Nontrivial Exponents in Records Statistics

Eli Ben-Naim
Los Alamos National Laboratory

with: Paul Krapivsky (Boston), Pearson Miller (Yale)

E. Ben-Naim and P.L. Krapivsky, arXiv:1305:4227
P. W. Miller and E. Ben-Naim, arXiv: 1308:xxxxx

Talk, paper available from: http://cnls.lanl.gov/~ebn

Plan

I. Incremental records
II. Superior records
III. Inferior records
IV. General distribution functions
V. Earthquake data

Motivation

- Weather: record high \& low temperatures
- Finance: stock prices
- Insurance: extreme/catastrophic events
- Evolution: growth rate of species
- Sports
- First passage phenomena

Redner 01
Majumdar 13

First passage properties of extreme statistics

Incremental Records

Incremental sequence of records
every record improves upon previous record by yet smaller amount
random variable $=\{0.4,0.4,0.6,0.7,0.5,0.1\}$
latest record $=\{0.4,0.4,0.6,0.7,0.7,0.7\} \quad \uparrow$
latest increment $=\{0.4,0.4,0.2,0.1,0.1,0.1\} \quad \downarrow$
What is the probability all records are incremental?

Probability all records are incremental

Power law decay with nontrivial exponent Question is free of parameters!

Uniform distribution

- The variable x is randomly distributed in [0:1]

$$
\rho(x)=1 \quad \text { for } \quad 0 \leq x \leq 1
$$

- Probability record is smaller than x

$$
R_{N}(x)=x^{N}
$$

- Average record

$$
A_{N}=\frac{N}{N+1} \quad \Longrightarrow \quad 1-A_{N} \simeq N^{-1}
$$

- Number of records

$$
M_{N}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{N}
$$

Distribution of records

- Probability a sequence is inferior and record $<x$

$$
G_{N}(x) \quad \Longrightarrow \quad S_{N}=G_{N}(1) \quad x_{2}=x_{1}
$$

- One variable

$$
G_{1}(x)=x \quad \Longrightarrow \quad S_{1}=1
$$

- Two variables

$$
\begin{aligned}
& x_{2}-x_{1}>x_{1}
\end{aligned} G_{2}(x)=\frac{3}{4} x^{2} \quad \Longrightarrow \quad S_{2}=\frac{3}{4}
$$

- In general, conditions are scale invariant $x \rightarrow a x$
- Distribution of records for incremental sequences

$$
G_{N}(x)=S_{N} x^{N}
$$

- Distribution of records for all sequences equals x^{N}

Statistics of records are standard

Scaling behavior

- Distribution of records for incremental sequences

$$
G_{N}(x) / S_{N}=x^{N}=[1-(1-x)]^{N} \rightarrow e^{-s}
$$

- Scaling variable

$$
s=(1-x) N
$$

Exponential scaling function

Distribution of increment+records

- Probability density $S_{N}(x, y) d x d y$ that:
I. Sequence is incremental

2. Current record is in range $(x, x+d x)$
3. Latest increment is in range $(y, y+d y)$ with $0<y<x$

- Gives the probability a sequence is incremental

$$
S_{N}=\int_{0}^{1} d x \int_{0}^{x} d y S_{N}(x, y)
$$

- Recursion equation incorporates memory

$$
S_{N+1}(x, y)=\underset{\substack{\text { old record holds }}}{x S_{N}(x, y)+\int_{y}^{x-y} d y^{\prime} S_{N}\left(x-y, y^{\prime}\right)} \begin{gathered}
\text { a new record is set }
\end{gathered}
$$

- Evolution equation includes integral, has memory

$$
\frac{\partial S_{N}(x, y)}{\partial N}=-(1-x) S_{N}(x, y)+\int_{y}^{x-y} d y^{\prime} S_{N}\left(x-y, y^{\prime}\right)
$$

Scaling transformation

- Assume record and increment scale similarly

$$
y \sim 1-x \sim N^{-1}
$$

- Introduce a scaling variable for the increment

$$
s=(1-x) N \quad \text { and } \quad z=y N
$$

- Seek a scaling solution

$$
S_{N}(x, y)=N^{2} S_{N} \Psi(s, z)
$$

- Eliminate time out of the master equation

$$
\left(2-\nu+s+s \frac{\partial}{\partial s}+z \frac{\partial}{\partial z}\right) \Psi(s, z)=\int_{z}^{\infty} d z^{\prime} \Psi\left(s+z, z^{\prime}\right)
$$

