Random Graphs with Bounded Degrees

Eli Ben-Naim
Los Alamos National Laboratory

with: Paul Krapivsky (Boston)
E. Ben-Naim and P.L. Krapivsky

Phys. Rev. E 83, 061102 (2011) \& J. Stat. Mech. P11008 (2011) \& EPL 97, 48003 (2012)
arXiv:1102.5348 \& arXiv:1110.1134 \& arXiv:1112.0049
Talk, paper available from: http://cnls.lanl.gov/~ebn

IEEE NetSciCom 2012, March 30, 2012

Menu

- Aperitif: Introduction
- Motivation
- Problem: Giant component in a regular random graph
- Tutorial: Classical Random Graphs
- Main Course: Regular Random Graphs
- Degree distribution
- Emergence of Giant Component
- Finite-size scaling Laws
- Dessert: Shuffling Algorithms and Rings

Motivation

In many network problems, the degree is bounded

- Social network: bounded number of friends Wasserman 88
- Power grids: transmission lines
- Communication networks: cellphone towers
- Computer networks
- Physics: bounded number of neighbors in a bead pack Girvan 10
- Chemistry: bounded number of chemical bonds in branched polymers

Problem: Generating Regular Random Graphs

- Initial state: regular random graph (degree $=0$)
- Define two classes of nodes
- Active nodes: degree $<\mathrm{d}$
- Inactive nodes: degree = d
- Sequential linking
- Pick two active nodes
- Draw a link
- Final state: regular random graph (degree = d)

Emergence of the Giant Component

$\checkmark \mathrm{d}=1$ microscopic graphs, dimers $0-00000$
$\checkmark \mathrm{d}=2$ mesoscopic graphs, rings oo \&-9 go $N_{k}=k^{-1}$
? $\mathrm{d}>2$ one macroscopic graph = "giant component"

- Dwarf component phase: microscopic graphs only
- Giant component phase: one macroscopic

Question

How many links (per node) are needed for the giant component to emerge?

> Answer
> 0.577200

The kinetic approach

- Implicitly take the infinite system size limit
- Implicitly take an average over all realizations of the stochastic process
- Introduce the notion of continuous time variable
- For evolving graphs, time=number of links per node
- Describe the time evolution of probability distributions through differential equations
- Heavily used in physics, chemistry, biology

Discrete mathematics gone continuous!

Evolving Classical Random Graphs

- Initial state: N isolated nodes
- Dynamical linking
I. Pick 2 nodes at random

2. Connect the 2 nodes with a link
3. Augment time $t \rightarrow t+\frac{1}{2 N}$

- Each node experiences one linking event per unit time

Degree Distribution

- Distribution of nodes with degree j at time t is $n_{j}(t)$
- Linking Process is very simple

$$
j \rightarrow j+1
$$

- Linear evolution equation

$$
\frac{d n_{j}}{d t}=n_{j-1}-n_{j}
$$

- Initial condition: all nodes are isolated

$$
n_{j}(t=0)=\delta_{j, 0}
$$

- Degree distribution is Poissonian

$$
n_{j}(t)=\frac{t^{j}}{j!} e^{-t}
$$

- Average degree characterizes the entire distribution

Random Process, Random Distribution

Aggregation Process

- Cluster = a connected graph component
- Aggregation rate $=$ product of cluster sizes

$$
K_{i j}=i j
$$

- Master equation

$$
\frac{d c_{k}}{d t}=\frac{1}{2} \sum_{i+j=k} i j c_{i} c_{j}-k c_{k}
$$

$c_{k}(t=0)=\delta_{k, 1}$

- Cluster size density

$$
c_{k}(t)=\frac{1}{k \cdot k!}(k t)^{k-1} e^{-k t}
$$

- Divergent second moment = emergence of giant component

$$
M_{2}=\sum_{k} k^{2} c_{k} \quad M_{2}=(1-t)^{-1} \quad t_{g}=1
$$

Detecting the giant component

- Master equation

$$
\frac{d c_{k}}{d t}=\frac{1}{2} \sum_{i+j=k} i j c_{i} c_{j}-k c_{k}
$$

$$
c_{k}(t=0)=\delta_{k, 1}
$$

- Moments of the size distribution

$$
M_{n}(t)=\sum_{k} k^{n} c_{k}(t)
$$

- First moment is conserved

$$
\frac{d M_{1}}{d t}=M_{2}\left(M_{1}-1\right)=0 \quad \text { when } \quad M_{n}(t=0)=1
$$

