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Abstract— Ideas from System Theory lie behind many of the
new powerful methods being developed in the burgeoning field
of Systems Biology. In this paper, we show two examples of this:
one in the area of stochastic chemical kinetics, and the other in
biological model invalidation. Stochastic chemical kinetics has
gained a lot of attention in the last few years. In order to capture
certain important dynamics in the subcellular environment, it
is necessary to model molecular interactions at the gene level
as discrete stochastic events. The dynamics of such processes
is typically described by probability distributions, which evolve
according to the set of linear ordinary differential equations
known as the chemical master equation (CME). Until recently, it
has been believed that the CME could not be solved analytically
except in the most trivial of problems, and the CME has been
analyzed almost exclusively with Monte Carlo (MC) algorithms.
However, concepts from linear systems theory have enabled the
Finite State Projection (FSP) approach and have significantly
enhanced our ability to solve the CME without resorting to
MC simulations. In this paper we review the FSP approach as
well as a variety of systems theory based modifications to the
FSP algorithm that dramatically improve the computational
efficiency of the algorithm and expand the class of solvable
problems. Notions such as observability, controllability and
minimal realizations enable large reductions in the order of
models and increase efficiency with little to no loss in accuracy.
Model reduction techniques based upon linear perturbation
theory allow for the systematic projection of multiple time
scale dynamics onto a slowly varying manifold. Our second
example shows the application of systems ideas in the area
of biological model invalidation. As a specific case study, we
use a dynamic model of the bacterial heat-shock response
to demonstrate the approach. Using recent sum-of-squares
techniques we show that the heat-shock model, when stripped
from a certain protein-protein interaction that implements a
certain feedback loop, cannot account for the input-output data
regardless of the parameter choice for the model. In essence,
such a deficient model is invalidated. Such conclusions are
essential for pointing out the likelihood of missing components
or interactions, thereby guiding new biological experiments.

I. INTRODUCTION

With new experimental tools, contemporary molecular
biologists are discovering complex gene regulatory networks,
which control the expression of diverse biological traits.
As more data becomes available, these networks become
so complicated that it is becoming increasingly difficult to
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understand their function without the aid of clear quantitative
models. With such models at hand, it becomes possible to
capture the various interactions among the known players
and to provide a holistic system level understanding of the
underlying biology. The new understanding that emerges
also provides insight into how one may alter these networks
and affect their function, making it possible to design and
construct new biological parts and systems, or to re-design
existing, natural biological systems for useful purposes. The
latter is the main aim of the new field of synthetic biology.

In modeling biological phenomena at the cellular level,
one might be initially tempted to propose deterministic
models to describe the concentrations of key proteins and
other molecules within the cell as a function of time. This is
feasible so long as there are huge numbers of each reactant
species, such that fluctuations in these concentrations are
inconsequential. At the sub cellular level, however, processes
can, and often do, depend upon individual molecular in-
teractions. A single transcription factor binding to a single
gene may initiate production of a key protein and eventually
result in a cascade of events that affects the whole cell.
Here random fluctuations have great impact on the cell, one
that cannot be captured with a deterministic model. Instead,
these processes must be modeled on the mesoscopic scale
using discrete and stochastic models. This is the subject of
stochastic chemical kinetics, an area that has received a lot of
attention recently and one where notions from system theory
are beginning to have a big impact. In the first part of this
paper, we describe a new and very promising direction in
the field of stochastic chemical kinetics that relies on finite
state projections and ideas from system theory to provide
probability densities of important biological states within
prespecified errors. In the second part of this paper, we show
the application of systems ideas in the area of biological
model invalidation. As a specific example, we apply recent
sum-of-squares techniques to show that a dynamic model
of the bacterial heat-shock response must include a certain
protein-protein interaction. With out the feedback loop en-
acted by that reaction, there exists no set of model parameters
for which the system will exhibit the observed input-output
data. This type of model invalidation is essential for the
discovery of missing components or interactions and can
guide new biological experiments.

In the next section, we give an overview of a new approach
for stochastic computations that arise in stochastic chemical
kinetics. In subsection II-A we briefly review the mesoscopic
model for chemical kinetics. In subsection II-B we introduce
the Finite State Projection (FSP) method, which implements



a new approach for getting approximate soltions of the so
called chemical master equation. In subsection II-C, we
review a few model reduction techniques which are easily
applied to the FSP algorithm. These include several ideas
from System Theory including concepts of controllability,
observability, and time-scale separation. In section III we
give an overview of how model invalidation for biological
models can be performed using sum of squares techniques.
Subsection III-A gives the theoretical background for the use
of SOS methods in model invalidation, while subsection III-
B demonstrates how these advanced methods can be used to
invalidate a deficient biological model of the bacterial heat
shock response.

