trivially.

By performing this test, we also ensure that condition
��i�m��� is satisfied. Eigenvalues of H that are O��� or
smaller will result in long transient times. By expanding
transformation S to include eigenvectors corresponding to
these eigenvalues, we essentially treat them as if they were

part of Ṽ. This procedure adds robustness to the method with
respect to separating fast and slow reactions in �8�. We can
summarize the proposed algorithm in following six steps.

�1� Specify problem parameters. If necessary apply a finite
projection to the full state space. Use propensity func-
tions and/or physical intuition to separate H and V.

�2� Find the eigenvalues of the uncoupled system, and
identify “slow” ones with respect to a preset transient
time T���.

�3� Find the right and left eigenvectors corresponding to
the slow eigenvalues and construct rectangular matrices
SR and SL.

�4� Calculate k	k matrix Ṽ�=SLVSR, where k is the num-
ber of slow eigenvalues.

�5� Compute k	k matrix exp��Ṽ�t�.
�6� Perform the inverse transformation SR exp��Ṽ�t�SL

=V�t� in order to obtain the approximation to exp�At�
for all times t�T���.

Solving the chemical master equation, written in a form
of a system of linear ordinary differential equations �2�, is
essentially a matrix eigenvalue problem. Therefore, the com-
putational cost for our method will be almost entirely deter-
mined by the efficiency of the eigenvalue algorithm we use.
Typically, for these algorithms the computational cost scales
as a cube of the dimension of the matrix �see, e.g., Ref. 23
and references therein�. We now estimate how the efficiency
is improved by performing time scale separation. For sim-
plicity we assume that all blocks of matrix H have the same
size N /m. The computational cost of finding the eigensystem
of each block is then �N /m�3. There are m such blocks, so a

conservative estimate of reducing the system using our algo-
rithm would be N3 /m2. The total cost is the sum of the cost
of the model reduction and the cost of solving the reduced
system, that is, N3 /m2+m3. It is easy to show that this is
always smaller than N3, the cost of solving the full system, as
long as 1�m�N. Therefore the computational cost may be
reduced by a factor of

N3

N3/m2 + m3

when using the time scale separation. Of course, this is only
a rough estimate of how the computational cost scales, but it
gives a good idea of what improvements can be expected.

B. Example

Let us illustrate this technique with a simple example.
We assume two weakly interacting systems that can be found
in three different states each. We choose matrices H and V in
an arbitrary way, with the only constraint that they define a
master equation. In our example

H = �H1 0

0 H2
� �20�

is a block diagonal matrix with blocks

H1 = �− 4 2 4

1 − 2 0

3 0 − 4
 and H2 = �− 6 3 2

2 − 3 0

4 0 − 2
 .

�21�

We find that blocks H1 and H2 have one zero eigenvalue
each, with corresponding right eigenvectors v1= �4,2 ,3� and
v2= �3,2 ,6�. From these eigenvectors, we assemble the ma-
trix SR,

SR =�
4/9 0

2/9 0

3/9 0

0 3/11

0 2/11

0 6/11

 . �22�

The matrix composed of left eigenvectors of H1 and H2 is
similarly used to form SL,

SL = �1 1 1 0 0 0

0 0 0 1 1 1
� . �23�

In our example the coupling matrix is
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V =�
− 8 0 0 5 3 2

0 − 5 0 2 3 1

0 0 − 12 4 6 2

4 2 3 − 11 0 0

1 2 5 0 − 12 0

3 1 4 0 0 − 5

 . �24�

To get the equations for the slowly changing variables �13�,
we calculate

Ṽ� = SLVSR = �− 87/11 78/11

29/3 − 26/3
� . �25�

Next, we calculate the evolution operator for the truncated

system, exp��Ṽ�t�, and perform the inverse S transformation
to obtain

V�t� = SR exp��Ṽ�t�SL. �26�

Finally, we obtain the approximate solution as

p�t� = V�t�p�0� . �27�

As an illustration, in Fig. 1 we show components p1�t� and
p2�t� of the solution above for the initial condition pi�0�
=�2i, and �=0.01. We can see that after the transient time
�19� has elapsed we obtain a good agreement between the
exact and the approximate solution to this example problem.

To further support our results, we randomly generate a
large number of master equations with similar near block
diagonal structure and compare their exact solutions to the
approximate solutions obtained using our approach. The nu-
merical results presented in Fig. 2 show that the approxima-
tion error is controlled by the small parameter �.

