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Abstract— This article introduces the Observability Aggre-
gated Finite State Projection (OAFSP) method for use in the
stochastic analysis of biological systems. The small chemical
populations of such systems have probability distributions that
evolve according to a set of linear, time-invariant, ordinary
differential equations known as the Chemical Master Equation
(CME). The original FSP algorithm directly approximates the
full CME solution to within a prespecified error. However, one
may be interested only in certain portions of the distribution or
certain statistical quantities such as mean or variance, and the
full FSP method may provide an excess of information. In these
cases, one can define a linear output signal and extract only
the reachable and observable regions from the full distribution
state space. The unobservable regions of the distribution can be
aggregated with no accuracy loss but with less computational
cost. This paper presents the resulting OAFSP algorithm and
illustrates its benefits on a simple chemical reaction.

I. INTRODUCTION

In many situations, especially in the case of cell fate
decisions, a single gene-protein interaction may dramatically
affect subsequent biological processes. Deterministic models
fail to capture the inherent randomness of these system,
and stochastic models are necessary [1]. The dynamics of
a well-mixed, fixed volume, constant temperature chemi-
cally reacting system can be described by a Markovian
process, whose probability distribution evolves according
to the chemical master equation (CME) [2], [3]. In most
cases the CME involves a very large, or infinite, number
of linear time invariant (LTI) ordinary differential equations
(ODEs), and has typically been assumed to be intractable
to direct analysis [4]. Therefore, the dynamics of the CME
have almost invariably been studied using Monte Carlo (MC)
simulation algorithms such as Gillespie’s Stochastic Simula-
tion Algorithm (SSA) [5], which simulates every individual
reactive event in the chemical process. Although simple,
the SSA can be extremely computationally expensive. As a
result, various approximations have been considered to speed
up the computational time of the SSA. These approximations
come in two varieties: time leaping methods [6], [7], [8], [9]
and system partitioning methods [10], [11], [12], [13].

For any MC method, computing a statistical description
of system dynamics requires many individual realizations.
Furthermore, even after a large number of MC realizations,
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there is no clear guarantee as to how well the generated sta-
tistical information corresponds to the actual CME solution.
To address this issue, we recently introduced the Finite State
Projection (FSP) method and the FSP algorithm for approxi-
mating the CME solution [14]. Unlike MC analyses, the FSP
directly computes the system’s probability distribution at a
given time without requiring large numbers of realizations.
Furthermore, the FSP approximation guarantees upper and
lower bounds on the true CME solution. The FSP algorithm
provides a systematic means of increasing the size of the
finite state projection until these bounds are within any pre-
specified error tolerance.

By approximating the CME as a finite dimensional linear
system, the FSP opens the field of stochastic analysis to
a myriad of common tools from the established fields of
controls and dynamics. For example, several readily available
tools facilitate lower order approximations of larger systems
and promise significant reductions in computational cost.
In this paper, we will illustrate how even the most basic
elements of modern controls theory–minimal realizations and
simple model reduction techniques–can significantly improve
the FSP.

The remainder of this paper is organized into four sections.
The next section briefly reviews the basic theory of the
FSP. The third section applies elementary concepts related to
reachability and observability to formulate the observability
aggregated FSP algorithm (OAFSP). Next, a simple example
will illustrate the usefulness of the new aggregate FSP
algorithm. The final section concludes with a discussion
of the advantages of applying controls understanding to
chemical kinetics.

II. THE FINITE STATE PROJECTION METHOD

Consider a well-mixed, fixed-temperature, and fixed vol-
ume system of N distinct reacting chemical species.
At any time, one can use an integer vector x :=
[ ξ1 ξ2 . . . ξN ]T in the non-negative set NN to de-
scribe the discrete populations of the N molecular species.
We will a priori fix a sequence of configurations x1, x2, . . .
and define X := [x1, x2, . . . ]T as the ordered configuration
set. Suppose that there can be a maximum of M possible
chemical reactions, where each µth reaction takes the system
from one configuration to another: xi → xj = xi + νµ. For
each reaction, νµ is the associated stoichiometry (directional
transition on the configuration set), and aµ(xi) is the associ-
ated propensity function. Define pi(t) as the probability that
the system will be have the ith configuration at time t. At
an incrementally later time, pi(t + dt) is equal to the sum



of (i) the probability that the system begins in xi at t and
remains there until t + dt, and (ii) the probability that the
system is in xj 6= xi at t and will transition to xi during the
time step, dt. This probability can be written as:

pi(t + dt) = pi(t)