II. A SYSTEM THEORETIC APPROACH TO STOCHASTIC
CHEMICAL KINETICS

A. The Mesoscopic Model for Chemical Kinetics

In a mesoscopic model of an N species chemically react-
ing process, the configuration of the system is defined by the
populations of the N species, x := [ ξ1 ξ2 . . . ξN ]T .
Under the assumption that the chemical system is well
mixed, the system behaves as a continuous time, discrete
space Markov process. We are interested in computing the
probabilities of the various possible system configurations as
functions of time. For the configurations {x1,x2, . . .}, we
define the corresponding probability density state vector as
P(t) := [p1(t), p2(t), . . .]T . The evolution of P(t) over time
can be described by the possibly infinite dimensional set of
linear ordinary differential equations known as the Chemical
Master Equation (CME) [1]: Ṗ = AP. Until recently, the
CME had not been directly solved except for the most trivial
problems, and analyses are often conducted using Monte
Carlo (MC) algorithms.

The most widely used MC algorithm for mesoscopic
chemical kinetics is the Stochastic Simulation Algorithm
(SSA) [2]. In this algorithm, one uses a series of random
numbers to simulate each individual reaction event in the
chemical process. At each time, t, the process has a specific
configuration, x(t) = xi, and can change through at most M
possible reactions which cause the process to transition from
xi to xj = xi + νµ, where νµ is the stoichiometric vector
of the µth reaction. Each µth reaction has an infinitesimal
probability of occurring in the interval (t, t + dt], and
this probability is given by given by aµ(xi, t)dt, where
aµ(xi, t) is known as the propensity function. To use the
SSA, one must assume that aµ does not depend upon time,
so that the time until the next reaction, τ , becomes an
exponentially distributed random variable with a mean equal

to a0(xi) =
(∑M

µ=1 aµ(xi)
)−1

. In the MC scheme, one
can choose τ from this exponential distribution, and one
can choose which of the M reactions occurs according to
the distribution defined by

{
a1(xi)
a0(xi)

, . . . , aM (xi)
a0(xi)

}
. One then

updates the time to t + τ and the configuration to xi + νµ

where µ is the index of the chosen reaction. The process is
continued until the final time of interest. While this basic MC
algorithm produces detailed realizations for the dynamics of

the mesoscopic model, the computational cost increases with
the number of reactions in each process. In these cases, one
may give up some of the accuracy of the SSA for faster
approximate MC schemes such as time-leaping methods and
system-partitioning methods.

Suppose that one can make the assumption that many
reaction events will occur in a period of time without
significantly changing the reaction propensity functions. This
assumption is known as the τ leap assumption and is the
basis of the τ leaping approximations to the SSA [3]. Rather
than simulate every individual reaction event, one specifies a
time interval and chooses the number of times each reaction
channel fires during that interval according to a simple
Poisson distribution. This approximate method can be much
faster that the original SSA and performs particularly well
for systems in which all molecular species are present in
large numbers. However, there are two major obstacles to this
approach, which occur when there are very small chemical
populations in the system. First, if too many critical reactions
are included in a single leap, some molecular populations
may become negative and yield a meaningless result. More
recent versions of τ -leaping, including binomial τ leaping [4]
and adaptive and implicit τ leaping [5], [6] are more robust
than their predecessors in this regard. However, the second
obstacle to τ leaping methods comes from the fact that their
accuracy remains severely compromised when very small
populations of interacting molecules result in fast, dramatic
changes in propensity functions.

The second approximation to the SSA involves splitting
the system into slow and fast parts. The dynamics of the fast
part are approximated, and the remaining slow dynamics are
simulated with a reduced MC scheme [7], [8], [9]. For such
a scheme to work, it is necessary that there is a sufficient
gap between the between fast and slow reactions.

B. The Finite State Projection (FSP) algorithm

We recently proposed a new analytical approach to solving
the CME: the Finite State Projection (FSP) algorithm [10].
Because the CME is a linear system whose solution is
constrained to be non-negative with a sum of one, we showed
that any finite state projection of the CME provides an
analytical approximation to the CME within guaranteed error
bounds. The FSP algorithm provides a means of system-
atically choosing a projection of the CME, which satisfies
any prespecified accuracy requirement. Furthermore, the FSP
algorithm is based upon linear systems theory, and it is ripe
for the further application of modern controls theory as we
will review in this paper.

In the chemical master equation, Ṗ(t) = A(t)P(t),
the generator matrix A(t) is comprised of the propensity
functions for transitions from one configuration to another
and is defined by the reactions and the enumeration of the
configuration space. As is the case for all generator matrices,
diagonal elements of A(t) are non-positive; off-diagonal
elements are non-negative; and columns sum to zero.

If the configuration space were finite, then it would be
straightforward to solve the CME using either a matrix



exponential for a constant A or an ODE solver for a time-
varying A(t). However, the dimension of P(t) may be
extremely large or infinite, and the general problem may
not be solved so easily. In this case, a projection may be
made to achieve an arbitrarily accurate approximation. In
order to show how this projection works, we use index sets
of the form J = {j1, j2, j3, . . .}. For any vector v, we let
vJ denote the subvector of v chosen according to J , and for
any matrix A, we let AIJ denote the submatrix of A whose
rows and columns have been chosen according to I and J ,
respectively. For example, if I = {3, 1} and J = {3, 2},
then:  a b c

d e f
g h k


J

=
[

k h
c b

]
.