- Second moment obeys closed equation

$$
\frac{d M_{2}}{d t}=M_{2}^{2}
$$

$$
M_{2}(0)=1
$$

- Finite-time singularity signals emergence of infinite cluster

$$
M_{2}=(1-t)^{-1}
$$

Dwarf Component Phase ($\mathrm{t}<1$)

- Microscopic clusters, tree structure
- Cluster size distribution contains entire mass

$$
M(t)=\sum_{k=1}^{\infty} k c_{k}=1
$$

- Typical cluster size diverges near percolation point

$$
k_{*} \sim(1-t)^{-2}
$$

- Critical size distribution has power law tail

$$
c_{k}(1) \simeq \frac{1}{\sqrt{2 \pi}} k^{-5 / 2}
$$

Giant Component Phase ($\mathrm{t}>1$)

- Macroscopic component exist, complex structure
- Cluster size distribution contains fraction of mass

$$
M(t)=\sum_{k=1}^{\infty} k c_{k}=1-g
$$

- Giant component accounts for "missing" mass

$$
g=1-e^{-g t}
$$

- Giant component takes over entire system

$$
g \rightarrow 1
$$

Generating a Regular Random Graph

- Initial state: regular random graph (degree $=0$)
- Define two classes of nodes
- Active nodes: degree $<\mathrm{d}$
- Inactive nodes: degree = d
- Sequential linking
- Pick two active nodes
- Draw a link
- Final state: regular random graph (degree = d)

Degree Distribution

- Distribution of nodes with degree j is n_{j}
- Density of active nodes $\nu=n_{0}+n_{1}+\cdots+n_{d-1} \quad \nu=1-n_{d}$
- Linking Process

$$
(i, j) \rightarrow(i+1, j+1) \quad i, j<d
$$

- Active nodes control linking process, effectively linear evolution equation

$$
\frac{d n_{j}}{d t}=\nu\left(n_{j-1}-n_{j}\right) \xrightarrow{\tau=\int_{0}^{t} d t^{\prime} \nu\left(t^{\prime}\right)} \quad \frac{d n_{j}}{d \tau}=n_{j-1}-n_{j}
$$

- Solve using an effective time variable

$$
n_{j}=\frac{\tau^{j}}{j!} e^{-\tau} \quad j<d
$$

Degree Distribution

Isolated nodes dominate initially All nodes become inactive eventually

Unbounded Random Graphs

- Cluster $=$ a connected graph component 0_{0}
- Links involving two separate components lead to merger
- Aggregation rate $=$ product of cluster sizes

$$
K_{i j}=i j
$$

- Master equation for size distribution

$$
\frac{d c_{k}}{d t}=\frac{1}{2} \sum_{i+j=k} i j c_{i} c_{j}-k c_{k} \quad c_{k}(t=0)=\delta_{k, 1}
$$

- Master equation for generating function

$$
\frac{\partial \mathcal{C}}{\partial t}+x \frac{\partial \mathcal{C}}{\partial x}=\frac{1}{2}\left(x \frac{\partial \mathcal{C}}{\partial x}\right)^{2} \quad \mathcal{C}(x, t)=\sum_{k} c_{k}(t) x^{k}
$$

Hamilton-Jacobi Theory I

- Master equation is a first-order PDE

$$
\begin{equation*}
\frac{\partial \mathcal{C}}{\partial t}+x \frac{\partial \mathcal{C}}{\partial x}=\frac{1}{2}\left(x \frac{\partial \mathcal{C}}{\partial x}\right)^{2} \tag{x,0}
\end{equation*}
$$

- Recognize as a Hamilton-Jacobi equation

$$
\frac{\partial \mathcal{C}(x, t)}{\partial t}+H(x, p)=0
$$

- By identifying "momentum" and "Hamiltonian"

$$
p=\frac{\partial \mathcal{C}}{\partial x} \quad \text { and } \quad H=x p-\frac{1}{2}(x p)^{2}
$$