IV. APPLICATIONS

A. Three-species fast-slow reaction

In the previous section we demonstrated the efficiency of
the singular perturbation theory when applied to chemical

master equation �2�. One can immediately see, however, that
this method becomes less feasible to implement as the size of
the system under consideration increases. The finite state
projection method3 provides for a preliminary reduction of
the system �2� that allows for much broader implementation
of our method.

Consider a three-species reaction system described by

s1�
c2

c1

s2 ——→
c3

s3. �28�

Such reactions are common in gene regulatory networks. For
example, they arise in modeling of cellular heat shock
response,24 where s1, s2, and s3 correspond to the �32-DnaK
complex, the �32 heat shock regulator, and the �32-RNAP
complex, respectively. At normal physiological temperatures
�32 protein is found almost exclusively in a complex
�32-DnaK. As the temperature increases this complex be-
comes less stable and there is a non-negligible probability of

FIG. 1. Comparison of the approximate and the exact solution to the master equation in Sec. III B. The initial probability distribution is pi�0�=�2i. The
transient time is estimated to be T���=ln � /�3=1.96 for �=0.01, and is denoted by the vertical line on the graph.

FIG. 2. 1-norm error in probability distribution for the truncated solution vs
�. For each value of � we have randomly generated 50 matrices H and V, so
that every H+�V defines a proper master equation. Each matrix H has be-
tween 2 and 6 blocks and each block has size between 2 and 21. The
elements of H and V are randomly generated from a uniform distribution
between 0 and 1. The probability distributions were calculated after time t
=2T���=2 ln � /�m+1.
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finding free �32 inside the cell. The free �32 then can com-
bine with RNA polymerase through what can be considered
an irreversible reaction to form a �32-RNAP complex. In
turn, �32-RNAP initiates transcription of genes encoding heat
shock proteins. This reaction has been analyzed before using
various computational methods including Monte Carlo
implementations.17,25

In the biological system, the relative rates of the reac-
tions are such that the reaction from s2 to s1 is by far the
fastest, and �32 molecules infrequently escape from DnaK
long enough to form the �32-RNAP complex. The purpose of
this mechanism is to strike a balance between fixing the
damage produced by heat and saving the cell’s resources, as
a significant portion of cell energy is consumed when pro-
ducing heat shock proteins. The optimal response to the heat
shock is not massive, but measured production of heat shock
proteins, which leaves sufficient resources for other cellular
functions. We use the following set of parameters values for
the reaction rates.17,25

c1 = 10, c2 = 4 	 104, c3 = 2. �29�

For simplicity, in our model we assume that the total number
of �32 protein—free or in compounds—is constant, so that
s1+s2+s3=const. With this constraint the reachable states of
this three-species problem can be represented on a two-
dimensional lattice.

For illustrative purposes, Fig. 3�a� shows one such lattice
for an initial condition of s1=5 and s2=s3=0. Here, the total
population is fixed at five, and there is a total of 21 reachable
states.

We first apply the finite state projection. We estimate that
all states where s2�2 or s3�2 are unlikely to be reached in
a short time, so we aggregate them into a sink node as shown
in Fig. 3�b� thereby reducing this to a ten state problem.
From the transitions to the aggregated state, we find a strict
upper bound on the error introduced by such an approxima-
tion. For our set of parameters the 1-norm approximation
error is guaranteed to be below 0.08 for any time t�500.

Next, we further reduce this system by applying time
scale separation. Elements of the matrix AFSP, which defines
the master equation for the system obtained after the finite
state projection, can be read off of Fig. 3�b�. A smart book-
keeping practice would be to write AFSP=H+�V, and record
all reversible reactions s1�s2 in the matrix H and all other
reactions, including s2→s3 and transitions to the aggregated
state, in the matrix V. By doing so we ensure that all fast
reactions are contained in H. Note that there is no unique
way to separate fast and slow reactions and we chose this
one for its simplicity. Matrix H has a block diagonal struc-
ture

H =�
H3

H2

H1

0
 , �30�

where each block

Hk = �− �k + 2�c1 c2 0

�k + 2�c1 − �k + 1�c1 − c2 2c2

0 �k + 1�c1 − 2c2
 �31�

corresponds to a row of states in Fig. 3�b�. The zero in the
last row of H is just a scalar, and it corresponds to the ag-
gregated state. Note that in this case it was the finite state
projection that generated this characteristic near block diag-
onal structure.