With this notation, we can restate the theorems from [10]
as follows, where we have extended Theorem 2.2 to include
the case of time-varying A(t).

Theorem 2.11 If all off-diagonal elements of A ∈ Rn×n

are non-negative, then for any index set J ,

[exp(A)]J ≥ exp([A]J) ≥ 0.

Theorem 2.2 Consider any distribution which evolves ac-
cording to the linear ODE: Ṗ(t) = A(t)P(t). Let ΦJ(t2, t1)
be the state transition matrix from time t1 to time t2 of the
J-indexed finite state projection system ṖFSP = AJPFSP .

If for ε > 0, and tf ≥ 0,

1T ΦJ(tf , 0)PJ(0) ≥ 1− ε, (1)

then

ΦJ(tf , 0)PJ(0) ≤ PJ(tf ), and (2)
||ΦJ(tf , 0)PJ(0)−PJ(tf )||1 ≤ ε (3)

Proof: We begin by proving (2). Let J ′ denote the com-
plement of J . The evolution of the probability distribution
on the set J is governed by:

ṖJ(t) = AJ(t)PJ(t) + AJJ ′(t)PJ′(t), (4)

where the submatrix AJJ ′(t) is nonnegative for any gener-
ator A(t). The solution for (4) is

PJ(tf ) = Φ(tf , 0)PJ(0) +
∫ tf

0

Φ(tf , τ)AJJ ′(τ)PJ′(τ)dτ

Since AJJ ′(t), PJ′(t), and Φ(t, τ) are all nonnegative for
t ≥ τ ≥ 0, we obtain the inequality in (2).

Since all probability distributions are non-negative and
sum to one we are assured that |PJ(tf )|1 ≤ 1 and the
condition (1) becomes:

|Φ(tf , 0)PJ(0)|1 ≥ |PJ(tf )|1 − ε, (5)

Finally, applying (2) and rearanging terms yields (3) and
completes the proof.

In the original form of [10], we assumed that A did
not vary in time, and the result is the same except that

1For proof and additional details, see [10].

Φ(t2, t1) = exp(A(t2 − t1)). Using this FSP theorem, we
can use an algorithmic approach to add and remove states in
the finite projection until we obtain an error, ε, that is less
than a prespecified bound.

C. Speeding up the FSP

In its most basic form, the FSP method is not feasible for
every problem. The number of ODEs required for the finite
projection to meet a given accuracy requirement may be far
too large. However, there are many additional tools available
from systems theory that can help us to meet this challenge.
In the time invariant case, Krylov subspace methods for
sparse systems could effectively enable the computation of
the matrix exponential times a vector [11]. Furthermore,
several readily available tools from modern control theory
facilitate lower order approximations of larger systems and
promise significant reductions in computational cost [12].
State aggregation, and multi-scale partitioning also provide
enormous benefits over the original FSP [13], [14], [15].
Some of the underlying concepts of these reductions are
summarized below in the context of time-invariant systems.

1) Observability, controllability, and minimal realizations:
Because the FSP approach formulates the CME as a finite
dimensional problem, it opens the analysis to linear systems
theory based model reductions as we explored previously
in [12]. We can pose the initial value CME problem as
an equivalent impulse response problem: Ṗ(t) = AP(t) +
bδ(t), where b = P(0).

Suppose that we wish only to compute the output y(t) =
CP(t). For example, y may include statistical information
such as means or variances, or could correspond to the
probability of certain important portions of the configuration
set. The resulting problem now takes on a familiar form:

Ṗ(t) = AP(t) + bδ(t);
y(t) = CP(t). (6)

For systems constrained to a finite configuration set, or for
systems that have been projected onto a finite configuration
set using the FSP, this standard representation is open to a
host of computational tools. In [12] we show that one can use
concepts very similar to observability to reduce the system
once it has been put into this form. With additional, more
powerful, model reductions it may be possible to further
enhance the applicability of the FSP.

2) Multiple time scale partitioning: Many biological
models have certain reactions that occur much more fre-
quently than others. These frequent reactions take up the vast
majority of the total computational effort. In MC algorithms
like the SSA [2], the majority of the simulated reactions
correspond to those with large propensities. In the case of
the CME or its finite state projection, this time scale disparity
results in numerical stiffness. There has been significant
progress in developing approximate MC algorithms to deal
with these concerns [7], [8]. In these, the fast dynamics are
essentially averaged, and the slow dynamics are simulated
assuming instantaneous thermal equilibrium. The FSP algo-
rithm is also amenable to time-partitioning approximation



schemes that speed up computation at a small cost to the
accuracy [13], [14]. In the original works, the time scale
separation is carried out using perturbation theory. In this
paper we take a linear systems theory approach.