- Hamilton-Jacobi equations generate two coupled ODEs

$$
\frac{d x}{d t}=\frac{\partial H}{\partial p}, \quad \frac{d p}{d t}=-\frac{\partial H}{\partial x} \Longrightarrow \frac{d x}{d t}=x(1-x p), \quad \begin{aligned}
& \frac{d p}{d t}=-p(1-x p) \\
& x(0)=1-g \quad p(0)=1
\end{aligned}
$$

Initial coordinate unknown, final coordinate known! Hamiltonian is a conserved quantity

Solution I

- Coordinate and momentum are immediate

$$
x=(1-g) e^{g t} \quad p=e^{-g t}
$$

- Size of giant component found immediately

$$
g=1-\sum_{k} k c_{k}=1-p(0)
$$

- Satisfies a closes equation

$$
1-g=e^{-g t}
$$

- Nontrivial solution beyond the percolation threshold

$$
t_{g}=1
$$

The giant component emerges when the average degree equals one

Bounded Random Graphs

- Total size of components provides insufficient description
- Describe components by a d+1 dimensional vector whose components specify number of nodes with given degree

$$
\left(k_{0}, k_{1}, \cdots, k_{d}\right) \quad k=k_{0}+k_{1}+\cdots+k_{d}
$$

$(0,3,1,1)$

- Multivariate aggregation process
- Aggregation rate is product of the number of active nodes

$$
K(\mathbf{l}, \mathbf{m})=\left(l-l_{d}\right)\left(m-m_{d}\right)
$$

- Why can't we get away with two variables only?
- Node degrees are coupled!

$$
0 \rightarrow 1 \rightarrow 2 \rightarrow 3
$$

Hamilton-Jacobi Theory II

- Master equation is a first-order PDE

$$
\frac{\partial C}{\partial \tau}=\frac{1}{2 \nu}\left(\sum_{j=0}^{d-1} x_{j+1} \frac{\partial C}{\partial x_{j}}\right)^{2}-\sum_{j=0}^{d-1} x_{j} \frac{\partial C}{\partial x_{j}} \quad C(\mathrm{x}, 0)=x_{0}
$$

- Recognize as a Hamilton-Jacobi equation

$$
\frac{\partial C(\mathbf{x}, \tau)}{\partial \tau}+H(\mathbf{x}, \nabla C, \tau)=0
$$

- By identifying "momentum" and "Hamiltonian"

$$
H(\mathbf{x}, \mathbf{p}, \tau)=\sum_{j=0}^{d-1} x_{j} p_{j}-\frac{\Pi_{1}^{2}}{2 \nu(\tau)} \quad \Pi_{j}=\sum_{i=j}^{d} x_{i} p_{i-j}
$$

- Hamilton-Jacobi equation give $2(\mathrm{~d}+1)$ coupled ODEs

$$
\frac{d x_{j}}{d t}=\frac{\partial H}{\partial p_{j}}, \quad \frac{d p_{j}}{d t}=-\frac{\partial H}{\partial x_{j}} \quad \Longrightarrow \quad \frac{d x_{j}}{d t}=x_{j}-\frac{\Pi_{1}}{\nu} x_{j+1}, \quad \frac{d p_{j}}{d t}=\frac{\Pi_{1}}{\nu} p_{j-1}-p_{j}
$$

Initial coordinates unknown, final coordinates known!
Equations are now in $\mathrm{d}+1$ dimensions! Hamiltonian no longer conserved!