The matrix �V is made up of irreversible reactions �ver-
tical transitions in Fig. 3�b�� and therefore has a lower trian-
gular form,

FIG. 3. �a� Two-dimensional lattice representing possible states and transitions in the heat shock model. Here s1 and s3 are populations of �32-DnaK and
�32-RNAP compounds, respectively, while s2 is the population of free �32 molecules. Reactions s1�s2 are represented by bidirectional horizontal arrows and
reactions s2→s3 are represented with vertical arrows. The total number of �32 is constant �in this example s1+s2+s3=5�, so the chemical state of the system
is uniquely defined by s1 and s3 alone. �b� The same lattice after applying the finite state projection. Unlikely states have been aggregated into a single sink
state.
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�V =�
0

0 − c3

0 0 − 3c1 − 2c3

0 c3 0 0

0 0 2c3 0 − c3

0 0 0 0 0 − 2c1 − 2c3

0 0 0 0 c3 0 0

0 0 0 0 0 2c3 0 − c3

0 0 0 0 0 0 0 0 − c1 − 2c3

0 0 3c1 0 0 2c1 0 c3 c1 + 2c3 0

 .

For the reaction rates above, the first four eigenvalues of H
are zero, and the rest have negative real parts, each with
magnitude of order 104 or larger, suggesting that the trunca-
tion in �16� is indeed valid for this problem. Therefore the
dynamics of nine-dimensional system obtained by the finite
state projection can be well approximated by a system of
only four linear ordinary differential equations. By applying
algorithm from Sec. III A we find that the time scale separa-
tion introduces error of order 10−3, with respect to the solu-
tion obtained by finite state projection alone. The transient
time �19� is estimated to be 2	10−4, and is negligible con-
sidering the time interval of interest.

In Fig. 4 we compare the results obtained by solving the
full system directly, using finite state projection alone and
using finite state projection and time scale separation com-
bined. The figure shows how probability of having no
�32-RNAP complex in the cell decreases with time. All three
results are in a good agreement as our calculations predicted.

The advantage of combining the finite state projection
and time scale separation becomes obvious if we consider a
more realistic and much larger problem with the same reac-
tions but with initial conditions s1=2000 and s2=s3=0. In
this case there are 2 001 000 reachable states, and the full
chemical master equation is too large to be tackled directly.
However, by applying the finite state projection we find that
truncating every state where s3�350 and s2�11 introduces
1-norm error that is less than 10−3 for times t�300 s. The

resulting matrix A is of size 3851	3851, and has near block
diagonal form �8� similar to the example in Fig. 3. Its block
diagonal part H contains 350 irreducible blocks each with 11
rows and columns. Same as in the previous example the
leading nonzero eigenvalue of H has a negative real part of
magnitude 104, so the system can be reduced to a 351 state
model using the time scale separation algorithm. Should we
apply time scale separation directly to the full system, the
amount of the computation would be significantly larger. The
solution to this problem shows how the number of com-
pounds �32-RNAP grows in time if the temperature is con-
stant and slightly above normal physiological level. This
number is proportional to the number of heat shock proteins
produced in the cell. With the finite state projection solution,
we have computed the probability distribution for s3 at three
times t=100, 200, and 300 �Fig. 5, solid lines�. We computed
the same distributions using time scale separation applied
atop of the finite state projection �Fig. 5, dots�, and we found
that the difference between the two results is indistinguish-
able. Following the discussion from Sec. III A we estimate
that the computational cost is reduced by more than 1000-
fold when using time scale separation. Indeed, computational
times for the two sets of results in Fig. 5 differ by that order,
as shown in Tables I and II.

We further use this example to compare the efficiency of
our approach to Monte Carlo based methods. We find that

FIG. 4. Probability that no �32-RNAP molecule has been synthesized in the
heat shock toy model.

FIG. 5. Probability distribution for s3 calculated at three different times. The
truncated solution �dots� approximates well the solution to the full system
�solid lines�.
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finite state projection outperforms by a wide margin the sto-
chastic simulation algorithm,2 both in terms of computational
time and accuracy �Table I�. Neither method attempts to dis-
tinguish between fast and slow processes.