(
1−

M∑
µ=1

aµ(xi)dt

)

+
M∑

µ=1

p(xi − νµ, t)aµ(xi − νµ)dt. (1)

From (1) it is easy to derive the differential equation known
as the Chemical Master Equation, or CME [5] which we
write in vector form as:

ṗi(t) =


−
∑M

µ=1 aµ(xi)
a1(xi − ν1)
a2(xi − ν2)

...
aM (xi − νM )



T 
p(xi, t)

p(xi − ν1), t)
p(xi − ν2), t)

...
p(xi − νM ), t)

 . (2)

Based upon our enumeration of X, we can combine the
equations for every pi(t) into a single linear expression:

Ṗ(t) = AP(t), (3)

where P(t) is the probability density state vector at time t,
and the generator matrix A is the state reaction matrix. The
elements of A are defined by the reaction stoichiometries
and propensities and our chosen enumeration of X; A is
independent of t; all of its diagonal elements are non-
positive; all its off-diagonal elements are non-negative; and
all its columns sum to zero. The solution to the linear ODE
beginning at t = 0 and ending at t = tf in (3) is the
expression: P(tf ) = Φ(0, tf )P(0). When X is finite dimen-
sional, the operator, Φ(0, tf ) = exp(Atf ), and the solution is
simply: P(tf ) = exp(Atf )P(0). However, when X is infinite
dimensional or extremely large, the corresponding analytic
solution is unclear or vastly difficult to compute. In these
cases, one may devise a systematic means of approximating
the full system using finite dimensional sub-systems. This
systematic truncation approach is the Finite State Projection
method [14].

We must introduce some convenient notation. Let J =
{j1, j2, j3, . . .} denote an index set. If X is an enumer-
ated set {x1,x2,x3, . . .}, then XJ denotes the subset
{xj1 ,xj2 ,xj3 , . . .}. Furthermore, let vJ denote the subvector
of v whose elements are chosen according to J , and let AIJ

denote the submatrix of A such that the rows have been
chosen according to I and the columns have been chosen
according to J . For example, if I and J are defined as
{3, 1, 2} and {1, 3}, respectively, then: a b c

d e f
g h k


IJ

=

 g k
a c
d f

 .

For convenience let AJ := AJJ . For any two index sets I
and J , let J ⊆ I denote that I contains every element from
J , and let J

⋃
I and J

⋂
I be the union and intersection,

respectively, of J and I . Let J ′ denote the complement of
the set J , where unless stated otherwise the complement is
taken with respect to the set of all non-negative integers. In
addition, 1 will denote a column of ones: the operation 1T v
sums each of the columns in v. With this notation we can
state the following theorem:

Theorem 2.1. If A ∈ Rn×n has no negative off-diagonal
elements, then for any index set, J ,

[exp(A)]J ≥ exp(AJ) ≥ 0. (4)

Ref. [14] provides a detailed proof of this theorem. Since
A in (3) has no negative off-diagonal terms, if J2 ⊇ J1,
Theorem 2.1 assures that:

[exp(AJ2tf )]J1PJ1(0) ≥ exp(AJ1tf )PJ1(0).

where PJ1 is the probability distribution of the elements
of X indexed by J1. This result guarantees that as one
increases the finite configuration subset, the approximate
solution increases monotonically for each element in the
configuration subset.

In addition to being non-negative, P(t) sums to exactly
one. These properties and the nonnegativity of the off-
diagonal elements of A allow one to state a second theorem
(a sketch of the proof is given below for Theorem 3.1. See
Ref [14] for the full proof).

