Statistics of Superior Records

Eli Ben-Naim
Los Alamos National Laboratory

with: Pearson Miller (Yale), Paul Krapivsky (Boston)

E. Ben-Naim and P.L. Krapivsky, arXiv:1305:4227

Talk, paper available from: http://cnls.lanl.gov/~ebn

Plan

I. Records: background \& basic properties
II. Superior records
III. Inferior records
IV. Incremental records
V. General distribution functions

Motivation

- Weather: record high \& low temperatures
- Finance: stock prices
- Insurance: extreme/catastrophic events
- Evolution: growth rate of species
- Sports
- Data analysis: record high \& low define span

Records and extreme values are ubiquitous

Records

- Record $=$ largest variable in a series

$$
X_{N}=\max \left(x_{1}, x_{2}, \ldots, x_{N}\right)
$$

- Independent and identically distributed variables

$$
\int_{0}^{\infty} d x \rho(x)=1
$$

- Canonical case: uniform distribution

$$
\rho(x)=1 \quad \text { for } \quad 0 \leq x \leq 1
$$

- What is the average record?
- What is the distribution of the record?

Distribution of the record

- Probability that one variable is $>x$

$$
R(x)=\int_{x}^{\infty} d y \rho(y)
$$

- Probability that record is $>x$

$$
R_{N}(x)=1-[1-R(x)]^{N}
$$

- Self-similar distribution

$$
R_{N}(x) \simeq \Psi(s) \quad \text { with } \quad s=R N \quad \begin{aligned}
& N \rightarrow \infty \\
& R \rightarrow 0
\end{aligned}
$$

- Exponential similarity function

$$
\Psi(s)=1-e^{-s}
$$

I. Distribution of extreme values is universal 2. Tail of the distribution function dominates

The average record

- Cumulative distribution function

$$
R_{N}(x)=1-[1-R(x)]^{N}
$$

- Probability distribution function is its derivative
- Average record

$$
A_{N}=-\int_{0}^{\infty} d x x \frac{d R_{N}}{d x}=N \int_{0}^{\infty} d x x \rho(1-R)^{N-1}
$$

- Change of variable $x=x(R)$

$$
A_{N}=N \int_{0}^{1} d R(1-R)^{N} x(R)
$$

Example: uniform distribution

- The variable x is randomly distributed in [0:1]

$$
\rho(x)=1 \quad \text { for } \quad 0 \leq x \leq 1
$$

- Cumulative distribution function is linear

$$
R(x)=1-x
$$

- Average record $A_{N}=N \int_{0}^{1} d R(1-R)^{N}$

$$
A_{N}=\frac{N}{N+1} \quad \Longrightarrow \quad 1-A_{N} \simeq N^{-1}
$$

- Scaling behavior

$$
1-[1-(1-x)]^{N} \rightarrow 1-e^{-s} \quad s=(1-x) N
$$

Average number of records

- Probability that N th variable is a record

$$
P_{N}=\frac{1}{N}
$$

- Average number of records $=$ harmonic number

$$
M_{N}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{N}
$$

- Grows logarithmically with number of variables

$$
M_{N} \simeq \ln N+\gamma \quad \gamma=0.577215
$$

Behavior is independent of distribution function Number of records is quite small

Distribution of number of records

- Probability that N variables have n records satisfies recursion equation

$$
Q_{n}(N)=\left(1-N^{-1}\right) Q_{n}(N-1)+N^{-1} Q_{n-1}(N-1)
$$

- Given in terms of Stirling numbers Graham, Knuth, Patashnik 89

$$
Q_{n}(N)=\frac{1}{N!}\left[\begin{array}{l}
N \\
n
\end{array}\right]
$$

- Variance related to second harmonic numbers

$$
V_{N}=\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{N}\right)-\left(1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\frac{1}{N^{2}}\right)
$$

- Approaches a normal distribution

$$
Q_{n}(N) \rightarrow \frac{1}{\sqrt{2 \pi \ln N}} \exp \left[-\frac{(n-\ln N)^{2}}{2 \ln N}\right]
$$