When comparing the finite state projection method com-
bined with singular perturbation against Monte Carlo meth-
ods designed to deal with systems with multiple time scales,
we again find significant advantages when using our ap-
proach. In Table II we provide head to head comparison be-
tween our method and recently proposed slow scale stochas-
tic simulation algorithm.17

All our simulations are coded in MATLAB version 7.2 and
run on 2.0 MHz PowerPC Dual G5. Whenever possible we
used built in MATLAB functions and we made no attempt to
optimize original algorithms. The results shown in Tables I
and II should not be interpreted as strict benchmarks, but
rather as an indicative examples from our experience in us-
ing these methods.

B. PAP switch

Pili are small hairlike structures that enable bacteria to
bind to epithelial cells and thereby significantly increase the
bacteria’s ability to infect host organisms. However, pili ex-
pression comes at cost to the bacteria, as the production of
pili requires a large portion of the cellular energy. Whether or
not E. coli are piliated depends upon the regulation of genes
such as the pyelonephritis-associated pili �PAP� genes. Here
we study a simplified version of the PAP switch model,4

which analyzes the regulatory network responsible for con-
trolling one type of pili.

Recent experiments26,27 have identified two transcription
factors that affect the expression of the PAP gene, and six
binding sites for the two. The transcription factors are DNA
adenine methylase �Dam� and leucine responsive regulatory
protein �Lrp�. Dam binds and applies methyl groups to
GATC sites at 2 and 5, as shown in Fig. 6. This Dam methy-

lation is an irreversible and relatively slow process. On the
other hand, Lrp binds cooperatively to three adjacent sites at
a time, either 1-2-3 or 4-5-6 �Fig. 6�. These reactions are fast
and reversible. Lrp binding also inhibits Dam methylation.
Altogether this makes 16 possible states in which the PAP
switch can be found. We describe these chemical reactions
by the network model shown in Fig. 7. In our model we
assume that PAP transcription occurs only in configuration
11 �Fig. 7� when Lrp is bound to sites 1-2-3 and site 5 is
methylated. We further assume that cell replication always
resets the system to configuration 1. A solution to the chemi-
cal master equation for this problem gives the time evolution
of the probability of finding the system in each configuration
including configuration 11, which is proportional to the prob-
ability of PAP gene expression.

Since the two transcription factors bind at significantly
different rates, following our bookkeeping practice we record
Lrp binding propensities in the matrix H and methylation
propensities in V as defined in �8�. With a convenient label-
ing scheme, as shown in Fig. 7, we can express H in a simple
block diagonal form,

H =�
H1 0 0 0

0 H2 0 0

0 0 H3 0

0 0 0 H4

 . �32�

Recent experimental data27 reveal that the propensities of
Lrp binding at sites 4-5-6 depend strongly on the methylation
pattern of site 5, while propensities of Lrp at sites 1-2-3 do
not significantly depend upon the methylation pattern of site
2. Thus we find that there are only two distinct blocks as

TABLE I. A comparison of the computational cost and accuracy of the finite
state projection �FSP� and stochastic simulation algorithm �SSA� for the
solution of the chemical master equation, arising in the toy heat shock
model, at t=300.

Method No. samples Time �s� Error �1-norm�

FSP N/Aa 1 472 �2	10−5

SSA 103 �20 000 �0.25

aThe finite state projection runs only once with prespecified error of
2	10−5.

TABLE II. A comparison of the total computational effort and accuracy of
the finite state projection with singular perturbation �FSP+SP� and slow
scale stochastic simulation algorithm �ssSSA� for the solution of the chemi-
cal master equation, arising in the toy heat shock model, at t=300.

Method No. of samples Time �s� Error �1-norm�

FSP+SP N/A 1.88 �6.6	10−4

ssSSA 103 82 �0.24
ssSSA 104 826 �0.066
ssSSA 105 8130 �0.027

FIG. 6. Schematic of the PAP operon �top�, key regulatory components of
the PAP switch �middle�, and diagram of the operon in its on state �bottom�.
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H1 = H3 =�
− 9500 6.8 0.09 0

9270 − 18.4 0 0.09

230 0 − 463.29 6.79

0 11.6 463.2 − 6.88
 �33�

and

H2 = H4 =�
− 9500 62 0.09 0

9270 − 73 0 0.09

230 0 − 463.29 61.76

0 11 463.2 − 61.85
 . �34�

Leading eigenvalues for both H1 and H2 are zero, while the
next largest eigenvalue is of order �5�−10. On the other
hand we estimate that all methylation propensities have the
same value �=0.17. Following our labeling scheme �Fig. 7�
the nonzero entries of matrix V are then V1,1=−2, V2,2

