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Aggregation-Fragmentation Processes

• Chemical Physics: polymerization (Smoluchowsky, Flory, Stockmeyer)

• Computer Science: random networks (Erdos, Renyi)

• Atmospheric Science: cloud formation (Drake)

• Astrophysics (Chandrasekar)

• Surface Science: Island growth (Amar)

 A random process in which: 
small things combine to form larger things (aggregation) 

and larger things break into smaller things (fragmentation) 

Ubiquitous physical process



• Aggregation: merger of two small chains into a longer chain

• Fragmentation: breakage of a large chain into to smaller chains

• Process is perfectly reversible when rates are non-zero

• Initial Condition: N monomers

• Goal: find the steady-state size distribution

The Random Process

[i] + [j]
Kij−→ [i + j]

[i + j]
Fij−→ [i] + [j]

Kij != 0 Fij != 0

ck(t = 0) = δk,0



• Describes the evolution of the size distribution 

• Provides exact description when:

- System is infinite (thermodynamic limit)

- System is perfectly mixed (no spatial correlations)

The Master Equation

[i] + [j]
Kij−→ [i + j] [i + j]

Fij−→ [i] + [j]

dck

dt
=

1
2

∑

i+j=k

Kij ci cj − ck

∑

j≥1

Kkj cj +
∑

j≥1

Fkj cj+k −
1
2

ck

∑

i+j=k

Fij

Implicitly assumes size distribution is finite!
(number of chains of size k is proportional to N) 



• Steady-state size distribution satisfies 

• Solve by equating aggregation and fragmentation fluxes

• Detailed balance condition

• Fluxes between any two states of the system balance

• Example: constant rates yield an exponential distribution

Equilibrium Steady-States

0 =
1
2

∑

i+j=k

Kij ci cj − ck

∑

j≥1

Kkj cj +
∑

j≥1

Fkj cj+k −
1
2

ck

∑

i+j=k

Fij

Kij ci cj = Fij ci+j

Kij = r, Fij = 1 =⇒ ck ∝ rk

When do equilibrium solutions exist? 



• Detailed balance condition

• For example, take k=1,2,3,4

• Solution exists only when rates satisfy the condition

• Detailed balance equation over-determined

• An infinite set of conditions on the rates

Detailed Balance Condition

Kij ci cj = Fij ci+j

K11c
2
1 = F11c2

K12c1c2 = F12c3

K13c1c3 = F13c4

K22c
2
2 = F22c4

K12

F12

K13

F13
=

K11

F11

K22

F22

Generically, steady-state is nonequilibrium in nature



• Aggregation: Constant reaction rate between any two monomers

• Fragmentation: breakage of a large chain into to smaller chains

• Master equation

• Detailed balance condition violated

Product aggregation + constant fragmentation

Kij = ij

Fij = λ

0 =
1
2

∑

i+j=k

ij cicj − k ck + λ
∞∑

j>k

cj −
λ

2
(k − 1)ck

random network (erdos-renyi)
gelation (flory-stockmayer)

polymer degradation (ziff)

K12

F12

K13

F13
!= K11

F11

K22

F22

Nonequilibrium steady-state



I. Thermodynamic Phase
(strong fragmentation)



Strong Fragmentation (       )
• Moments of the size distribution

• Total density of clusters is finite when 

• Cluster size distribution is finite for all k

• Large clusters are exponentially rare (from generating function) 

M0 = 1− λ−1 1
2

=
λ

2
(1−M0)

Mn =
∞∑

k=1

knck

λ > 1

0 =
1
2

∑

i+j=k

ij cicj − k ck + λ
∞∑

j>k

cj −
λ

2
(k − 1)ck

c1 =
λ− 1
λ + 1

c2 =
(λ− 1)(3λ + 1)
(λ + 1)2(3λ + 4)

ck ∼ k−5/2 e−const×k k →∞
1. Finite density, number of clusters proportional to N
2. Many small clusters, few large clusters
3. Total density of clusters vanishes as           ??? λ→ 1