In the configuration space, some subsets of configuration
points are connected by fast reactions. Through a simple
permutation of the CME, these points can be clustered
together to form m fast groups. In turn, these clusters are
connected to one another by slower reactions. After some
permutation, the N dimensional finite state projection of the
CME can be written:

Ṗ = AP = (H + εG)P, (7)

where H is a block diagonal matrix, H =
diag{H1,H2, . . . ,Hm}, and each Hi is the generator
matrix for the ith fast cluster, and εG is the generator
matrix of the reactions that take the system from one cluster
to another. Each Hi has a single eigenvalue equal to zero,
and its corresponding left and right eigenvectors are ui and
vi, respectively. We define the following matrices:

U =

 u1 0 . . .
0 u2 . . .
...

...
. . .

 , and V =

 v1 0 . . .
0 v2 . . .
...

...
. . .

 .

Let S = [ V R ] be a square matrix in which the columns
of R are the remaining N −m right eigenvectors of H. The
inverse of S is given by S−1 =

[
UT LT

]T
such that we

have the following similarity transformation for H:

S−1HS =
[

0 0
0 Λ

]
, Λ = diag(λm+1, . . . , λN ).

where the first m diagonal elements correspond to the zero
eigenvalues of the Hi blocks. Note that both S and S−1

have block structures similar to H. The columns of S and
the rows of S−1 are eigenvectors of the smaller Hi blocks
and are relatively inexpensive to compute.

We assume that non-zero eigenvalues of H are ordered
so that 0 > Re{λm+1} ≥ Re{λm+2}, . . . ≥ Re{λN}. Ap-
plying the coordinate transformation

[
yT

1 (t) yT
2 (t)

]T =
S−1P(t), (7) becomes:[

ẏ1(t)
ẏ2(t)

]
=

[
εUGV εUGR
εLGV Q

] [
y1(t)
y2(t)

]
, (8)

where we have defined the matrix Q = Λ + εLGR.
There are two important observations to make regarding

this transformed system. First, the matrix UGV is itself a
generator for a Markov process in that it satisfies the two
sufficient conditions: (i) its columns sum to zero, and (ii)
its off-diagonal elements are non-negative. To show that,
note that 1T U = 1T and therefore 1T UG = 1T G = 0.
Furthermore, [UGV]ij = uiGJiJjvj , where ui and vj are
non-negative for any (i, j) and the submatrix GJiJj

is non-
negative for any i 6= j. Hence the off-diagnoal elements
of UGV are indeed non-negative. The second observation
that one can make is that for ε � |Re{λm+1}|, linear
perturbation theory assures us that the matrix Q is Hurwitz,

and its eigenvalues are close to {λm+1, λm+2, . . . , λN}. In
particular if we will let λ̃ denote the real part of the least
stable eigenvalue of Q, we know that λ̃ ≈ Re{λm+1}.

With these observations in mind, we now examine the
forced dynamics : ẏ2(t) = εLGVy1(t) + Qy2(t), which
has a solution comprised of a zero-state and a zero-input
response: y2(t) = yzs

2 (t) + yzi
2 (t). Because Q is Hurwitz,

with eigenvalues all having real parts less than or equal
to λ̃, the zero-input response, yzi

2 (t), is bounded by an
exponentially decaying expression. Therefore, there exists a
constant K1 such that

∣∣yzi
2 (t)

∣∣
1
≤ K1 exp(λ̃t), for all t ≥ 0.

By the definition of our transformation |y1(t)|1 =
|UP(t)|1 = 1, and |LGVy1(t)|1 is bounded. Since Q is
Hurwitz and the input is O(ε), we are guaranteed that the
zero-state solution, yzs

2 (t) satisfies |yzs
2 (t)|1 = O(ε) for all

t ≥ 0. Combining the two solutions, we have the following
bounds on y2(t)

|y2(t)|1 ≤ K1 exp(λ̃t) + O(ε), (9)

for all times t ≥ 0.
The forced dynamics of y1(t) given by the ẏ1(t) =

εUGVy1(t) + εUGRy2(t), has a solution at the chosen
final time tf :

y1(tf ) = exp(εUGVtf )y1(0)

+ ε

∫ tf

0

exp(εUGV(tf − τ))UGRy2(τ)dτ.

Note that since UGV is a infinitesimal generator of a
Markov process, every column of exp(UGVt) has a sum of
exactly one for any t ≥ 0, and ||exp(εUGV(t− τ))||1 = 1
for all ε ≥ 0 and t ≥ τ . Therefore

|y1(tf )− exp(εUGVtf )y1(0)|1 ≤ ε

∫ tf

0

|UGRy2(τ)|1 dτ.

Combining this with (9) and defining the constant K2 =
K1 ||UGR||1, one obtains the following bound on the error
of y1 at t = tf :

|y1(tf )− exp(εUGVtf )y1(0)|1

≤ ε

∫ tf

0

K2 exp(λ̃τ) + O(ε)dτ

≤ εK2
1
|λ̃|

+ tfO(ε2).