Superior Records

- Start with sequence of random variables

$$
\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{N}\right\}
$$

- Calculate the sequence of records \qquad $\left\{X_{1}, X_{2}, X_{3}, \ldots, X_{N}\right\} \quad$ where $\quad X_{n}=\max \left(x_{1}, x_{2}, \ldots, x_{n}\right\}$
- Compare with the expected average

$$
\left\{A_{1}, A_{2}, A_{3}, \ldots, A_{N}\right\}=\{1 / 2,2 / 3,3 / 4, \ldots, N /(N+1)\}
$$

- Superior sequence $=$ records always exceeds average

$$
X_{n}>A_{n} \quad \text { for all } \quad 1 \leq n \leq N
$$

- What fraction S_{N} of sequences is superior?
measure of "performance"

Numerical simulations

$$
\begin{array}{l|l}
S_{N} \sim N^{-\beta} & \beta=0.4503 \pm 0.0002
\end{array}
$$

Power law decay with nontrivial exponent

Distribution of superior records

- Cumulative probability distribution $F_{N}(x)$ that:
I. Sequence is superior ($X_{n}>A_{n}$ for all n) and

2. Current record is larger than $x\left(X_{N}>x\right)$

- Gives the desired probability immediately

$$
S_{N}=F_{N}\left(A_{N}\right)
$$

- Recursion equation

$$
F_{N+1}(x)=x \underset{\substack{\text { old record holds } \\ F_{N}(x) \\ \text { a new record is set }}}{(1-x) F_{N}\left(A_{N}\right)} \quad x>A_{N+1}
$$

- Recursive solution

$$
\begin{array}{ll}
F_{1}(x)=1-x & S_{1}=\frac{1}{2} \\
F_{2}(x)=\frac{1}{2}\left(1+x-2 x^{2}\right) & S_{N}=F_{N}\left(A_{N}\right) \\
F_{3}(x)=\frac{1}{18}\left(7+2 x+9 x^{2}-18 x^{3}\right) & \Rightarrow \\
F_{4}(x)=\frac{1}{576}\left(191+33 x+64 x^{2}+288 x^{3}-576 x^{4}\right) & S_{2}=\frac{7}{18} \\
S_{3}=\frac{191}{576} \\
S_{4}=\frac{35393}{120000}
\end{array}
$$

Enumeration

Exponent obtained with improved precision Still, what about the distribution of superior records? Can the exponent be obtained analytically?

Similarity transformation

- Convert recursion equation

$$
F_{N+1}(x)=x F_{N}(x)+(1-x) F_{N}\left(A_{N}\right)
$$

into a differential equation (N plays role of time!)

$$
\frac{\partial F_{N}(x)}{\partial N}=(1-x)\left[F_{N}\left(A_{N}\right)-F_{N}(x)\right]
$$

- Seek a similarity solution ($N \rightarrow \infty$ limit)

$$
F_{N}(x) \simeq S_{N} \Phi(s) \quad \text { with } \quad s=(1-x) N
$$

boundary conditions $\Phi(0)=0$ and $\Phi(1)=1\left(1-\frac{N}{N+1}\right) N \rightarrow 1$

- Similarity function obeys first-order ODE

$$
\Phi^{\prime}(s)+\left(1-\beta s^{-1}\right) \Phi(s)=1
$$

Similarity solution gives distribution of scaled record

Similarity Solution

- Equation with yet unknown exponent

$$
\Phi^{\prime}(s)+\left(1-\beta s^{-1}\right) \Phi(s)=1
$$

- General solution

$$
\Phi(s)=s \int_{0}^{1} d z z^{-\beta} e^{s(z-1)}
$$

- Boundary condition dictates the exponent

$$
\int_{0}^{1} d z z^{-\beta} e^{(z-1)}=1
$$

- Root is a transcendental number

$$
\beta=0.450265027495
$$

Analytic solution for distribution and exponent

Distribution of records

(for superior sequences)

scaling variable $s=(1-x) N$

The average record

- Similarity function immediately gives average

$$
\langle s\rangle=-\int_{0}^{1} d s s \Phi^{\prime}(s)
$$

- Average record

$$
1-\langle x\rangle \simeq C N^{-1}
$$

- Constant follows from the similarity function

$$
C=\int_{0}^{1} d s[1-\Phi(s)]
$$

- Constant is nontrivial

$$
C=0.388476
$$

Similarity function characterizes all records statistics

Summary I

- Compare record with expected average
- Superior sequence consistently "outperforms" average
- Probability a sequence is superior decays as power law