Reduce problem from three variables to two

Factorizing solution

- Assume record and increment decouple

$$
\Psi(s, z)=e^{-s} f(z)
$$

- Substitute into equation for similarity solution

$$
\left(2-\nu+s+s \frac{\partial}{\partial s}+z \frac{\partial}{\partial z}\right) \Psi(s, z)=\int_{z}^{\infty} d z^{\prime} \Psi\left(s+z, z^{\prime}\right)
$$

- First order integro-differential equation

$$
z f^{\prime}(z)+(2-\nu) f(z)=e^{-z} \int_{z}^{\infty} f\left(z^{\prime}\right) d z^{\prime}
$$

- Cumulative distribution of scaled increment ${ }_{g(z)}=\int_{z}^{\infty} f\left(z^{\prime}\right) d z^{\prime}$
- Convert into a second order differential equation

$$
z g^{\prime \prime}(z)+(2-\nu) g^{\prime}(z)+e^{-z} g(z)=0 \quad \begin{aligned}
g(0) & =1 \\
g^{\prime}(0) & =-1 /(2-\nu)
\end{aligned}
$$

Reduce problem from two variable to one

Distribution of increment

- Assume record and increment decouple

$$
z g^{\prime \prime}(z)+(2-\nu) g^{\prime}(z)+e^{-z} g(z)=0 \quad \begin{aligned}
g(0) & =1 \\
g^{\prime}(0) & =-1 /(2-\nu)
\end{aligned}
$$

- Two independent solutions

$$
g(z)=z^{\nu-1} \quad \text { and } \quad g(z)=\text { const. } \quad \text { as } \quad z \rightarrow \infty
$$

- The exponent is determined by the tail behavior

$$
\nu=0.31762101
$$

- The distribution of increment has a broad tail

$$
P_{N}(y) \sim N^{-1} y^{\nu-2}
$$

Increments can be relatively large problem reduced to second order ODE

Numerical confirmation

Monte Carlo simulation versus integration of ODE

Increment and record become uncorrelated

Superior Records

- Start with sequence of random variables

$$
\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{N}\right\}
$$

- Calculate the sequence of records \qquad $\left\{X_{1}, X_{2}, X_{3}, \ldots, X_{N}\right\} \quad$ where $\quad X_{n}=\max \left(x_{1}, x_{2}, \ldots, x_{n}\right\}$
- Compare with the expected average

$$
\left\{A_{1}, A_{2}, A_{3}, \ldots, A_{N}\right\}=\{1 / 2,2 / 3,3 / 4, \ldots, N /(N+1)\}
$$

- Superior sequence $=$ records always exceeds average

$$
X_{n}>A_{n} \quad \text { for all } \quad 1 \leq n \leq N
$$

- What fraction S_{N} of sequences is superior?
measure of "performance"

Numerical simulations

$$
\begin{array}{l|l}
S_{N} \sim N^{-\beta} & \beta=0.4503 \pm 0.0002
\end{array}
$$

Power law decay with nontrivial exponent

Distribution of superior records

- Cumulative probability distribution $F_{N}(x)$ that:
I. Sequence is superior ($X_{n}>A_{n}$ for all n) and

2. Current record is larger than $x\left(X_{N}>x\right)$

- Gives the desired probability immediately

$$
S_{N}=F_{N}\left(A_{N}\right)
$$

- Recursion equation

$$
F_{N+1}(x)=x \underset{\substack{\text { old record holds } \\ F_{N}(x) \\ \text { a new record is set }}}{(1-x) F_{N}\left(A_{N}\right)} \quad x>A_{N+1}
$$

- Recursive solution

$$
\begin{array}{ll}
F_{1}(x)=1-x & S_{1}=\frac{1}{2} \\
F_{2}(x)=\frac{1}{2}\left(1+x-2 x^{2}\right) & S_{N}=F_{N}\left(A_{N}\right) \\
F_{3}(x)=\frac{1}{18}\left(7+2 x+9 x^{2}-18 x^{3}\right) & \Rightarrow \\
F_{4}(x)=\frac{1}{576}\left(191+33 x+64 x^{2}+288 x^{3}-576 x^{4}\right) & S_{2}=\frac{7}{18} \\
S_{3}=\frac{191}{576} \\
S_{4}=\frac{35393}{120000}
\end{array}
$$