=V3,3=V5,5=V7,7=V9,9=V10,10=−1, and V5,1=V9,1=V6,2

=V11,3=V13,5=V13,9=V14,10=V15,7=1. Therefore, all we need
to construct the matrix SR are the right eigenvectors v1 and v2

that correspond to the zero eigenvalues of H1 and H2, respec-
tively. Following the footsteps outlined in Sec. III we reduce
the PAP switch model to a four-dimensional system and
carry out calculation for the probability p11, which is propor-
tional to the PAP transcription probability.

The PAP switch model we presented here is simple
enough to be integrated directly so we can compare results
for the full system and the reduced system. As we show in
Fig. 8, all the important information about the system’s be-
havior is preserved in the reduced model.

This model predicts a short time lag between replication
and PAP production, since methylation of site 2 must occur
before PAP expression. Further, since Dam methylation at 5
prohibits expression, if the cell waits too long to decide to
switch “on,” it will most probably miss its chance and re-
main “off.” Thus, a newly created E. coli cell will most
likely express the pap gene at some point shortly after rep-
lication. Probabilities of expressing pili drops significantly at
later times and cell resources are used for other functions,
such as initiating the next replication cycle.

V. DISCUSSION

Monte Carlo methods have been the primary tools for
solving the chemical master equation in the mesoscopic
study of chemical reactions. The recently proposed finite
state projection method showed that solving the chemical
master equation can be approached from an entirely different
perspective with significant benefits. The original finite state
projection method appears to be particularly effective in the
study of chemical reactions in biological systems, and it has
been demonstrated that in many cases of interest it outper-
forms standard Monte Carlo implementations.

Over the last five years a number of accelerated or leap-
ing Monte Carlo methods that significantly improve the
speed of the calculation have been proposed.19–22 Leaping
algorithms are designed for problems where propensities
change slowly after consecutive chemical reactions. That al-
lows for contribution from several reaction channels with
similar propensities to be calculated in one step. Instead of
sampling to find each individual reaction event, the contribu-
tion of each reaction channel during a given time step is
obtained from some statistical distribution �e.g., Poisson and
binomial�. The algorithm effectively “leaps” over a number
of reactions in one time step. However, in many biological
systems with high reaction rates and low molecule copy

FIG. 7. PAP switch schematic diagram.

FIG. 8. Time evolution of PAP gene expression probability. Initially no
transcription factors are bound the PAP operon, so the initial condition is
p1�0�=1 and pi�1=0. The transient time �19� is less than 1 in our time units.
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numbers propensities change sharply with virtually every
chemical reaction. One such example is given in Sec. IV A,
where free heat shock protein �32 appears in a small number
of copies, while its binding rate to DnaK is very high. As the
number of free �32 changes with every reaction, the propen-
sities change by a large amount as well, and no two consecu-
tive reactions can be bundled together. In that situation leap-
ing algorithms fall back to a standard Monte Carlo
computation.2 On the other hand the finite state projection
method applies equally well to systems where propensities
change slowly as to systems where propensities change rap-
idly. The finite state projection is particularly suitable for the
reactions where chemical species come in low copy num-
bers. This is discussed in more detail in Ref. 1.

Another area where the efficiency of Monte Carlo simu-
lations has been substantially improved is in systems with
multiple time scales. If chemical reactions in a system take
place at different rates so that fast reactions equilibrate in a
time within which slow reactions are unlikely to take place,
then the efficiency of a Monte Carlo algorithm can be sub-
stantially improved by using quasi-steady-state
approximation.16,17,28–30 In this approximation only slow re-
actions are simulated using Monte Carlo computations. Fast
reactions enter the simulation as averages that are computed
from the equilibrium condition at every Monte Carlo step,
under the assumption that no slow reaction takes place.17

Fast reactions occur much more frequently than slow ones,
so this approach not only reduces the number of reactions to
simulate, but also removes the most computationally de-
manding part of the system.

The same kind of improvement can be achieved when
applying singular perturbation to the chemical master equa-
tion �2� or its finite state projection. Moreover, we have dem-
onstrated that our method can significantly outperform
Monte Carlo methods using a quasi-steady-state approxima-
tion such as the slow scale stochastic simulation algorithm,
even when applied to very fundamental problems �Sec.
IV A�.