Hamilton-Jacobi Equations

Coupled differential equations for coordinate and momenta

$$
\frac{d x_{j}}{d \tau}=\left\{\begin{array}{ll}
x_{j}-\frac{\Pi_{1}}{\nu} x_{j+1} & j<d \\
0 & j=d
\end{array} \quad \text { and } \quad \frac{d p_{j}}{d \tau}=\frac{d x_{j}}{d \tau}= \begin{cases}x_{j}-\frac{\Pi_{1}}{\nu} x_{j+1} & j<d \\
0 & j=d\end{cases}\right.
$$

- Initial conditions: (i) known for momenta (ii) unknown coordinates!

$$
p_{j}(0)=\delta_{j, 0} \quad \text { and } \quad x_{j}(0)=y_{j} \quad C(\mathbf{x}, 0)=x_{0}
$$

Identify conservation laws!

$$
\frac{d \Pi_{0}}{d \tau}=0 \quad \text { and } \quad \frac{d x_{d}}{d \tau}=0 \quad \Pi_{j}=\sum_{i=j}^{d} x_{i} p_{i-j}
$$

Backward evolution equations for the initial coordinates!

$$
\frac{d y_{j}}{d \tau}=\sum_{i=0}^{d-j-1}\left[\frac{d u}{d \tau} x_{i+j+1}-x_{i+j}\right] p_{i} \quad u=\int_{0}^{\tau} d \tau^{\prime} \frac{\Pi_{1}\left(\tau^{\prime}\right)}{\nu\left(\tau^{\prime}\right)}
$$

Solution II

- Find hidden conservation laws and explicit backward equations
- reduce $2(\mathrm{~d}+\mathrm{I})$ first order ODE to I second order ODE

$$
\frac{d^{2} u}{d \tau^{2}}+\frac{n_{d-1}}{\nu} \frac{d u}{d \tau}-x_{d} \frac{p_{d-1}}{\nu}=0 \quad u=\int_{0}^{\tau} d \tau^{\prime} \frac{\Pi_{1}\left(\tau^{\prime}\right)}{\nu\left(\tau^{\prime}\right)}
$$

- Nontrivial solution when $\mathrm{d}>2$
- Numerical solution gives percolation threshold ($\mathrm{d}=3$)

$$
t_{g}=1.243785, \quad L_{g}=0.577200
$$

- The size distribution of components at the critical point

$$
c_{k} \simeq A k^{-5 / 2}
$$

- Mean-field percolation

Hamilton-Jacobi theory gives all percolation parameters

Finite-size scaling

Degree distribution

$$
n_{j} \simeq \frac{(d-1)!}{j!} t^{-1}(\ln t)^{-(d-1-j)}
$$

Regular random graph emerges in several steps
I. Giant component emerges at finite time

$$
t_{1}=1.243785 \quad \text { deterministic }
$$

2. Graph becomes fully connected emerges at time $N n_{0} \sim 1 \Longrightarrow \quad t_{2} \sim N(\ln N)^{-(d-1)}$ stochastic
3. Regular random graph emerges at time $N n_{d-1} \sim 1 \Longrightarrow \quad t_{3} \sim N$ stochastic

Giant fluctuations in completion time

General Random Graphs

- Theory straightforward to generalize
- Degree controls linking process

$$
(i, j) \rightarrow(i+1, j+1) \text { with rate } C_{i, j}
$$

- Connection rate is arbitrary
- Equation for generating function

$$
\frac{\partial C}{\partial t}=\frac{1}{2} \sum_{i, j} C_{i, j}\left[\left(x_{i+1} \frac{\partial C}{\partial x_{i}}\right)\left(x_{j+1} \frac{\partial C}{\partial x_{j}}\right)-2 n_{i}\left(x_{j} \frac{\partial C}{\partial x_{j}}\right)\right]
$$

- Hamiltonian

$$
H(\mathbf{x}, \mathbf{p}, t)=\sum_{j} \nu_{j}(t) x_{j} p_{j}-\frac{1}{2} \sum_{i, j} C_{i, j}\left(x_{i+1} p_{i}\right)\left(x_{j+1} p_{j}\right)
$$

Conservation laws neither obvious nor guaranteed Multi-dimensional Newton solver

Summary

- Dynamic formation of regular random graphs
- Degree distribution is truncated Poissonian
- Hamilton-Jacobi formalism powerful
- Percolation parameters with essentially arbitrary precision
- Mean-field percolation universality class
- A multitude of finite-size scaling properties
- Giant fluctuations in completion time

Theory applicable to broader set of evolving graphs

Shuffling Algorithm

$$
1 \underline{2} 34 \underline{5} 6 \rightarrow 15 \underline{3} \underline{4} 26 \rightarrow 154326 \rightarrow \cdots
$$

- Initial configuration: N ordered integers
- Pairwise shuffling:
I. Pick 2 numbers at random

2. Exchange positions
3. Augment time $t \rightarrow t+\frac{1}{2 N}$

- Each integer is shuffled once per unit time
- Efficient algorithm, computational cost is $\mathcal{O}(N)$

Isomorphic to dynamical regular random graph with $d=2$!

