Dynamics of Random Graphs with Bounded Degrees

Eli Ben-Naim
Los Alamos National Laboratory

with: Paul Krapivsky (Boston) thanks:Wolfgang Losert (Maryland)

E. Ben-Naim and P.L. Krapivsky, J. Stat. Mech. P11008 (2011) \& EPL 97, 48003 (2012)

Talk, paper available from: http://cnls.lanl.gov/~ebn

APS March Meeting, February 27, 2012

Plan

- Evolving random graphs with bounded degrees
- Degree distribution
- Hamilton-Jacobi theory of evolving random graphs with unbounded degrees
- Hamilton-Jacobi theory of evolving random graphs with bounded degrees
- Finite-size scaling laws

Evolving Random Graph

- Initial state: regular random graph (degree $=0)$
- Define two classes of nodes
- Active nodes: degree $<$ d
- Inactive nodes: degree = d
- Sequential linking
- Pick two active nodes
- Draw a link
- Final state: regular random graph (degree = d)

Percolation Transition

$\checkmark \mathrm{d}=1$ microscopic graphs, dimers $0-00000$

? $\mathrm{d} \geq 2$ one macroscopic graph = "giant component"

- Nonpercolating phase: microscopic graphs only
- Percolating phase: one giant component coexists with many microscopic graphs

Question

How many links (per node) are needed for the giant component to emerge?

> Answer
> 0.577200

Degree Distribution

- Distribution of nodes with degree j is n_{j}
- Density of active nodes $\nu=n_{0}+n_{1}+\cdots+n_{d-1} \quad \nu=1-n_{d}$
- Linking Process

$$
(i, j) \rightarrow(i+1, j+1) \quad i, j<d
$$

- Active nodes control linking process, effectively linear evolution equation $\tau=\int_{0}^{t} d t^{\prime} \nu\left(t^{\prime}\right)$

$$
\frac{d n_{j}}{d t}=\nu\left(n_{j-1}-n_{j}\right)
$$

- Solve using an effective time variable

$$
n_{j}=\frac{\tau^{j}}{j!} e^{-\tau}
$$

$$
j<d
$$

Degree Distribution

Isolated nodes dominate initially All nodes become inactive eventually

Unbounded Random Graphs

- Cluster $=$ a connected graph component 0_{0}
- Links involving two separate components lead to merger
- Aggregation rate $=$ product of cluster sizes

$$
K_{i j}=i j
$$

- Master equation for size distribution

$$
\frac{d c_{k}}{d t}=\frac{1}{2} \sum_{i+j=k} i j c_{i} c_{j}-k c_{k} \quad c_{k}(t=0)=\delta_{k, 1}
$$

- Master equation for generating function

$$
\frac{\partial \mathcal{C}}{\partial t}+x \frac{\partial \mathcal{C}}{\partial x}=\frac{1}{2}\left(x \frac{\partial \mathcal{C}}{\partial x}\right)^{2} \quad \mathcal{C}(x, t)=\sum_{k} c_{k}(t) x^{k}
$$

Hamilton-Jacobi Theory I

- Master equation is a first-order PDE

$$
\begin{equation*}
\frac{\partial \mathcal{C}}{\partial t}+x \frac{\partial \mathcal{C}}{\partial x}=\frac{1}{2}\left(x \frac{\partial \mathcal{C}}{\partial x}\right)^{2} \tag{x,0}
\end{equation*}
$$

- Recognize as a Hamilton-Jacobi equation

$$
\frac{\partial \mathcal{C}(x, t)}{\partial t}+H(x, p)=0
$$

- By identifying "momentum" and "Hamiltonian"

$$
p=\frac{\partial \mathcal{C}}{\partial x} \quad \text { and } \quad H=x p-\frac{1}{2}(x p)^{2}
$$

- Hamilton-Jacobi equations generate two coupled ODEs

$$
\frac{d x}{d t}=\frac{\partial H}{\partial p}, \quad \frac{d p}{d t}=-\frac{\partial H}{\partial x} \Longrightarrow \frac{d x}{d t}=x(1-x p), \quad \begin{aligned}
& \frac{d p}{d t}=-p(1-x p) \\
& x(0)=1-g \quad p(0)=1
\end{aligned}
$$

Initial coordinate unknown, final coordinate known! Hamiltonian is a conserved quantity