Hybrid methods18,31–33 use a similar approach to tackle
stochastic problems with multiple time scales—slow reac-
tions are calculated by Monte Carlo simulations, while the
contribution from the fast reactions is averaged over the time
between consecutive slow reaction incidents. Hybrid meth-
ods approximate fast reactions as a continuous Markov pro-
cess and calculate their average distribution by solving the
appropriate chemical Langevin equation. Solving a stochas-
tic differential equation is a challenging computational task
by itself, so the potential benefits of hybrid methods come at
some extra cost. Furthermore, the continuous Markov pro-
cess assumption implies that individual fast reactions cause
small relative changes in numbers of reactant and product
species.32 This is clearly not the case in the examples dis-
cussed in Sec. IV, and hybrid methods cannot be applied
effectively to these problems.

We believe that finite state projection based methods will
be no less important in mesoscopic study of chemical kinet-
ics than Monte Carlo methods. They are particularly suitable

for systems where chemical species appear in only a few
copies, the kind of problems where many Monte Carlo based
methods often cannot be efficiently applied.

Also, finite state projection and singular perturbation
methods involve only linear algebra operations and do not
require use of random number generators. Unlike Monte
Carlo methods our approach allows for a priori estimates of
error and computational cost, an important consideration
when one is interested in low probability events in biology.

VI. CONCLUSION

Until recently, it was thought that the chemical master
equation could not be analytically solved except for the most
trivial systems. Previous work on the finite state projection
demonstrated that for many biological systems, bulk system
reductions could bring models closer into the fold of solvable
problems. Here we have shown that the finite state projection
method can be further enhanced when solving the chemical
master equation for systems involving multiple time scales.
In combination with finite state projection method, we have
shown that our algorithm, based upon singular perturbation
theory, provides a powerful computational tool for studying
intracellular processes and gene regulatory networks.

Similar problems were studied earlier with specially de-
signed Monte Carlo implementations16,17 or hybrid
methods.18 In contrast to these, our method does not require
random number generation, and its accuracy is given a pri-
ori. A further advantage of our method is its ease of imple-
mentation and the speed of computations. The proposed al-
gorithm is particularly fast when implemented on systems
for which there are strict means of separating slow and fast
reactions. While Monte Carlo based methods are indispens-
able in the mesoscopic study of chemical reactions, we be-
lieve that the finite state projection and related methods
present new valuable tools. Indeed, there is a number of
cases where they are more efficient and provide better accu-
racy than their Monte Carlo counterparts.

The finite state projection and our time scale separation
approach also provide valuable insight as to how one may
further deal with the bewildering complexity that intracellu-
lar processes exhibit. First, cellular processes are limited by
cell size and available energy. It is then plausible that the
main features of intracellular dynamics can be captured in a
relatively small subset of the state space, as the results ob-
tained by finite state projection suggest. Another typical fea-
ture of intracellular processes is that they are composed of
reactions that take place on different time scales. Depending
on the observation time of interest, some of these reactions
can be neglected, while some will contribute only through
their averages. Preliminary success with our approach gives
us a hope that relatively simple models for intracellular pro-
cesses can be tailored when a region in the state space and
observation time of interest are known.

Of course, one can easily envision that additional model
reductions may be possible to even further enhance the
power of both the finite state projection and the time scale
separation approach. Indeed some reductions based upon
control theory6 are already becoming apparent. Also, in our
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computations we have used off the shelf numerical routines
for eigensystem calculations and matrix exponentiation. Fur-
ther improvements in computational speed can be achieved if
these routines are optimized for matrices which define master
equations and their special properties. We intend to investi-
gate these possibilities in the future.
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APPENDIX: SINGULAR PERTURBATION

Singular perturbation theory has been extensively stud-
ied in various literatures. However, most of the literature in
this area is of wide scope and often very technical. In order
to spare the reader some time, here we present a heuristic
argument, which provides a mathematical justification for
our method, while keeping technicalities at minimum. For
rigorous proofs interested reader may want to consult, for
example, Refs. 34 and 35.