$$
S_{N} \sim N^{-\beta}
$$

- Exponent is nontrivial, can be obtained analytically

$$
\beta=0.450265
$$

- Distribution function can be obtained as well

Inferior records

- Start with sequence of random variables

$$
\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{N}\right\}
$$

- Calculate the sequence of records $\left\{X_{1}, X_{2}, X_{3}, \ldots, X_{N}\right\} \quad$ where $\quad X_{n}=\max \left(x_{1}, x_{2}, \ldots, x_{n}\right\}$
- Compare with the expected average

$$
\left\{A_{1}, A_{2}, A_{3}, \ldots, A_{N}\right\}=\{1 / 2,2 / 3,3 / 4, \ldots, N /(N+1)\}
$$

- Inferior sequence $=$ records always below average

$$
X_{n}>A_{n} \quad \text { for all } \quad 1 \leq n \leq N
$$

- What fraction of sequences are inferior?

$$
I_{N} \sim N^{-\alpha}
$$

expect power law decay, different exponent

Probability sequence is inferior

- Start with sequence of random variables

$$
\left\{A_{1}, A_{2}, A_{3}, \ldots, A_{N}\right\}=\{1 / 2,2 / 3,3 / 4, \ldots, N /(N+1)\}
$$

- One variable

$$
x_{1}<\frac{1}{2} \quad \Longrightarrow \quad I_{1}=\frac{1}{2}
$$

- Two variables

$$
x_{1}<\frac{1}{2} \quad \text { and } \quad x_{2}<\frac{2}{3} \quad \Longrightarrow \quad I_{2}=\frac{1}{2} \times \frac{2}{3}=\frac{1}{3}
$$

- Recursion equation (no interactions between variables)

$$
I_{N+1}=I_{N} \frac{N}{N+1}
$$

- Simple solution

$$
I_{N}=\frac{1}{N+1} \quad I_{N} \sim N^{-1}
$$

power law decay with trivial exponent

Incremental Records

Incremental sequence of records
every record improves upon previous record by yet smaller amount

- No a priori knowledge of distribution, no parameters
- Definition does involve memory
- What fraction S_{N} of sequences is incremental?

$$
S_{N} \sim N^{-\nu} \quad \nu=0.31762101
$$

Numerical Simulations

$$
S_{N} \sim N^{-\nu} \quad \nu=0.3176 \pm 0.0002
$$

Power law decay with nontrivial exponent

Distribution of records

- Probability a sequence is inferior and record $<x$

$$
G_{N}(x) \quad \Longrightarrow \quad S_{N}=G_{N}(1) \quad x_{2}=x_{1}
$$

- One variable

$$
G_{1}(x)=x \quad \Longrightarrow \quad S_{1}=1
$$

- Two variables

$$
G_{2}(x)=\frac{3}{4} x^{2} \quad \Longrightarrow \quad S_{2}=\frac{3}{4}
$$

- In general, conditions are scale invariant $\quad x \rightarrow a x$
- Distribution of records for incremental sequences

$$
G_{N}(x)=S_{N} x^{N}
$$

- Distribution of records for all sequences equals x^{N}

Statistics of records follow fisher-tippett-gumble!

Scaling behavior

- Distribution of records for incremental sequences

$$
G_{N}(x) / S_{N}=x^{N}=[1-(1-x)]^{N} \rightarrow e^{-s}
$$

- Same scaling variable

$$
s=(1-x) N
$$

Exponential similarity function

Distribution of records

- Probability distribution $S_{N}(x, y) d x d y$ that:
I. Sequence is incremental

2. Current record is in range $(x, x+d x)$
3. Latest increment is in range $(y, y+d y)$ with $0<y<x$

- Gives the probability a sequence is incremental

$$
S_{N}=\int_{0}^{1} d x \int_{0}^{x} d y S_{N}(x, y)
$$

- Recursion equation incorporates memory

$$
S_{N+1}(x, y)=\underset{\substack{\text { old record holds }}}{x S_{N}(x, y)+\int_{y}^{x-y} d y^{\prime} S_{N}\left(x-y, y^{\prime}\right)} \begin{gathered}
\text { a new record is set }
\end{gathered}
$$