Solution I

- Coordinate and momentum are immediate

$$
x=(1-g) e^{g t} \quad p=e^{-g t}
$$

- Size of giant component found immediately

$$
g=1-\sum_{k} k c_{k}=1-p(0)
$$

- Satisfies a closes equation

$$
1-g=e^{-g t}
$$

- Nontrivial solution beyond the percolation threshold

$$
t_{g}=1
$$

The giant component emerges when the average degree equals one

Bounded Random Graphs

- Total size of components provides insufficient description
- Describe components by a d+1 dimensional vector whose components specify number of nodes with given degree

$$
\begin{equation*}
\left(k_{0}, k_{1}, \cdots, k_{d}\right) \quad k=k_{0}+k_{1}+\cdots+k_{d} \tag{0,2,1,2}
\end{equation*}
$$

$(0,3,1,1)$

- Multivariate aggregation process
- Aggregation rate is product of the number of active nodes

$$
K(\mathbf{l}, \mathbf{m})=\left(l-l_{d}\right)\left(m-m_{d}\right)
$$

- Why can't we get away with two variables only?
- Node degrees are coupled!

$$
0 \rightarrow 1 \rightarrow 2 \rightarrow 3
$$

Hamilton-Jacobi Theory II

- Master equation is a first-order PDE

$$
\frac{\partial C}{\partial \tau}=\frac{1}{2 \nu}\left(\sum_{j=0}^{d-1} x_{j+1} \frac{\partial C}{\partial x_{j}}\right)^{2}-\sum_{j=0}^{d-1} x_{j} \frac{\partial C}{\partial x_{j}} \quad C(\mathbf{x}, 0)=x_{0}
$$

- Recognize as a Hamilton-Jacobi equation

$$
\frac{\partial C(\mathbf{x}, \tau)}{\partial \tau}+H(\mathbf{x}, \nabla C, \tau)=0
$$

- By identifying "momentum" and "Hamiltonian"

$$
H(\mathbf{x}, \mathbf{p}, \tau)=\sum_{j=0}^{d-1} x_{j} p_{j}-\frac{\Pi_{1}^{2}}{2 \nu(\tau)} \quad \Pi_{j}=\sum_{i=j}^{d} x_{i} p_{i-j}
$$

- Hamilton-Jacobi equation give $2(\mathrm{~d}+1)$ coupled ODEs

$$
\frac{d x_{j}}{d t}=\frac{\partial H}{\partial p_{j}}, \quad \frac{d p_{j}}{d t}=-\frac{\partial H}{\partial x_{j}} \quad \Longrightarrow \quad \frac{d x_{j}}{d t}=x_{j}-\frac{\Pi_{1}}{\nu} x_{j+1}, \quad \frac{d p_{j}}{d t}=\frac{\Pi_{1}}{\nu} p_{j-1}-p_{j}
$$

Initial coordinates unknown, final coordinates known!
Equations are now in $\mathrm{d}+1$ dimensions! Hamiltonian no longer conserved!

Solution II

- Find hidden conservation laws and explicit backward equations
- reduce $2(\mathrm{~d}+\mathrm{I})$ first order ODE to I second order ODE

$$
\frac{d^{2} u}{d \tau^{2}}+\frac{n_{d-1}}{\nu} \frac{d u}{d \tau}-x_{d} \frac{p_{d-1}}{\nu}=0
$$

- Nontrivial solution when $\mathrm{d}>2$
- Numerical solution gives percolation threshold ($\mathrm{d}=3$)

$$
t_{g}=1.243785, \quad L_{g}=0.577200
$$

- The size distribution of components at the critical point

$$
c_{k} \simeq A k^{-5 / 2}
$$

- Mean-field percolation

Hamilton-Jacobi theory gives all percolation parameters

Finite-size scaling

Degree distribution

$$
n_{j} \simeq \frac{(d-1)!}{j!} t^{-1}(\ln t)^{-(d-1-j)}
$$

Regular random graph emerges in several steps
I. Giant component emerges at finite time

$$
t_{1}=1.243785 \quad \text { deterministic }
$$

2. Graph becomes fully connected emerges at time $N n_{0} \sim 1 \Longrightarrow \quad t_{2} \sim N(\ln N)^{-(d-1)}$ stochastic
3. Regular random graph emerges at time $N n_{d-1} \sim 1 \Longrightarrow \quad t_{3} \sim N$ stochastic

Giant fluctuations in completion time

Summary

- Dynamic formation of regular random graphs
- Degree distribution is truncated Poissonian
- Hamilton-Jacobi formalism powerful
- Percolation parameters with essentially arbitrary precision
- Mean-field percolation universality class
- A multitude of finite-size scaling properties
- Giant fluctuations in completion time

Theory applicable to broader set of evolving graphs

chapter 5 aggregation

chapter 12
population dynamics
chapter 13
complex networks

Cambridge University Press 2010