Therefore, for any fixed tf ≥ 0,

|y1(tf )− exp(εUGVtf )y1(0)|1 = O(ε). (10)

Combining (9) and (10), we have the following bounds on
our approximation error:∣∣∣∣[ y1(tf )

y2(tf )

]
−

[
exp(εUGVtf )y1(0)

0

]∣∣∣∣
1

≤ K1 exp(λ̃tf ) + O(ε).

Substituting the initial condition,[
y1(0)
y2(0)

]
= S−1P(0) =

[
UP(0)
LP(0)

]
,



and performing the reverse similarity transformation,
P(tf ) = Vy1(tf ) + Ry2(tf ), yields:

|P(tf )− V exp(εUGVtf )UP(0)|1
≤ K1 ||R||1 |LP(0)|1 exp(λ̃tf ) + O(ε).

Thus, this reduced model differs from the full system by at
most an exponentially decreasing transient term plus a term
of order ε. However, the reduced system can have a much
smaller dimension and its solution is much easier to compute.

III. MODEL INVALIDATION USING THE SUM OF
SQUARES APPROACH

A. Theory

Model invalidation techniques provide a way to rigor-
ously demonstrate the inability of a given model to capture
observed system behaviors. The role of model invalidation
techniques is to invalidate a model, by proving that some
experimental data are inconsistent with the model, thus
indicating that a refinement of the model is required.

In this section, we present a recently proposed method-
ology for invalidation of nonlinear models with noise and
uncertain parameters [16]. The methodology relies on finding
functions called barrier certificates. The existence of a
barrier certificate generates a contradiction between model
and some time-domain experimental data, in the sense that
some level sets of this certificate act as barriers between
possible model trajectories and data. The advantage of this
approach is that barrier certificates can be computed using
convex methods via the sum of squares decomposition and
semidefinite programming, e.g., using the SOSTOOLS soft-
ware [17], [18].

Given the system of ordinary differential equations

ẋ(t) = f(x(t), p, t), (11)

where x(t) ∈ Rn is the vector of state variables, t is time, and
p ∈ Rm is the parameter vector, assumed to take its value in
a set P ⊂ Rm. Suppose an experiment has been performed
with the real system, and two measurements have been taken
at time t = 0 and t = T . Suppose further that these
measurements indicate that x(0) ∈ X0 and x(T ) ∈ XT ,
where both X0 and XT are subsets of Rn. Assuming that
x(t) ∈ X for all t ∈ [0, T ], where X ⊆ Rn, the invalidation
problem can be stated as follows:

Problem 1: Given the model (11), parameter set P , and
trajectory information {X0, XT , X}, prove that for all pos-
sible parameter p ∈ P , the model (11) cannot produce a
trajectory x(t) such that x(0) ∈ X0, x(T ) ∈ XT , and
x(t) ∈ X,∀t ∈ [0, T ]. When such a proof is found, we
say that the model (11) and parameter set P are invalidated
by {X0, XT , X}.

Traditionally, model invalidation is achieved by running a
very large number of simulations of (11) with the parameters
p and initial conditions x(0) randomly chosen from P
and X0. If after such exhaustive simulations no trajectory
is found that is consistent with the data, the model is
declared invalidated. Clearly, such an invalidation, cannot be

considered conclusive, as it is impossible to test all parameter
values p and all initial conditions x(0).

As an alternative approach, we describe a method that
is based on the creation of a certain function of state,
parameters, and time, which which is referred to as a barrier
function, or a barrier certificate. A barrier certificate yields
an exact proof of inconsistency between model and data by
providing a barrier between feasible trajectories of the model
starting at X0 and the final measurement set XT . One of the
main advantages of this approach is that no simulations of
the model are required. The barrier certificate approach is
captured by the following:

Theorem 2 ([16]): Let the model (11) and the sets
P,X0, XT , X be given, with f(x, p, t) being continuous in
x and t. Suppose that there exists a real-valued function
B(x, p, t) that is differentiable with respect to x and t, such
that

B(xT , p, T )−B(x0, p, 0) > 0
∀(xT , x0, p) ∈ XT ×X0 × P, (12)

∂B

∂x
(x, p, t)f(x, p, t) +

∂B

∂t
(x, p, t) ≤ 0

∀(x, p, t) ∈ X × P × [0, T ]. (13)

Then the model (11) and its associated parameter set P
are invalidated by {X0, XT , T}. The function B(x, p, t) is
referred to as a barrier certificate.

The proof of this result should be fairly intuitive. From
the experimental data and (12), B(x(t), p, T ) is greater than
B(x(t), p, 0). Yet, (13) implies that B(x(t), p, t) must not
increase in time whenever x(t) is a valid trajectory of the
model (11). Hence, the model must be inconsistent with the
experimental data.