- Evolution equation includes integral, has memory

$$
\frac{\partial S_{N}(x, y)}{\partial N}=-(1-x) S_{N}(x, y)+\int_{y}^{x-y} d y^{\prime} S_{N}\left(x-y, y^{\prime}\right)
$$

Similarity transformation

- Assume record and increment scale similarly

$$
y \sim 1-x \sim N^{-1}
$$

- Introduce a scaling variable for the increment

$$
s=(1-x) N \quad \text { and } \quad z=y N
$$

- Seek a similarity solution

$$
S_{N}(x, y)=N^{2} S_{N} \Psi(s, z)
$$

- Eliminate time out of the master equation

$$
\left(2-\nu+s+s \frac{\partial}{\partial s}+z \frac{\partial}{\partial z}\right) \Psi(s, z)=\int_{z}^{\infty} d z^{\prime} \Psi\left(s+z, z^{\prime}\right)
$$

Factorizing solution

- Assume record and increment decouple

$$
\Psi(s, z)=e^{-s} f(z)
$$

- Substitute into equation for similarity solution

$$
\left(2-\nu+s+s \frac{\partial}{\partial s}+z \frac{\partial}{\partial z}\right) \Psi(s, z)=\int_{z}^{\infty} d z^{\prime} \Psi\left(s+z, z^{\prime}\right)
$$

- First order integro-differential equation

$$
z f^{\prime}(z)+(2-\nu) f(z)=e^{-z} \int_{z}^{\infty} f\left(z^{\prime}\right) d z^{\prime}
$$

- Cumulative distribution of scaled increment

$$
g(z)=\int_{z}^{\infty} f\left(z^{\prime}\right) d z^{\prime}
$$

- Convert into a second order differential equation

$$
z g^{\prime \prime}(z)+(2-\nu) g^{\prime}(z)+e^{-z} g(z)=0 \quad \begin{aligned}
g(0) & =1 \\
g^{\prime}(0) & =-1 /(2-\nu)
\end{aligned}
$$

Distribution of increment

- Assume record and increment decouple

$$
z g^{\prime \prime}(z)+(2-\nu) g^{\prime}(z)+e^{-z} g(z)=0 \quad \begin{aligned}
g(0) & =1 \\
g^{\prime}(0) & =-1 /(2-\nu)
\end{aligned}
$$

- Two independent solutions

$$
g(z)=z^{\nu-1} \quad \text { and } \quad g(z)=\text { const. } \quad \text { as } \quad z \rightarrow \infty
$$

- The exponent is determined by the tail behavior

$$
\nu=0.317621
$$

- The distribution of increment has a broad tail

$$
P_{N}(y) \sim N^{-1} y^{\nu-2}
$$

Increments can be relatively large problem reduced to second order ODE

Numerical confirmation

Monte Carlo simulation versus integration of ODE

Increment and record become uncorrelated

Summary II

- Incremental sequences: improvement in record diminishes monotonically
- Distribution of record is narrow (exponential)
- Distribution of increment is broad (power law)
- Increment and record become uncorrelated when the sequence becomes very large
- Analytic treatment incorporates memory
- Problem reduces to a second order ODE
- Exponent can be obtained analytically

General distributions

- Arbitrary distribution function
- Single parameter contains information about tail

$$
\alpha=\lim _{N \rightarrow \infty} N \int_{A_{N}}^{\infty} d x \rho(x)
$$

- Equals the exponent for inferior sequences

$$
I_{N} \sim N^{-\alpha}
$$

- Exponent for superior sequences

$$
\alpha \int_{0}^{1} d z z^{-\beta} e^{\alpha(z-1)}=1
$$

- Powerlaw distributions (compact support)

$$
R(x) \sim(1-x)^{\mu} \quad \Longrightarrow \quad \alpha=\left[\Gamma\left(1+\frac{1}{\mu}\right)\right]^{\mu}
$$

Continuously varying exponents

Tail of distribution function controls record statistics

Conclusions

- Studied persistent configuration of record sequences
- Linear evolution equations (but nonlocal/memory)
- Dynamic formulation: treat sequence length as time
- Similarity solutions for distribution of records
- Probability of persistent configuration (superior, inferior, incremental) decays as a power-law
- Power laws exponents are generally nontrivial
- Exponents can be obtained analytically
- Tail of distribution function controls record statistics