Theorem 2.2. Consider a Markov process in which the
probability distribution evolves according to the linear ODE,
Ṗ(t) = AP(t), where A has no negative off-diagonal
entries. If for some finite index set J, ε > 0, and tf ≥ 0,

1T exp(AJ tf )PJ(0) ≥ 1− ε, (5)

then

exp(AJ tf )PJ(0) ≤ PJ(tf ), and (6)
||PJ(tf )− exp(AJ tf )PJ(0)||1 ≤ ε. (7)

While Theorem 2.1 guarantees that as we add points to the
finite configuration subset, the approximate solution mono-
tonically increases, Theorem 2.2 provides a certificate of how
close the approximation is to the true solution. Together the
two theorems suggest the FSP algorithm presented in Ref
[14]. The following section will illustrate how basic modern
controls theory may build upon these tools to improve the
FSP algorithm.

III. THE OBSERVABILITY AGGREGATED FSP

We begin with the CME written in the form (3). Suppose
that at time t = 0, the initial pdv is supported only on the
set indexed by U ; in other words pi(0) = 0 for all i /∈ U .
We write the initial value problem in (3) as the equivalent
impulse response problem:
Ṗ(t) = AP(t) + bδ(t), where b = P(0).

Suppose that we wish only to compute the statistical
quantity y(t) = CP(t). As one example, if one were
interested in estimating the mean or variance of the pop-
ulation of the mth molecular species, then C would sim-
ply be the row vector Cmean = [ x1m, x2m, . . . ] or



Cvar = [ x2
1m − x1m, x2

2m − x2m, . . . ], respectively,
where xim is the mth component of the integer vector xi.
Alternatively, as in the next subsection, we may choose the
output to correspond to the probability density on a portion
of the configuration set. For any C the resulting problem
now takes on a familiar form:

Ṗ(t) = AP(t) + bδ(t);
y = CP(t). (8)

For systems on a finite configuration set, or for systems
that have been projected onto a finite configuration set, this
standard representation is open to a host of computational
tools. In the following subsection we illustrate how one may
use concepts of observability and reachability to improve
upon the efficiency of the FSP.

A. Estimating the pdv of important states

Suppose that we begin with the known population vector,
xu, and we want the probability distribution on the config-
uration subset XK = {xk1 ,xk2 , . . .}. In other words, we
wish to compute y(t) = PK(t). For example, XK may
correspond to configurations that exhibit a specific biological
trait, such as the expression of a certain gene. As above,
define the vector b = P(0) = {bi}∞i=1. In this case bi = 1
for i = u and zero otherwise. For this b and the impulse
response in (8), let XR be the subset of all configuration
points xi such that pi(t) > 0 at any t ≥ 0. This subset is
indexed by R to denote that it is the reachable configuration
subset; its complement XR′ is the unreachable configuration
subset. Define the observable configuration subset, XO, as
the set of all xi such that pi(t0) > 0 at time t0 guarantees
that |y| > 0 at some t ≥ t0. We will call the complement,
XO′ , the unobservable configuration subset. Note that our
definitions of reachability and observability are slightly less
restrictive than the traditional usage. While using the usual
concepts of observability and reachability would often allow
bigger reductions in the order of the problem, it is often much
easier–and less computationally intensive–to categorize the
system as shown here.

Now that the configuration set has been decomposed into
subsets, we can introduce the following theorem:

Theorem 3.1. Consider a process whose distribution
evolves according to the linear ODE:[

ṖI1

ṖI2

]
=
[

AI1 0
AI2I1 AI2

] [
PI1

PI2

]
(9)

where I1 and I2 are disjoint index sets.
If for some finite index set J ⊆ I1, ε > 0, and tf ≥ 0,

1T exp
[

AJ tf 0
1T AI2J tf 0

] [
PJ(0)

1T PI2(0)

]
≥ 1− ε, (10)

then

exp(AJ tf )PJ(0) ≤ PJ(tf ), and (11)
||PJ(tf )− exp(AJ tf )PJ(0)||1 ≤ ε. (12)