λ > 1



Near critical behavior (           ) 
• Perturbation analysis, small parameter 

• Nonlinear convolution term irrelevant, linear equations 

• Explicit linear recursion

• Power-law size distribution over a diverging scale 

0 =
1
2

∑

i+j=k

ij cicj − k ck + λ
∞∑

j>k

cj −
λ

2
(k − 1)ck

1. Fewer small clusters, more large clusters
2. Nonlinear convolution term becomes irrelevant

λ = 1 + ε

ck = ε bk

ε = λ− 1

k bk =
∞∑

j=k+1

bj −
1
2

(k − 1)bk

bk+1

bk
=

k − 1
3

k + 4
3

bk ∝
Γ(k − 1

3 )
Γ(k + 4

3 )

ck ∼ ε k−5/3 k " ε−3



II. Nonthermodynamic Phase
(weak fragmentation)



Sub-critical behavior (        ) 
• Nonlinear convolution term is irrelevant, linear equations

• Power-law size distribution, exponent varies

• Mass conservation dictates system size dependence 

• Total number of clusters grows sub-linearly! 

Nonthermodynamic state!
number of clusters is not proportional to system size N

λ < 1

k ck = λ
k−1∑

j=1

cj −
λ

2
(k − 1)ck

ck ∼ k−β β =
2 + 3λ

2 + λ

ck+1

ck
=

k − λ
2+λ

k + 2(1+λ)
2+λ

1 < β < 5/3

ck ∼ Nβ−2k−β 1 =
N∑

k=1

kck

Ntot ∼ Nγ γ =
2λ

2 + λ
0 < γ < 2/3



Thermodynamics vs. 
Nonthermodynamic states

• Strong fragmentation: thermodynamic state

- Total density is finite

- Total number of clusters is proportional to N

- Many small clusters

• Weak fragmentation: nonthermodynamic state

- Total density decays with system size

- Total number of clusters grows slower than N

- Few large clusters

Dramatic consequence of nonequilibrium dynamics



Microscopic vs Macroscopic Clusters

cN ∼ N−1

λ

λc = 1

• Strong fragmentation: sizes on a finite scale

• Weak fragmentation: sizes on all scales

- Macroscopic clusters (“gels”) exist

- Macroscopic clusters contain finite fraction of mass

Master equations do not involve N!



Monte Carlo Simulations
• Master equations “know nothing” about N

• Monte Carlo simulations involve N

• Sub-linear behavior causes slow convergence

100 101 102 103 104

k
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

ρk

simulation
theory

100 101 102 103 104 105 106

N
100

101

102

103

M

power law size distribution sub-linear number of clusters

Simulations confirm the theoretical predictions 

M ∼ N2/5



Cascade
• Balance of two fluxes of mass

• Aggregation: transfers mass from small to large scale

• Fragmentation: transfers mass from large to small scales

k

Nck

N

Nγ

1

(k/N)−β

1

fluid turbulence (kolmogorov)

wave turbulence (zakharov)

advection (falkovich)

granular matter(ebn, machta)



• Moments diverge at a finite time

• Finite time singularity

• Power-law size distribution (balance aggregation & fragmentation fluxes)

• The size of the nucleating gel is nearly macroscopic

• Second relaxation relaxation step 

Dynamics: gelation transition

Mn ∼ (tg − t)−(n−1)

ck ∼ k−2[ln k]−1

kg ∼ N [lnN ]−1

τ ∼ lnN

Two stage dynamics

dMn

dt
=

1
2

n−1∑

m=1

(
n

m

)
Mm+1Mn+1−m −

λ

2
n− 1
n + 1

Mn+1

+
λ

n + 1

n∑

m=2

(
n + 1

m

)
BmMn+1−m



Compare with classic gelation

Qualitatively different critical behavior

moments size
distribution

critical       
gel size

aggregation-
fragmentation

aggregation

Mn ∼ (tg − t)−(n−1) ck ∼ k−2[ln k]−1 kg ∼ N [lnN ]−1

kg ∼ N2/3ck ∼ k−5/2Mn ∼ (tg − t)−(2n−3)



Summary
• Nonequilibrium phase transition

• Strong fragmentation: thermodynamic phase

- Number of clusters proportional to system size

- Few large clusters (exponential tail)

• Weak fragmentation: nonthermodynamic phase

- Number of clusters much smaller system size

- Many large clusters (powerlaw tail)

- Macroscopic clusters exist, contain finite fraction of mass

- Finite time singularity: macroscopic clusters nucleate

- Giant fluctuations (macroscopic size)



Outlook
• Master equations 2.0

• General theory of nonequilibrium steady-states

• Dynamics beyond the gelation point

• Finite-size scaling near the phase transition point

Ntot ∼
{

C(λ) N2/3 λ ↑ 1
(λ− 1)N λ ↓ 1
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