Consider a weakly perturbed linear N-dimensional sys-
tem described by �11�

ẋi = �ixi + ��
j=1

N

Vijxj , �A1�

where �i=0 for i�m, and �i has negative real part for i
�m. We want to find a near identity coordinate transforma-
tion �12� that would remove as many O��� terms as possible
from �A1� and “push” them to higher orders in �. After sub-
stituting x= �I+�G�y in �A1� we get

ẏi = �iyi + ��
j=1

N

Vijyj − ��
j=1

N

Gij� jyj + ��i�
j=1

N

Gijyj + O��2� .

�A2�

By equating all O��� terms to zero we find

�
j=1

N

�Vij − Gij� j + �iGij�yj = 0, �A3�

and by solving for Gij we obtain

Gij =
Vij

� j − �i
. �A4�

Therefore, we can always find Gij except when �i=� j. In
other words, all nonresonant terms can be removed through
O��� from �A1� by a near identity transformation �12�. In our
method we are interested in separating slow and fast pro-
cesses in the system, so we shall define matrix G in �12� as
follows:

Gij = � Vij

� j − �i
, i � m � j

0, otherwise.
� �A5�

By substituting this expression for G in �A2� we find that

ẏi = ��
j=1

m

Vijyj + O��2�, i � m .

ẏi = �iyi + ��
j=1

N

Vijyj + O��2�, i � m .

We observe that first m equations decouple from the rest of
the system through O���, and can be solved independently
after truncating higher order terms. Furthermore, the near
identity transformation �12� does not introduce any new O���
terms to the first m equations, so it is essentially just a trun-
cation of all xi�m terms from �A1�. We do not need to calcu-
late G and perform transformation �12� as such transforma-
tion is guaranteed to exist.

It remains to show that the solution to truncated system
�13� will be O��� close to solution to �A1� on a time interval
of interest. These equations are linear and hence can be
solved analytically, but let us take an extra step here and
expand the solution to �A1� in powers of �,

xi�t� = xi
�0��t� + �xi

�1��t� + �2xi
�2��t� + ¯ . �A6�

By substituting this expression into �A1� and grouping same
orders in � we get series of equations

�0:ẋi
�0��t� = �ixi

�0��t� ,

�1:ẋi
�1��t� = �ixi

�1��t� + �
j=1

N

Vijxi
�0��t� ,

�2:ẋi
�2��t� = �ixi

�2��t� + �
j=1

N

Vijxi
�1��t� ,

. . . . . . ,

which we can solve in a straightforward way to obtain

xi
�0��t� = e�itxi

�0��0� ,

xi
�1��t� = e�itxi

�1��0� + e�it�
j=1

N

Vijxi
�0��0��

0

t

e��j−�i�sds .

Let us first consider equations i�m. The solution to
�A1� through O��� then can be written as

xi�t� = xi�0� + ��
j=1

m

Vijxj�0�t

+ � �
j=m+1

N
e�jt − 1

� j
Vijxj�0� + O��2� ,

where we substituted xi�0�=xi
�0��0�+�xi

�1��0�+O��2� and �i

=0. Since the system has one stable steady state solution the
series above must converge for all times. The first two terms
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in the expansion above are equal to the first two terms in the
expansion of the solution �14� for the truncated system.
Therefore, for yi�0�=xi�0� it is

�xi�t� − yi�t�� = �� �
j=m+1

N
e�jt − 1

� j
Vijxj

�0��0�� + O��2� .

In the expression above all � j �0, therefore �xi�t�−yi�t��
=O��� holds for all t�0. Since the expression for xi�t� is
convergent series and xi�0� are linearly independent, we con-
clude that yi�t� must also have a fixed point solution, which
is O��� close to the solution of the full system.

Next we consider equations in �A1� where i�m. The
solution to these can be expanded in terms of � as

xi�t� = e�itxi�0� + �
e�it − 1

�i
�
j=1

m

Vijxj�0�

+ �te�it �
j=m+1

N

Vijxj�0� + O��2� .

Our truncation algorithm �Sec. III A� sets all yi�t��0, so
initially the difference between full and truncated solution is
whatever the initial condition xi�0� is, and it can be larger
than O���. However, in the limit case

lim
t→


�xi�t�� = �� 1

�i
�
j=1

m

Vijxj
�0��0�� + O��2� . �A7�

That means the truncation introduces O��� error to the
asymptotic solution. Larger errors may occur only during the
finite transient time 0� t�T���, where T��� is given in �19�.
One can verify this by substituting the right hand side of �19�
for time in the solution xi�m�t� above.
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