Proof. (For the reader’s convenience, this proof includes
an outline of the proof of Theorem 2.2–see also [14]. Note

that all probability distributions are nonnegative and sum
exactly to one). We begin by proving (11). Let J ′ denote
the complement of J on the set I1. The evolution of the full
probability density vector is governed by the permuted ODE: ṖJ

ṖJ′

ṖI2

 =

 AJ AJJ ′ 0
AJ′J AJ′ 0
AI2J AI2J′ AI2

 PJ

PJ′

PI2

 , (13)

where the submatrices AJJ ′ and AI2J′ are nonnegative since
A has no negative off-diagonal terms. We now sum all of the
rows corresponding to the set I2: ṖJ

ṖJ′

1T ṖI2

 =

 AJ AJJ ′ 0
AJ′J AJ′ 0

1T AI2J 1T AI2J′ 0

 PJ

PJ′

PI2

 ,

(14)
where we have used the fact that all columns of A, partic-
ularly those indexed by I2, sum to zero: 1T AI2 = 0.

Let pagg := 1T PI2 . The aggregated probability density is
now governed by the finite linear ODE:[

ṖJ

ṗagg

]
=
[

AJ 0
1T AI2J 0

] [
PJ

PI2

]
+
[

AJJ ′

1T AI2J′

]
PJ′ .

The solution of this forced ODE is[
PJ(tf )
pagg(tf )

]
= exp

[
AJ tf 0

1T AI2J tf 0

] [
PJ(0)
pagg(0)

]
+∫ tf

0

exp
[

AJ(tf − τ) 0
1T AI2J(tf − τ) 0

] [
AJJ ′

1T AI2J′

]
PJ′(τ)dτ.

Since AJJ ′ , AI2J′ , PJ′(t), and exp
[

AJ t 0
1T AI2J t 0

]
are all

nonnegative for t ≥ 0, we obtain the inequality in (11) as
the top part of[

PJ(tf )
pagg(tf )

]
≥ exp

[
AJ tf 0

1T AI2J tf 0

] [
PJ(0)
pagg(0)

]
.

(15)
Using (9) and the fact that the probability distribution

the distribution on the J and I2-indexed sets must be non-
negative and have a combined sum of no more than one we
get: ∣∣∣∣exp

[
AJ tf 0

1T AI2J tf 0

] [
PJ(0)

1T PI2(0)

]∣∣∣∣
1

≥
∣∣∣∣[ PJ(tf )

pagg(tf )

]∣∣∣∣
1

− ε, (16)

Finally, applying (15) and rearanging terms yields:∥∥∥∥[ PJ(tf )
pagg(tf )

]
− exp

[
AJ tf 0

1T AI2J tf 0

] [
PJ(0)

1T PI2(0)

]∥∥∥∥
1

≤ ε, (17)

and completes the proof.
By our definition of reachable, the probability density

vector on the configuration subset XR′ is zero, and a
permutation can reorder the remaining rows of (3) as:[

ṖRO

ṖRO′

]
=
[

ARO ARORO′

ARO′RO ARO′

] [
PRO

PRO′

]
, (18)



where RO := R ∩ O indexes the reachable/observable
configuration subset, and RO′ := R∩O′ indexes the reach-
able/unobservable configuration subset. Also by definition,
no configuration in X′

O can transition into the configuration
subset XO, which results in the identity: ARORO′ = 0, and
the system reduces to:[

ṖRO

ṖRO′

]
=
[

ARO 0
ARO′RO ARO′

] [
PRO

PRO′

]
. (19)

Applying Theorem 3.1 yields the following corollary:
Corollary 3.2. Consider any Markov process in which the

probability density state vector evolves according to (19). Let
J be a finite subset of the index set RO. If for ε > 0, and
tf ≥ 0

1T exp
[

AJ tf 0
1T ARO′J tf 0

] [
PJ(0)

1T PRO′(0)

]
≥ 1− ε, (20)

then

exp(AJ tf )PJ(0) ≤ PJ(tf ), and (21)
||PJ(tf )− exp(AJ tf )PJ(0)||1 ≤ ε. (22)

