Energy Cascades in Granular Matter

Eli Ben-Naim

Theory Division

Los Alamos National Laboratory

with: Jon Machta (Massachusetts)

cond-mat/0411743 http://cnls.lanl.gov/~ebn

Energy dissipation in granular media

- Responsible for collective phenomena
 - » Clustering
 - » Hydrodynamic instabilities
 - » Shocks
 - » Pattern formation
- Anomalous statistical mechanics:
 - ➢No energy equipartition
 - >Nonequilibrium distributions

$$P(E) \neq \exp(-E/kT)$$

Inelastic gas

- Vigorous driving
- Spatially uniform system
- Particles undergo binary collisions
- Velocity changes due to
 - 1. Inelastic collisions (lose energy)
 - 2. Energy input (gain energy)
- What is the typical velocity (granular "temperature")?

$$T = \left\langle v^2 \right\rangle$$

What is the velocity distribution?
 f(v)

Inelastic Collisions

Relative velocity reduced by 0<r<1</p> $v_1 \int v_2$ $v_1 - v_2 = -r(u_1 - u_2)$ Momentum is conserved u_1 $V_1 + V_2 = u_1 + u_2$ Energy is dissipated $\Delta E \propto -(1-r)(\Delta v)^2$ **Limiting cases**

 $r = \begin{cases} 0 & \text{completely inelastic } (\Delta E = \max) \\ 1 & \text{elastic } (\Delta E = 0) \end{cases}$

u₂

Freely decaying states

- Energy loss in a collision $\Delta T = \langle v^2 \rangle$
- Collision rate $\Delta t \sim 1/(\Delta v)^{\lambda}$
- Energy balance equation

$$\frac{\Delta T}{\Delta t} \sim -(\Delta v)^{2+\lambda} \implies \frac{dT}{dt} \sim -T^{1+\lambda/2}$$

Temperature decays, system comes to rest

$$T \sim t^{-2/\lambda} \implies P(\mathbf{v}) \rightarrow \delta(\mathbf{v})$$

Trivial steady-state

Haff, JFM 1982

Kinetic Theory

◆ Collision rule (linear)
$$(u_1, u_2) \rightarrow (pu_1 + qu_2, qu_1 + pu_2) \qquad r = 1 - 2p$$
◆ Boltzmann equation
$$\frac{\partial P(v)}{\partial t} = \iint du_1 du_2 P(u_1) P(u_2) |u_1 - u_2|^{\lambda} \left[\delta(v - pu_1 - qu_2) - \delta(v - u_2) \right]$$
Collision rate

Collision rate related to interaction potential

$$U(r) \sim r^{-\gamma} \qquad \lambda = 1 - 2\frac{d-1}{\gamma} = \begin{cases} 0 & \text{Maxwell molecules} (\alpha = 2, 2D) \\ 1 & \text{Hard spheres} (\alpha = \infty) \end{cases}$$

Kinetic Theory

◆ Collision rule (linear) $(u_1, u_2) \rightarrow (pu_1 + qu_2, qu_1 + pu_2) \qquad r = 1 - 2p$ ◆ Boltzmann equation $\underbrace{\partial R(y)}_{\partial t} = \iint du_1 du_2 P(u_1) P(u_2) |u_1 - u_2|^{\lambda} \left[\delta(v - pu_1 - qu_2) - \delta(v - u_2) \right]_{\text{collision rate}} \qquad \text{gain} \qquad \text{loss}$

Collision rate related to interaction potential

 $U(r) \sim r^{-\gamma} \qquad \lambda = 1 - 2\frac{d-1}{\gamma} = \begin{cases} 0 & \text{Maxwell molecules} (\alpha = 2, 2D) \\ 1 & \text{Hard spheres} (\alpha = \infty) \end{cases}$

Are there nontrivial steady states?

An exact solution

- One-dimensional Maxwell molecules
- Fourier transform obeys a closed equation

$$F(k) = F(pk)F(k - pk) \qquad F(k) = \int dv e^{ikv} f(v)$$

Exponential solution

$$F(k) = \exp(-|k|\mathbf{v}_0)$$

Lorentzian velocity distribution

$$f(\mathbf{v}) = \frac{1}{\pi v_0} \frac{1}{1 + (v / v_0)^2}$$

Nontrivial steady states do exist

Properties of stationary state

Perfect balance between collisional loss and gain
 Power-law high-energy tail

$$P(\mathbf{v}) \sim \mathbf{v}^{-\sigma} \qquad \sigma = 2$$

Infinite energy, infinite dissipation!

Is this stationary state physical?

Cascade Dynamics (1D)

Collision rule: arbitrary velocities

$$(u_1, u_2) \rightarrow (pu_1 + qu_2, pu_2 + qu_1)$$

Large velocities cascade

$$v \rightarrow (pv, qv)$$

High-energies: linearized equation

$$\frac{1}{p^{1+\lambda}}f\left(\frac{\mathbf{v}}{p}\right) + \frac{1}{q^{1+\lambda}}f\left(\frac{\mathbf{v}}{q}\right) - f(\mathbf{v}) = 0$$

Power-law tail

$$f(\mathbf{v}) \sim \mathbf{v}^{-\sigma} \qquad \sigma = 2 + \lambda$$

Cascade Dynamics

• Collision process: large velocities $V \rightarrow (\alpha V, \beta V)$

Stretching parameters related to impact angle

$$\alpha = (1 - p)\cos\theta \quad \beta = [1 - (1 - p^2)\cos^2\theta]^{1/2}$$

Energy decreases, velocity magnitude increases

$$\alpha^2 + \beta^2 \le 1 \qquad \alpha + \beta \ge 1$$

Steady state equation

$$\left\langle \left(\frac{1}{\alpha^{d+\lambda}}f\left(\frac{\mathbf{v}}{\alpha}\right) + \frac{1}{\beta^{d+\lambda}}f\left(\frac{\mathbf{v}}{\beta}\right) - f(\mathbf{v})\right)\cos^{\lambda}\theta \right\rangle = 0$$

Power-laws are generic

Velocity distributions always has power-law tail

$$f(\mathbf{v}) \sim \mathbf{v}^{-\sigma}$$

Exponent varies with parameters

$$\frac{1-{}_{1}F_{2}\left(\frac{d+\lambda-\sigma}{2},\frac{\lambda+1}{2},\frac{d+\lambda}{2},1-p^{2}\right)}{\left(1-p\right)^{\sigma-d-\lambda}}=\frac{\Gamma\left(\frac{\sigma-d+1}{2}\right)\Gamma\left(\frac{d+\lambda}{2}\right)}{\Gamma\left(\frac{\sigma}{2}\right)\Gamma\left(\frac{\lambda+1}{2}\right)}$$

• Tight bounds $1 \le \sigma - d - \lambda \le 2$

• Elastic limit is singular $\sigma \rightarrow d + 2 + \lambda$

Dissipation always divergent Energy finite or infinite

The Characteristic Exponent

Monte Carlo Simulations

Excellent agreement between theory and simulation

Further confirmation

Hard spheres (1D, 2D)

Injection, cascade, dissipation

Energy is injected at large velocity scales
Energy cascades from large velocities to small velocities
Energy dissipated at small velocity scales

Conclusions

- New class of nonequilibrium stationary states
- Energy cascades from large velocities to small velocities
- Power-law high-energy tail
- Energy input at large scales balances dissipation
- Temperature insufficient to characterize velocities
- Experimental realization: requires a different driving mechanism