The crux of the invalidation lies in the construction of
barrier certificates. Fortunately, for models with polynomial
vector fields and sets P,XTi , X, Ui described by polynomial
equalities and inequalities, a new computationally tractable
relaxation for constructing barrier certificates exists. This
relaxation relies on the sum of squares decomposition and
therefore can be achieved using convex programming. To see
this, start with the model (11) with a polynomial f(x, p, t)
and parameter set P defined as follows:

P = {p ∈ Rm : gP,i(p) ≥ 0 ∀i ∈ IP } (14)

where the gP,i(p)’s are polynomials in p, and IP is an index
set. Similarly, let the trajectory data be defined by

X0 = {x0 ∈ Rn : g0,i(x0) ≥ 0 ∀i ∈ I0}, (15)
XT = {xT ∈ Rn : gT,i(xT ) ≥ 0 ∀i ∈ IT }, (16)
X = {x ∈ Rn : gX,i(x) ≥ 0 ∀i ∈ IX}. (17)

Then a barrier certificate can be computed by solving the
convex optimization problem:

Program 3: Let the polynomial vector field f(x, p, t) and
the sets P,X0, XT , X in (14)–(17) be given. To invalidate the
model (11), find a polynomial B(x, p, t), a positive number
ε, and sums of squares MP,i(x0, xT , p), M0,i(x0, xT , p),



MT,i(x0, xT , p), NP,i(x, p, t), NX,i(x, p, t), Nt(x, p, t),
such that the expressions

B(xT , p, T )−B(x0, p, 0)− ε−
X
i∈IP

MP,i(x0, xT , p)gP,i(p)

−
X
i∈I0

M0,i(x0, xT , p)g0,i(x0)−
X
i∈IT

MT,i(x0, xT , p)gT,i(xT )

(18)

and

− ∂B

∂x
(x, p, t)f(x, p, t)− ∂B

∂t
(x, p, t)−

X
i∈IP

NP,i(x, p, t)gP,i(p)

−
X

i∈IX

NX,i(x, p, t)gX,i(x)−Nt(x, p, t)(Tt− t2) (19)

are sums of squares.
Next, we demonstrate this approach by invalidating a

biological model which lacks a key regulatory feedback loop.

B. Model Invalidation in The Heat Shock Response in E. coli

High temperatures cause cell proteins to unfold from their
native three dimensional structures, resulting in loss of cellu-
lar function. Cells have evolved gene regulatory mechanisms
to counter the effects of heat shock by expressing specific
genes that encode heat shock proteins (hsps) whose role is
to help the cell survive the consequence of the shock. In E.
coli, the heat shock (HS) response is implemented through an
intricate architecture of feedback loops centered around the
σ- factor that regulates the transcription of the HS proteins
under normal and stress conditions. The enzyme RNA poly-
merase (RNAP) bound to this regulatory sigma factor, σ32,
recognizes the HS gene promoters and transcribes specific
HS genes. The HS genes encode predominantly molecular
chaperones that are involved in refolding denatured proteins
and proteases that function to degrade unfolded proteins.

At physiological temperatures, there is very little σ32

present and hence little transcription of the HS genes.
When bacteria are exposed to high temperatures, σ32 first
rapidly accumulates, allowing increased transcription of the
HS genes and then declines to a new steady state level
characteristic of the new growth temperature. There are
two mechanisms by which σ32 levels are increased when
the temperature is raised [19]. First, the translation rate
of the rpoH mRNA (encoding σ32) increases immediately,
resulting in a fast 10-fold increase in the concentration of
σ32 [20]. This mechanism implements what we refer to as
the feedforward control loop. Second, during steady state
growth, σ32 is rapidly degraded (t1/2 = 1 minute), but is
stabilized for the first five minutes after temperature upshift,
so that its concentration rapidly increases.

In vivo evidence is consistent with the following titration
model for the HS response. The chaperone DnaK, and its
cochaperone DnaJ are required for the rapid degradation of
σ32 by the HS protease FtsH. Raising the temperature pro-
duces an increase in the cellular levels of unfolded proteins
that then titrate DnaK/J away from σ32, allowing it to bind

to RNA polymerase (resulting in increased trancription) and
stabilizing it in the process. Together, increased translation
and stabilization lead to a transient 15-20 fold increase in the
amount of σ32 at the peak of the HS response. The accu-
mulation of high levels of HS proteins leads to the efficient
refolding of the denatured proteins thereby decreasing the
pool of unfolded protein, freeing up DnaK/J to sequester
this protein from RNA polymerase. This implements what
is referred to as a sequestration feedback loop. Furthermore,
this sequestration itself promotes the degradation of σ32 and
results in feedback regulated degradation, mainly by the pro-
tease FtsH. We refer to this as the FtsH degradation feedback
loop. The overall result is a decrease in the concentration of
σ32 to a new steady state concentration that is dictated by
the balance between the temperature-dependent translation
of the rpoH mRNA and the level of σ32 activity modulated
by the hsp chaperones and proteases acting in a negative
feedback fashion.

