Kinetics of Ring Formation

Eli Ben-Naim
Los Alamos National Laboratory

with: Paul Krapivsky (Boston Univ.)

E. Ben-Naim and P.L. Krapivsky, Phys. Rev. E 83, 061102 (2011)

Talk, paper available from: http://cnls.lanl.gov/~ebn
ICIAM,Vancouver, BC, Canada, July 22, 20 I I

Plan

I. Kinetics of random graphs
2. Kinetics of regular random graphs

- Finite rings phase
- Giant rings phase

3. Shuffling

Kinetics of Random Graphs

- Initial state: N isolated nodes
- Dynamical linking
I. Pick 2 nodes at random

2. Connect the 2 nodes with a link
3. Augment time $t \rightarrow t+\frac{1}{2 N}$

- Each node experiences one linking event per unit time

Aggregation Process

- Cluster = a connected graph component

- Aggregation rate $=$ product of cluster sizes

$$
K_{i j}=i j
$$

- Master equation

$$
\frac{d c_{k}}{d t}=\frac{1}{2} \sum_{i+j=k} i j c_{i} c_{j}-k c_{k}
$$

$$
c_{k}(t=0)=\delta_{k, 1}
$$

- Cluster size density

$$
c_{k}(t)=\frac{1}{k \cdot k!}(k t)^{k-1} e^{-k t}
$$

- Divergent second moment reveals percolation transition

$$
M_{2}=(1-t)^{-1} \quad t_{g}=1
$$

Cluster Phase ($\mathrm{t}<1$)

- Microscopic clusters, tree structure
- Cluster size distribution contains entire mass

$$
M(t)=\sum_{k=1}^{\infty} k c_{k}=1
$$

- Typical cluster size diverges near percolation point

$$
k_{*} \sim(1-t)^{-2}
$$

- Critical size distribution has power law tail

$$
c_{k}(1) \simeq \frac{1}{\sqrt{2 \pi}} k^{-5 / 2}
$$

Giant Component Phase ($\mathrm{t}>1$)

- Macroscopic component exist, complex structure
- Cluster size distribution contains fraction of mass

$$
M(t)=\sum_{k=1}^{\infty} k c_{k}=1-g
$$

- Giant component accounts for "missing" mass

$$
g=1-e^{-g t}
$$

- Giant component takes over entire system

$$
g \rightarrow 1
$$

Random Regular Graphs

- All nodes have identical degree
- Motivation: rings of magnetic particles
- Consider simplest case: rings; all nodes have degree 2
- Consider directed links (without loss of generality)
- In a system of N nodes, there are exactly N links

Redirection Process

- Dynamical redirection
I. Pick 2 nodes at random

2. Connect 2 nodes by redirecting 2 associated links
3. Augment time $t \rightarrow t+\frac{1}{2 N}$

- A node experiences one redirection event per unit time
- Initial condition: isolated nodes, each has a self-link

Redirection process maintains ring topology

Aggregation-Fragmentation Process

- Aggregation: inter-ring redirection Identical to random graph process

$$
i, j \xrightarrow{K_{i j}} i+j \quad \text { with } \quad K_{i j}=i j
$$

- Fragmentation: intra-ring redirection

Fragmentation rate depends on system size!

$$
i+j \xrightarrow{F_{i j}} i, j \quad \text { with } \quad F_{i j}=\frac{i+j}{N}
$$

- Total fragmentation rate is quadratic

$$
F_{k}=\sum_{i+j=k} F_{i j}=\frac{k(k-1)}{2 N}
$$

Reversible process

Rate Equations

- Size distribution satisfies

$$
\frac{d r_{k}}{d t}=\frac{1}{2} \sum_{i+j=k} i j r_{i} r_{j}-k r_{k}+\frac{1}{N}\left[\sum_{j>k} j r_{j}-\frac{k(k-1)}{2} r_{k}\right]
$$

- Rate equation includes explicit dependence on N
- Perturbation theory $\begin{gathered}\text { finite } \\ \text { rings } \\ \downarrow \\ r_{k}=f_{k}+\frac{1}{N} g_{k}\end{gathered}$
- Fragmentation irrelevant for finite rings $F_{k} \sim \frac{k^{2}}{N}$

$$
\frac{d f_{k}}{d t}=\frac{1}{2} \sum_{i+j=k} i j f_{i} f_{j}-k f_{k}
$$

Recover random graph equation

Finite Rings Phase ($\mathrm{t}<1$)

- All rings are finite in size
- Size distribution

$$
M(t)=\sum_{k=1}^{\infty} f_{k}=1
$$

$$
f_{k}(t)=\frac{1}{k \cdot k!}(k t)^{k-1} e^{-k t}
$$

- Second moment diverges in finite time $M_{2}=\sum_{k} k^{2} f_{k}$

$$
\frac{d M_{2}}{d t}=M_{2}^{2} \quad \Longrightarrow \quad M_{2}=(1-t)^{-1}
$$

- Critical size distribution

$$
f_{k}(1) \simeq \frac{1}{\sqrt{2 \pi}} k^{-5 / 2}
$$

Identical behavior to good-old random graph

Critical Size Distribution

Simulation results

Excellent agreement between theory and simulation

Giant Rings Phase ($t>1$)