The proof of Corollary 3.2 follows directly from Theorem
3.1 where I1 = RO and I2 = RO′. To illustrate the
underlying intuition of Corollary 3.2, Fig. 1(top) illustrates
a two dimensional state lattice for a two chemical reacting
system. The system begins with an initial configuration xu

at time t = 0, and we are interested in calculating the
probability that the system has configuration, xy , at the
time t = tf ≥ 0. The configuration set can be separated
into three disjoint subsets: the unreachable region, XR′ ;
the unobservable region, XO′ ; and the reachable/observable
region XRO. Using the OAFSP, we remove the XR′ from
the system and aggregate XO′ to a single point, as shown
in Fig. 1(bottom left). We then project XRO onto a finite
configuration subset XJ . The projected system is shown
in Fig. 1(bottom right), where the subsets XJ′ and XRO′

have each been aggregated to a single point. Because the
projected system is finite dimensional, its solution can be
computed using the matrix exponential function or by using
a standard ODE solver. Theorem 2.1 shows that as the subset
XJ increases, fewer trajectories are lost to XJ′ and the
probability of remaining in XJ ∪XRO′ increases. Corollary
3.2 shows that the probability that the system is currently in
XJ ∪XRO′ must be at least as large as the probability that
the system has been in XJ ∪ XRO′ for all times t = 0 to
t = tf .

B. The OAFSP Algorithm

The results above and our previous work on the FSP
[14] suggest a systematic procedure for solving the chemical
kinetic problem as posed in (8). This algorithm, which we
refer to as the Observability Aggregated FSP algorithm, can
be stated as follows:

Step 0 Define reaction propensities and stoichiometry.
Choose the initial pdv, P(0).
Choose the final time of interest, tf .

y

u

Population of Species a

P
opulation of S

pecies b

u Initial State

Unreachable 
States {R'}
Unobservable 
State {O'}

Reachable/
Observable 
States {RO}

y Observed State

RO'

y

u

RO'

u

y

J'

J

Fig. 1. Top: schematic of a two dimensional integer lattice representing
the configuration set of a two species chemical reaction. Each configuration
point [a,b] is represented by a circle and transitions (reactions) are shown
by the connecting arrows. Bottom: aggregation of the unobservable configu-
ration subset (left), and projection of the observable/reachable configuration
subset onto a finite configuration subset: XJ ∈ XRO (right).

Specify the total acceptable error, ε > 0.
Define configuration subsets: XRO and XRO′ .
Choose initial finite index set, Jo ⊆ RO.
Initialize a counter, i = 0.

Step 1 Use propensities and stoichiometry to compute

ΓJi
= 1T exp

[
AJ tf 0

1T ARO′J tf 0

] [
PJi(0)

1T PRO′(0)

]
.

Step 2 If ΓJi
≥ 1− ε, Stop.

exp(AJi
tf )PJi

(0) is within ε1 error from PJi
(tf ).

Step 3 Add more configurations to find XJi+1 .
Increment i and return to Step 1.

In the following section, we will illustrate a simple exam-
ple, where we apply the OAFSP algorithm.

IV. APPLYING THE OAFSP

Here we consider an example chemical reaction involving
three molecular species, a, b and c, the configuration set is the
set of non-negative integer vectors: xi = [ ai bi ci ]T .
At time t = 0, the system begins at a known configuration
point:
xT

u =
[

au, bu, cu

]
=

[
a, b, c

]
t=0

=[
70, 50, 80

]
,

and the molecular species interact via the chemical reactions:
(a + b 
 c + c) and (a → c). Since none of these reactions
change the total number of molecules in the system, for a
given initial condition, it is sufficient to know the populations
ai and bi in order to uniquely determine xi, and the entire
configuration set can be represented on a 2-dimensional
integer lattice. Fig. 1 illustrates such a lattice where the initial
condition is shaded in dark gray, and the directionality of
the reactions are as indicated. From the stoichiometry, one
can also show that all points in the reachable configuration



TABLE I
COMPARISON OF THE COMPUTATIONAL EFFORT REQUIRED FOR THE

OAFSP, THE FSP AND THE SSA FOR THREE DIFFERENT SIMULATION

TIME INTERVALS. ALL SIMULATIONS HAVE BEEN CONDUCTED ON A 3.0
GHZ INTEL PENTIUM 4 PROCESSOR RUNNING A LINUX ENVIRONMENT.