1) A Model for the HS Response: In a previous work, we
have developed a detailed deterministic mathematical model
for the heat stress response in E. coli [21], [22], [23]. Using
first order kinetics (law of mass-action). The model describes
the molecular interactions described above, namely the
synthesis of new proteins, and the association/dissociation
activity of molecules. The dynamics described above were
modeled using differential rate equations, generating a set of
31 Differential-Algebraic Equations (DAEs) of the form

Ẋ(t) = F (t;X;Y )
0 = G(t;X;Y )

where X is a 11-dimensional vector whose elements are
the differential variables and Y is a 20-dimensional vector
whose elements are algebraic variables. This form is known
as a semi-explicit DAE. The model possesses 27 kinetic rate
parameters. Subsequently, a reduced order model was derived
using insight into the system’s architecture and separation
principles in time and concentrations. As in the full model,
this reduced model involves the dynamics of the basic
building blocks of the HS response, namely the σ factor (S),
the chaperones (D), and the protein folding mechanism. The
model equations are as follows

dDt

dt
= KdSf − αdDt

dSt

dt
= η(T )− α0St − αsS : D

dUf

dt
= K(T )Pfolded −KfoldU : D

S : D = Ks.Sf .Df

U : D = Ku.Uf .Df

Dt = Df + U : D + S : D

St = Sf + S : D

Pt = Pfolded + Uf + U : D (20)

where U : D is the complex formed by the binding of the
unfolded proteins Uf to D, S : D is the complex formed by
the binding of S to D, and Pt is the total number of proteins



Parameter Value
Kd 3 min−1

αd 0.015 min−1

η(T ) 10 molecule.min−1@ T1 & 60 @ T2

α0 0.03 min−1

αs 3 min−1

Ks 0.05 molecule−1

Ku 0.0254 molecule−1

K(T ) 40 min−1 @ T1 & 80 min−1 @ T2

Kfold 6000 min−1

Pt 2× 106 molecules

TABLE I
PARAMETER VALUES FOR HEAT SHOCK MODEL

in the cell, considered here to be constant. The parameters
used in this model are given in Table I.

We replace the algebraic constraints into the initial system
(20), then use the facts that St � Dt and that Uf � 1
in the wild type bacterial HS response and simplify the
expression for Sf and Df . Simple algebraic manipulations
yield a compact description for the reduced order HS model:

dDt

dt
= f1(Dt, Uf , St)− αdDt

dSt

dt
= η(T )− α0.St − f2(Dt, Uf , St)

dUf

dt
= K(T )[Pt − Uf ]− [K(T ) + Kfold]Dt (21)

As in the original equations, the feedforward control is
achieved by the temperature dependent function η(T ) in
the ODE describing the dynamics of St. f1(Dt, Uf , St) =

Kd
St

1+
KsDt

1+KuUf

and f2(Dt, Uf , St) = αs

KsDt
1+KuUf

1+
KsDt

1+KuUf

St de-

scribe the various feedback strategies implemented in the HS
response. f1 is the effect of the sequestration of S by D on
D formation, while f2 reflects the effect of the regulated
degradation of S through the action of the sequestration
itself. The dynamics of the third state Uf are much faster
than those of St and Dt. Such stiffness is also strongly
present in the full model and creates ill-conditioning and
algorithms that don’t exploit stiffness are almost certainly
doomed to suffer from it. However, stiffness can also be
exploited to robustly produce simplified models by singular
perturbation, as was done in deriving the 3-state from the full
model. By further setting dUf

dt = 0 to obtain a quasi-steady
state approximation, the third equation is then replaced by an
algebraic one, and the result is again a differential-algebraic
equation (DAE). The validity of this approximation has been
verified by simulation which showed virtually no difference
in the solution of the ODE as compared to that of the DAE.

2) Invalidation of the Model of Heat Shock Response in E.
coli: As we pointed out earlier, the creation of barrier certifi-
cates using SOSTOOLS can be used in model invalidation in
biological modeling. The key ideas of this methodology can
be illustrated in the context of the heat-shock example, where
at least two feedback loops are involved in the regulation
scheme. We will show rigorously that each loop adds its
own important function to the overall system and that both

are necessary to explain the observed behavior of the heat
shock system.

In previous work, we have used sensitivity analysis and
confirmed that these feedback loops indeed increase the
robustness to parametric uncertainty [21]. However, upon
disabling the degradation (FtsH) feedback loop, one observes
in simulation that the transient response to a temperature
increase becomes considerably slower. Achieving a faster
transient response in the absence of this (FtsH) feedback loop
necessitates a substantial increase in the protein synthesis
rate, and therefore, produces a larger number of chaperones.
Therefore, it is reasonable to hypothesize that the (FtsH)
feedback loop is essential for achieving a fast response to
the heat disturbance.