Scaling Analysis

- Convert recursion equation

$$
F_{N+1}(x)=x F_{N}(x)+(1-x) F_{N}\left(A_{N}\right)
$$

into a differential equation (N plays role of time!)

$$
\frac{\partial F_{N}(x)}{\partial N}=(1-x)\left[F_{N}\left(A_{N}\right)-F_{N}(x)\right]
$$

- Seek a similarity solution ($N \rightarrow \infty$ limit)

$$
F_{N}(x) \simeq S_{N} \Phi(s) \quad \text { with } \quad s=(1-x) N
$$

boundary conditions $\Phi(0)=0$ and $\Phi(1)=1\left(1-\frac{N}{N+1}\right) N \rightarrow 1$

- Similarity function obeys first-order ODE

$$
\Phi^{\prime}(s)+\left(1-\beta s^{-1}\right) \Phi(s)=1
$$

Similarity solution gives distribution of scaled record

Similarity Solution

- Equation with yet unknown exponent

$$
\Phi^{\prime}(s)+\left(1-\beta s^{-1}\right) \Phi(s)=1
$$

- General solution

$$
\Phi(s)=s \int_{0}^{1} d z z^{-\beta} e^{s(z-1)}
$$

- Boundary condition dictates the exponent

$$
\int_{0}^{1} d z z^{-\beta} e^{(z-1)}=1
$$

- Root is a transcendental number

$$
\beta=0.450265027495
$$

Analytic solution for distribution and exponent

Distribution of records

scaling variable $s=(1-x) N$

Inferior records

- Start with sequence of random variables

$$
\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{N}\right\}
$$

- Calculate the sequence of records $\left\{X_{1}, X_{2}, X_{3}, \ldots, X_{N}\right\} \quad$ where $\quad X_{n}=\max \left(x_{1}, x_{2}, \ldots, x_{n}\right\}$
- Compare with the expected average

$$
\left\{A_{1}, A_{2}, A_{3}, \ldots, A_{N}\right\}=\{1 / 2,2 / 3,3 / 4, \ldots, N /(N+1)\}
$$

- Inferior sequence $=$ records always below average

$$
X_{n}>A_{n} \quad \text { for all } \quad 1 \leq n \leq N
$$

- What fraction of sequences are inferior?

$$
I_{N} \sim N^{-\alpha}
$$

expect power law decay, different exponent

Probability sequence is inferior

- Start with sequence of random variables

$$
\left\{A_{1}, A_{2}, A_{3}, \ldots, A_{N}\right\}=\{1 / 2,2 / 3,3 / 4, \ldots, N /(N+1)\}
$$

- One variable

$$
x_{1}<\frac{1}{2} \quad \Longrightarrow \quad I_{1}=\frac{1}{2}
$$

- Two variables

$$
x_{1}<\frac{1}{2} \quad \text { and } \quad x_{2}<\frac{2}{3} \quad \Longrightarrow \quad I_{2}=\frac{1}{2} \times \frac{2}{3}=\frac{1}{3}
$$

- Recursion equation (no interactions between variables)

$$
I_{N+1}=I_{N} \frac{N}{N+1}
$$

- Simple solution

$$
I_{N}=\frac{1}{N+1} \quad I_{N} \sim N^{-1}
$$

power law decay with trivial exponent

General distributions

- Arbitrary distribution function
- Single parameter contains information about tail

$$
\alpha=\lim _{N \rightarrow \infty} N \int_{A_{N}}^{\infty} d x \rho(x)
$$

- Equals the exponent for inferior sequences

$$
I_{N} \sim N^{-\alpha}
$$

- Exponent for superior sequences

$$
\alpha \int_{0}^{1} d z z^{-\beta} e^{\alpha(z-1)}=1
$$

- Power-law distributions (compact support)

$$
R(x) \sim(1-x)^{\mu} \quad \Longrightarrow \quad \alpha=\left[\Gamma\left(1+\frac{1}{\mu}\right)\right]^{\mu}
$$

Continuously varying exponents

Tail of distribution function controls record statistics

Records in earthquake data inter-event times

Conclusions

- Studied persistent configuration of record sequences
- Linear evolution equations (but nonlocal/memory)
- Dynamic formulation: treat sequence length as time
- Similarity solutions for distribution of records
- Probability of persistent configuration (inferior, superior, inferior) decays as a power-law
- Power laws exponents are generally nontrivial
- Exponents can be obtained analytically
- Tail of distribution function controls record statistics

