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Energy dissipation in granular mediaEnergy dissipation in granular media

Responsible for collective phenomena

» Clustering

» Hydrodynamic instabilities

» Shocks

» Pattern formation

Anomalous statistical mechanics:

No energy equipartition

Nonequilibrium distributions
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Inelastic gasInelastic gas

Vigorous driving
Spatially uniform system
Particles undergo binary collisions
Velocity changes due to 

1. Inelastic collisions (lose energy)
2. Energy input (gain energy)

What is the typical velocity (granular “temperature”)?

What is the velocity distribution?
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Nonequilibrium velocity distributionsNonequilibrium velocity distributions
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Mechanically vibrated beads
Rouyer & Menon 2000

Electrostatically driven powders
Aronson & Olafsen 2002
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Inelastic CollisionsInelastic Collisions

Relative velocity reduced by 0<r<1

Momentum is conserved 

Energy is dissipated

Limiting cases  
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Freely decaying statesFreely decaying states

Energy loss in a collision
Collision rate
Energy balance equation

Temperature decays, system comes to rest 
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Trivial steady-state
Haff, JFM 1982



Kinetic TheoryKinetic Theory

Collision rule (linear)

Boltzmann equation

Collision rate related to interaction potential
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Kinetic TheoryKinetic Theory

Collision rule (linear)

Boltzmann equation

Collision rate related to interaction potential
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Are there nontrivial steady states?



An exact solutionAn exact solution

One-dimensional Maxwell molecules
Fourier transform obeys a closed equation

Exponential solution

Lorentzian velocity distribution
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Nontrivial steady states do exist



Properties of stationary stateProperties of stationary state

Perfect balance between collisional loss and gain
Power-law high-energy tail

Infinite energy, infinite dissipation!

2v~)v( =− σσP

Is this stationary state physical?



Cascade Dynamics (1D)Cascade Dynamics (1D)

Collision rule: arbitrary velocities

Large velocities cascade

High-energies: linearized equation

Power-law tail
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Cascade DynamicsCascade Dynamics

Collision process: large velocities

Stretching parameters related to impact angle

Energy decreases, velocity magnitude increases

Steady state equation
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Power-laws are genericPower-laws are generic

Velocity distributions always has power-law tail

Exponent varies with parameters

Tight bounds
Elastic limit is singular
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Dissipation always divergent
Energy finite or infinite



The Characteristic ExponentThe Characteristic Exponent



Monte Carlo SimulationsMonte Carlo Simulations

Compact initial distribution
Inject energy at very large 
velocity scales only
Maintain constant total 
energy
“Lottery” implementation: 
– Keep track of total energy 

dissipated, ET

– With small rate, boost a particle 
by ET

Excellent agreement between theory and simulation



Further confirmationFurther confirmation

Maxwell molecules (1D, 2D) Hard spheres (1D, 2D)

N=107 N=105



Injection, cascade, dissipationInjection, cascade, dissipation

ln f

ln v
Energy is injected at large velocity scales
Energy cascades from large velocities to small velocities
Energy dissipated at small velocity scales



ConclusionsConclusions

New class of nonequilibrium stationary states
Energy cascades from large velocities to small 
velocities
Power-law high-energy tail
Energy input at large scales balances dissipation
Temperature insufficient to characterize velocities 
Experimental realization: requires a different driving 
mechanism