To illustrate how we might actually prove such a hy-
pothesis using the invalidation scheme in Section III-A, we
perform an experiment with the system to obtain some data
that will be used in the construction of a barrier certificate to
invalidate a model. We shall assume that the “real system”
is the model with the degradation (FtsH) loop (21) in place,
and use that data to invalidate a ’deficient model’ lacking
this feedback. If we denote the state variables (Dt, St, Uf )
by (x1, x2, x3), then the deficient model will just be ẋ =
f(x, p), where the vector field are defined by (21), without
the degradation loop.

An “experiment” (we use a numerical simulation of the
full system with both feedback loops in place) is performed,
with the parameters fixed at the nominal values. We observe
that the corresponding system trajectory satisfies x(0) ∈ X0

and x(25) ∈ XT , where

X0 = {(x1, x2, x3) ∈ R3 : 0.9D0 ≤ x1 ≤ 1.5D0

0.9S0 ≤ x2 ≤ 1.5S0, 2.9U0 ≤ x3 ≤ 3.1U0} (22)

XT = {(x1, x2, x3) ∈ R3 : 1.5D0 ≤ x1 ≤ 2.5D0,

2S0 ≤ x2 ≤ 3S0, 0.5U0 ≤ x3 ≤ 1.5U0} (23)

with D0, S0, and U0 denoting their steady state values at low
temperature. Intervals are used in order to take into account
the effects of measurement noise and uncertainty in initial
conditions. We observe that from time t = 0 to t = 25, the
state variables satisfy x(t) ∈ X , with

X = {(x1, x2, x3) ∈ R3 : 0.9D0 ≤ x1 ≤ 2.5D0,

0.9S0 ≤ x2 ≤ 8S0, 0.2U0 ≤ x3 ≤ 4U0}. (24)

which we add to our apriori data.
For the deficient model, we will focus on three parameters

p = (Kd, α0, η(T )), and assume that the rest are fixed at the
nominal values. Plausible ranges for these parameters define
the parameter set P :

P = {(Kd, α0, η(T )) ∈ R3 : 0.5Kd ≤ Kd ≤ 5Kd,

0.5α0 ≤ α0 ≤ 1.5α0, 0.5η(T ) ≤ η(T ) ≤ 1.5η(T )}, (25)

where Kd, α0, and η(T ) denote their nominal values. We
deliberately make the upper bound for Kd quite large, since
one obvious way for obtaining a fast response is to increase



the number of chaperones, corresponding to increasing this
parameter.

Using SOSTOOLS, we search for (and find) a barrier
certificate for these model and data,

B(x, t) = 1.4233t− 4.4566x2 − .0051737x3 + .021541x1tx3

+ .016599tx2
1 + .020129tx2

2 − .081828x1t− .054129x3t

− .71041x2t + .54734× 10−4x3tx2 + .0022033x1tx2

+ .0067639x1 − .76233× 10−3x3x2 + .0010018x3x1

+ .0052243t2x1 + .02375t2x2 − .66663× 10−3t2x3

− .68942× 10−3t2x2
1 − .0024426t2x2

2

+ .74858× 10−4t2x2
3 + .0029471t2 + .95341× 10−3x2

1

+ .010339x2
2 + .27438× 10−3x1t

2x3

− .40973× 10−5t2x3x2 − .79472× 10−3t2x1x2

− .015999x2x1 + .0052841x2
3t + .0019683x2

3,

in effect proving that the model without the degradation
(FtsH) loop and with parameters Kd, α0, η(T ) satisfying (25)
cannot possibly generate a time response that satisfies (22)–
(24). This in turn suggests that an inherent mechanism is
missing from this model. In practice, the data is generated
by real experiments, and the invalidation of a proposed model
will provide very useful information to the biologist because
it suggests either missing components, missing interactions,
or both. In some ways, model invalidation is more important
to the experimental biologist than creating a quantitative
model that is consistent with the experiments.

IV. CONCLUSIONS

In this paper we have presented two instances in which
systems theory has recently been applied to analyze biolog-
ical networks. In the first example, we showed how linear
systems theory led to the development and improvement of
the Finite State Projection (FSP) method for the solution
to the Chemical Master Equation (CME). Here, we have
extended that method to the case of time varying reaction
propensity functions. We have also included a new systems
theory based proof to show how a time scale separation
reduction scheme can significantly increase the efficiency of
the FSP method. These and other applications of systems
theory have made the solution of the CME a computationally
tractable problem for a much wider range of stochastic gene
regulatory systems. In the second section, we have shown
how systems theory can be used to systematically aid in
the development of gene regulatory models. For a proposed
model and a given set of input and output data, one can
use sum of squares techniques to ascertain if there exists
any possible set of parameters for which the model may
be valid. Otherwise, the model is known to be insufficient.
This approach has been applied to show that a particular
model of the heat shock response in E. coli cannot possibly
be valid unless it includes a key feedback mechanism. This
type of reasoning can lead researchers to (1) pinpoint critical
gene regulatory mechanisms; (2) theorize new mechanisms
to account for discrepancies between model predictions and

experimental observations; and (3) suggest additional exper-
iments to test these theories.
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