FOR THE SSA, WE HAVE USED THE STOCHKIT SOFTWARE PACKAGE

[15], FOR THE FSP AND THE OAFSP, THE CALCULATIONS ARE

PERFORMED IN USING MATHWORKS MATLAB.

Final time, tf Computational Time (s)
OAFSP FSP 104 SSA runs.a

10s 44 41 460 (460)
20s 89 121 900 (870)
30s 108 331 1400 (1100)

aSecond value is for simulations that are stopped as soon as
[a] ≤ [b]

subset, xi ∈ XR, satisfy the inequalities: ai ≤ au + bi − bu

and ai + bi ≤ au + bu + cu, where the subscript u refers
to the initial configuration as defined above. The rest of the
configuration set may be immediately excluded in the FSP
description. The dimension of the XR is about 1.2× 104.

Suppose that we are interested in computing the probabil-
ity density at time tf of all of the configurations for which
the population of b is less than that of a. Let K be the
subset of all indices k such that bk < ak, then the output is
PK(t). For this output and the system’s stoichiometry, one
can show that the observable subset and the output subset are
identical: O = K. While the dimension of XO is infinite,
the intersection of XR and XO includes fewer than 2 ×
103 states. Thus, by aggregating the unobservable/reachable
subset, one is able to reduce the order of the problem by a
factor of six before making any approximation.

Once the observability aggregation has been applied, the
remaining problem may be analyzed with the FSP and
OAFSP algorithms; in each case the total error tolerance has
been set to ε = 10−3. Fig. 2 illustrates the joint probability
distribution of the species a and b at three different times–
each plot is exactly the same whether one uses the original
FSP algorithm or the OAFSP algorithm. Table I provides the
computational time required to achieve these results with the
FSP and OAFSP algorithms. For an additional comparison,
Table I also provides the time required to simulate the system
104 times using the basic SSA as well as a version of
the SSA in which the simulation is interrupted as soon as
the system leaves the observable space. In the three cases
considered here, the FSP and OAFSP are both much faster
than the SSA. Furthermore, for the situation in which a
significant portion of the probability distribution lies outside
the observable space (Fig. 2, right), the OAFSP method
dramatically outperforms the original FSP algorithm (Table
I, bottom row).

V. CONCLUSIONS

This paper introduced the Observability Aggregated Finite
State Projection (OAFSP) method and algorithm for the solu-
tion of the chemical master equation. While the original FSP

directly computes the system’s full probability distribution,
the OAFSP concentrates only on the reachable/observable
portion of the configuration set. By intelligently aggregating
unimportant regions of the configuration set, the order of
the CME can be significantly reduced. Like the FSP, the
OAFSP solution guarantees upper and lower bounds on the
solution of the true system and provides a systematic means
of increasing the size of the finite state projection until
these bounds are within any pre-specified error tolerance.
The OAFSP method was effectively demonstrated on an
example problem. Given a known initial state, we have used
the OAFSP to find the desired portion of the distribution at a
later time of interest. We have compared the efficiency of the
OAFSP with the original FSP and the SSA for three different
simulation time intervals. In this example, we have shown
that the OAFSP and FSP algorithms outperform the SSA.
Further, we have shown that the aggregation can significantly
decrease computational cost with no loss in accuracy.

While the FSP is still not feasible for all classes of chemi-
cal systems, this study has shown one example of how readily
available tools may facilitate lower order approximations of
the CME and significantly reduce computational cost. Addi-
tional state aggregation, and multi-scale partitioning methods
will also provide further benefit over the original FSP and are
currently being developed to be presented elsewhere. Like
the OAFSP, these major gains in the performance of the
FSP originate in the well-developed theory of controls and
dynamics. In this manner, new implementations will continue
to expand the class of problems for which the FSP and
its derivatives are efficient and versatile tools for stochastic
analysis.
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