Cycles and Permutations

$$
(1 \underline{2} 3)(4 \underline{5} 6) \rightarrow(156423)
$$

$(1 \underline{5} 64 \underline{2} 3) \rightarrow(123)(456)$

- Cycle structure of a permutation

$$
134265 \quad \Longrightarrow \quad(1)(234)(56)
$$

- Aggregation: inter-cycle shuffling

$$
i, j \xrightarrow{K_{i j}} i+j \quad \text { with } \quad K_{i j}=i j
$$

- Fragmentation: intra-cycle shuffling

$$
i+j \xrightarrow{F_{i j}} i, j \quad \text { with } \quad F_{i j}=\frac{i+j}{N}
$$

Identical aggregation and fragmentation rates

Steady-State Distribution

- Steady-state size distribution satisfies

$$
0=\frac{1}{2} \sum_{i+j=k} K_{i j} c_{i} c_{j}-c_{k} \sum_{j \geq 1} K_{k j} c_{j}+\sum_{j \geq 1} F_{k j} c_{j+k}-\frac{1}{2} c_{k} \sum_{i+j=k} F_{i j}
$$

- Detailed balance condition

$$
K_{i j} c_{i} c_{j}=F_{i j} c_{i+j}
$$

- Substitute aggregation and fragmentation rates

$$
K_{i j}=i j \quad F_{i j}=\frac{i+j}{N}
$$

- Steady-state solution

$$
\left(i c_{i}\right)\left(j c_{j}\right)=\frac{1}{N}(i+j) c_{i+j} \quad \Longrightarrow \quad N c_{k}=\frac{1}{k}
$$

- Average number of cycles

$$
N_{k}=\frac{1}{k}
$$

Redirection Process

- Dynamical redirection
I. Pick 2 nodes at random

2. Connect 2 nodes by redirecting 2 associated links
3. Augment time $t \rightarrow t+\frac{1}{2 N}$

- A node experiences one redirection event per unit time
- Initial condition: isolated nodes, each has a self-link

Redirection process maintains ring topology

Rings

Talia Ben-Naim, age 9

- All nodes have identical degree
- Motivation: rings of magnetic particles
- Consider simplest case: rings; all nodes have degree 2
- Consider directed links (without loss of generality)
- In a system of N nodes, there are exactly N links

Aggregation-Fragmentation Process

- Aggregation: inter-ring redirection Identical to random graph process

$$
i, j \xrightarrow{K_{i j}} i+j \quad \text { with } \quad K_{i j}=i j
$$

- Fragmentation: intra-ring redirection

Fragmentation rate depends on system size!

$$
i+j \xrightarrow{F_{i j}} i, j \quad \text { with } \quad F_{i j}=\frac{i+j}{N}
$$

- Total fragmentation rate is quadratic

$$
F_{k}=\sum_{i+j=k} F_{i j}=\frac{k(k-1)}{2 N}
$$

Reversible process

Rate Equations

- Size distribution satisfies

$$
\frac{d r_{k}}{d t}=\frac{1}{2} \sum_{i+j=k} i j r_{i} r_{j}-k r_{k}+\frac{1}{N}\left[\sum_{j>k} j r_{j}-\frac{k(k-1)}{2} r_{k}\right]
$$

- Rate equation includes explicit dependence on N
- Perturbation theory $\begin{gathered}\text { finite } \\ \text { rings } \\ \downarrow \\ r_{k}=f_{k}+\frac{1}{N} g_{k}\end{gathered}$
- Fragmentation irrelevant for finite rings $F_{k} \sim \frac{k^{2}}{N}$

$$
\frac{d f_{k}}{d t}=\frac{1}{2} \sum_{i+j=k} i j f_{i} f_{j}-k f_{k}
$$

Recover random graph equation

Finite Rings Phase ($\mathrm{t}<1$)

