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1. Kinetics of random graphs

2. Kinetics of regular random graphs

- Finite rings phase

- Giant rings phase

3. Shuffling



Kinetics of Random Graphs

• Initial state: N isolated nodes

• Dynamical linking

1. Pick 2 nodes at random
2. Connect the 2 nodes with a link

3. Augment time 

• Each node experiences one linking event per unit time 
Flory, Stockmeyer 43 
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Aggregation Process

• Cluster = a connected graph component

• Aggregation rate = product of cluster sizes

• Master equation

• Cluster size density

• Divergent second moment reveals percolation transition
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Cluster Phase ( t<1 )

• Microscopic clusters, tree structure

• Cluster size distribution contains entire mass

• Typical cluster size diverges near percolation point

• Critical size distribution has power law tail
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• Macroscopic component exist, complex structure

• Cluster size distribution contains fraction of mass

• Giant component accounts for “missing” mass

• Giant component takes over                                 
entire system

Giant Component Phase ( t>1 )

M(t) =
∞�
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kck = 1− g

g = 1− e−gt

g → 1



• All nodes have identical degree

• Motivation: rings of magnetic particles

• Consider simplest case: rings; all nodes have degree 2

• Consider directed links (without loss of generality)

• In a system of N nodes, there are exactly N links

Random Regular Graphs

Number of links is conserved! Kun 01



Redirection Process

• Dynamical redirection

1. Pick 2 nodes at random
2. Connect 2 nodes by redirecting 2 associated links 

3. Augment time 

• A node experiences one redirection event per unit time

• Initial condition: isolated nodes, each has a self-link

t → t+
1

2N

Redirection process maintains ring topology



Aggregation-Fragmentation Process

• Aggregation: inter-ring redirection
Identical to random graph process

• Fragmentation: intra-ring redirection
Fragmentation rate depends on system size!

• Total fragmentation rate is quadratic 

i, j
Kij−→ i+ j with Kij = ij

i+ j
Fij−→ i, j with Fij =

i+ j
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• Size distribution satisfies 

• Rate equation includes explicit dependence on N

• Perturbation theory

• Fragmentation irrelevant for finite rings

Rate Equations
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Finite Rings Phase ( t<1 )
• All rings are finite in size

• Size distribution

• Second moment diverges in finite time

• Critical size distribution
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Identical behavior to good-old random graph
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Excellent agreement between theory and simulation

Simulation results



Giant Rings Phase ( t>1 )
• Finite rings contain only a fraction of g all mass

• “Missing Mass” 1-g must be found in giant rings

• Expect giant, macroscopic rings

• Very fast aggregation and fragmentation processes

M(t) =
∞�

k=1

kfk = 1− g

g = 1− e−gt

Fk ∼ k2

N
∼ N when k ∼ N

Fragmentation comparable to aggregation
No longer negligible



Distribution of giant rings
• Quantify giant rings by normalized size  

• Average number of giant rings of normalized size 

• Rate equation

• Quasi steady-state

Universal distribution, span grows with time
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Simulation results

G(�, t) =

�
�−1 � < g(t),

0 � > g(t).



Comments
• Rate equation for average number of giant rings

• Practically closed equation; coupling to finite rings 
only through total mass 

• Steady flux              from finite rings to giant rings 

• Number of giant rings is not proportional to N!

Number of microscopic rings proportional to N 
Number of macroscopic rings logarithmic in N
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Law of large numbers
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Multiple Coexisting Giant Rings

Total mass of giant rings is a deterministic quantity
Mass of an individual giant ring is a stochastic quantity!

Giant rings break and recombine very rapidly



• Steady-state size distribution satisfies 

• Detailed balance condition

• Substitute aggregation and fragmentation rates

• Steady-state solution

• Consistent with  

Limiting Distribution
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Shuffling Algorithm

• Initial configuration: N ordered integers

• Pairwise shuffling:

1. Pick 2 numbers at random
2. Exchange positions
3. Augment time 

• Each integer is shuffled once per unit time

• Efficient algorithm, computational cost is 

t → t+
1

2N

1 2 3 4 5 6 → 1 5 3 4 2 6 → 1 5 4 3 2 6 → · · ·

O(N)

Isomorphic to dynamical regular random graph! 



Cycles and Permutations

• Cycle structure of a permutation

• Aggregation: inter-cycle shuffling

• Fragmentation: intra-cycle shuffling
i, j

Kij−→ i+ j with Kij = ij

i+ j
Fij−→ i, j with Fij =

i+ j

N
Identical aggregation and fragmentation rates 

(123)(456) → (156423) (156423) → (123)(456)

134265 =⇒ (1)(234)(56)



Implications to Shuffling

• N pairwise shuffles generate a giant cycle

• Size of emergent giant cycle is N2/3

• N ln N pairwise shuffles generate random order

Golomb 61
Flatto 85

Diaconis 86



Summary
• Kinetic formulation of a regular randm graph

• Equivalent to: (i) aggregation-fragmentation (ii) shuffling

• Finite rings phase: fragmentation is irrelevant 

• Giant rings phase

- Multiple giant rings coexist

- Number of giant rings fluctuates

- Total mass is a deterministic quantity

- Very rapid evolution