- Finite rings contain only a fraction of g all mass

$$
M(t)=\sum_{k=1}^{\infty} k f_{k}=1-g
$$

- "Missing Mass" 1-g must be found in giant rings

$$
g=1-e^{-g t}
$$

- Expect giant, macroscopic rings
- Very fast aggregation and fragmentation processes

$$
F_{k} \sim \frac{k^{2}}{N} \sim N \quad \text { when } \quad k \sim N
$$

Fragmentation comparable to aggregation No longer negligible

Distribution of giant rings

- Quantify giant rings by normalized size $\ell=\frac{k}{N}$
- Average number of giant rings of normalized size ℓ

$$
g(t)=\int_{0}^{g(t)} d \ell \ell G(\ell, t)
$$

- Rate equation

$$
\begin{aligned}
\frac{1}{N} \frac{\partial G(\ell, t)}{\partial t}= & \frac{1}{2} \int_{0}^{\ell} d s s(\ell-s) G(s, t) G(\ell-s, t)-\ell(g-\ell) G(\ell, t) \\
& +\int_{\ell}^{\text {ags gain }=\ell / 2} d s s G(s, t)-\frac{1}{2} \ell^{\text {arg }} G(\ell, t)
\end{aligned}
$$

- Quasi steady-state

$$
G(\ell, t)= \begin{cases}\ell^{-1} & \ell<g(t), \\ 0 & \ell>g(t) .\end{cases}
$$

Universal distribution, span grows with time

Average Number of Giant Rings

Simulation results

Comments

- Rate equation for average number of giant rings

$$
\begin{aligned}
\frac{1}{N} \frac{\partial G \ell(, t)}{\partial \&}= & \frac{1}{2} \int_{0}^{\ell} d s s(\ell-s) G(s, t) G(\ell-s, t)-\ell(g-\ell) G(\ell, t) \\
& +\int_{\ell}^{g} d s s G(s, t)-\frac{1}{2} \ell^{2} G(\ell, t)
\end{aligned}
$$

- Practically closed equation; coupling to finite rings only through total mass $g(t)$
- Steady flux $N d g / d t$ from finite rings to giant rings
- Number of giant rings is not proportional to N !

$$
N_{g} \simeq \ln N
$$

Number of microscopic rings proportional to N Number of macroscopic rings logarithmic in N

Total Number of Giant Rings

Simulation results

Multiple Coexisting Giant Rings

Total mass of giant rings is a deterministic quantity Mass of an individual giant ring is a stochastic quantity! Giant rings break and recombine very rapidly

Limiting Distribution

- Steady-state size distribution satisfies

$$
0=\frac{1}{2} \sum_{i+j=k} K_{i j} c_{i} c_{j}-c_{k} \sum_{j \geq 1} K_{k j} c_{j}+\sum_{j \geq 1} F_{k j} c_{j+k}-\frac{1}{2} c_{k} \sum_{i+j=k} F_{i j}
$$

- Detailed balance condition

$$
K_{i j} c_{i} c_{j}=F_{i j} c_{i+j}
$$

- Substitute aggregation and fragmentation rates

$$
K_{i j}=i j \quad F_{i j}=\frac{i+j}{N}
$$

- Steady-state solution

$$
\left(i c_{i}\right)\left(j c_{j}\right)=\frac{1}{N}(i+j) c_{i+j} \quad \Longrightarrow \quad N c_{k}=\frac{1}{k}
$$

- Consistent with

$$
G(\ell, t=\infty)=\frac{1}{\ell} \quad \text { for all } \quad \ell<1
$$

Final Distribution

Simulation results

Shuffling Algorithm

$$
1 \underline{2} 34 \underline{5} 6 \rightarrow 15 \underline{3} \underline{4} 26 \rightarrow 154326 \rightarrow \cdots
$$

- Initial configuration: N ordered integers
- Pairwise shuffling:
I. Pick 2 numbers at random

2. Exchange positions
3. Augment time $t \rightarrow t+\frac{1}{2 N}$

- Each integer is shuffled once per unit time
- Efficient algorithm, computational cost is $\mathcal{O}(N)$ Isomorphic to dynamical regular random graph!

Cycles and Permutations

$$
(1 \underline{2} 3)(4 \underline{5} 6) \rightarrow(156423)
$$

$(1 \underline{5} 64 \underline{2} 3) \rightarrow(123)(456)$

- Cycle structure of a permutation

$$
134265 \quad \Longrightarrow \quad(1)(234)(56)
$$

- Aggregation: inter-cycle shuffling

$$
i, j \xrightarrow{K_{i j}} i+j \quad \text { with } \quad K_{i j}=i j
$$

- Fragmentation: intra-cycle shuffling

$$
i+j \xrightarrow{F_{i j}} i, j \quad \text { with } \quad F_{i j}=\frac{i+j}{N}
$$

Identical aggregation and fragmentation rates

Implications to Shuffling

- N pairwise shuffles generate a giant cycle
- Size of emergent giant cycle is $N^{2 / 3}$
- $N \ln N$ pairwise shuffles generate random order

Summary

- Kinetic formulation of a regular randm graph
- Equivalent to: (i) aggregation-fragmentation (ii) shuffling
- Finite rings phase: fragmentation is irrelevant
- Giant rings phase
- Multiple giant rings coexist
= Number of giant rings fluctuates
- Total mass is a deterministic quantity
- Very rapid evolution