- All rings are finite in size
- Size distribution

$$
M(t)=\sum_{k=1}^{\infty} f_{k}=1
$$

$$
f_{k}(t)=\frac{1}{k \cdot k!}(k t)^{k-1} e^{-k t}
$$

- Second moment diverges in finite time $M_{2}=\sum_{k} k^{2} f_{k}$

$$
\frac{d M_{2}}{d t}=M_{2}^{2} \quad \Longrightarrow \quad M_{2}=(1-t)^{-1}
$$

- Critical size distribution

$$
f_{k}(1) \simeq \frac{1}{\sqrt{2 \pi}} k^{-5 / 2}
$$

Identical behavior to good-old random graph

Critical Size Distribution

Simulation results

Excellent agreement between theory and simulation

Giant Rings Phase ($t>1$)

- Finite rings contain only a fraction of g all mass

$$
M(t)=\sum_{k=1}^{\infty} k f_{k}=1-g
$$

- "Missing Mass" 1-g must be found in giant rings

$$
g=1-e^{-g t}
$$

- Expect giant, macroscopic rings
- Very fast aggregation and fragmentation processes

$$
F_{k} \sim \frac{k^{2}}{N} \sim N \quad \text { when } \quad k \sim N
$$

Fragmentation comparable to aggregation No longer negligible

Distribution of giant rings

- Quantify giant rings by normalized size $\ell=\frac{k}{N}$
- Average number of giant rings of normalized size ℓ

$$
g(t)=\int_{0}^{g(t)} d \ell \ell G(\ell, t)
$$

- Rate equation

$$
\begin{aligned}
\frac{1}{N} \frac{\partial G(\ell, t)}{\partial t}= & \frac{1}{2} \int_{0}^{\ell} d s s(\ell-s) G(s, t) G(\ell-s, t)-\ell(g-\ell) G(\ell, t) \\
& +\int_{\ell}^{\text {ags gain }=\ell / 2} d s s G(s, t)-\frac{1}{2} \ell^{\text {arg }} G(\ell, t)
\end{aligned}
$$

- Quasi steady-state

$$
G(\ell, t)= \begin{cases}\ell^{-1} & \ell<g(t), \\ 0 & \ell>g(t) .\end{cases}
$$

Universal distribution, span grows with time

Average Number of Giant Rings

Simulation results

Comments

- Rate equation for average number of giant rings

$$
\begin{aligned}
\frac{1}{N} \frac{\partial G \ell(, t)}{\partial \&}= & \frac{1}{2} \int_{0}^{\ell} d s s(\ell-s) G(s, t) G(\ell-s, t)-\ell(g-\ell) G(\ell, t) \\
& +\int_{\ell}^{g} d s s G(s, t)-\frac{1}{2} \ell^{2} G(\ell, t)
\end{aligned}
$$

- Practically closed equation; coupling to finite rings only through total mass $g(t)$
- Steady flux $N d g / d t$ from finite rings to giant rings
- Number of giant rings is not proportional to N !

$$
N_{g} \simeq \ln N
$$

Number of microscopic rings proportional to N Number of macroscopic rings logarithmic in N

Total Number of Giant Rings

Simulation results

Multiple Coexisting Giant Rings

Total mass of giant rings is a deterministic quantity Mass of an individual giant ring is a stochastic quantity! Giant rings break and recombine very rapidly

Final Distribution

Simulation results

Implications to Shuffling

- N pairwise shuffles generate a giant cycle
- Size of emergent giant cycle is $N^{2 / 3}$
- $N \ln N$ pairwise shuffles generate random order

Summary

- Kinetic formulation of a regular random graph
- Equivalent to: (i) aggregation-fragmentation (ii) shuffling
- Finite rings phase: fragmentation is irrelevant
- Giant rings phase
- Multiple giant rings coexist
- Number of giant rings fluctuates
- Total mass is a deterministic quantity
- Very rapid evolution

chapter 5 aggregation

chapter 12
population dynamics
chapter 13
complex networks

Cambridge University Press 2010

