Nontrivial Exponents in Records Statistics

Eli Ben-Naim

Los Alamos National Laboratory

with: Pearson Miller (Yale)

P. W. Miller and E. Ben-Naim, J. Stat. Mech. P10025 (2013)

Talk, paper available from: http://cnls.lanl.gov/~ebn

APS March Meeting, Denver (CO), March 3, 2014

Marathon World Record

Year	Athlete	Country	Record	Improvement
2002	Khalid Khannuchi	USA	2:05:38	
2003	Paul Tergat	Kenya	2:04:55	0:43
2007	Haile Gebrsellasie	Ethiopia	2:04:26	0:29
2008	Haile Gebrsellasie	Ethiopia	2:03:59	0:27
2011	Patrick Mackau	Kenya	2:03:38	0:21
2013	Wilson Kipsang	Kenya	2:03:23	0:15

Incremental sequence of records

every record improves upon previous record by yet smaller amount

Are incremental sequences of records common?

Incremental Records

Incremental sequence of records

every record improves upon previous record by yet smaller amount

random variable = $\{0.4, 0.4, 0.6, 0.7, 0.5, 0.1\}$

- latest record = $\{0.4, 0.4, 0.6, 0.7, 0.7, 0.7\}$ \uparrow
- latest increment = $\{0.4, 0.4, 0.2, 0.1, 0.1, 0.1\}$

What is the probability all records are incremental?

Probability all records are incremental

Power law decay with nontrivial exponent Question is free of parameters!

Uniform distribution

- The variable x is randomly distributed in [0:1] $\rho(x) = 1 \quad \text{for} \quad 0 \le x \le 1$
- Probability record is smaller than x

$$R_N(x) = x^N$$

• Average record

$$A_N = \frac{N}{N+1} \qquad \Longrightarrow \qquad 1 - A_N \simeq N^{-1}$$

• Number of records

$$M_N = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{N}$$

Distribution of records

• Probability a sequence is incremental and record < x

$$G_N(x) \implies S_N = G_N(1) \qquad x_2 = x_1$$

• One variable

$$G_1(x) = x \quad \Longrightarrow \quad S_1 = 1$$

• Two variables $x_2 - x_1 > x_1$ $G_2(x) = \frac{3}{4}x^2 \implies S_2 = \frac{3}{4}$

- In general, conditions are scale invariant $x \rightarrow a x$
- Distribution of records for incremental sequences

$$G_N(x) = S_N x^N$$

• Distribution of records for all sequences equals x^N Statistics of records are standard Fisher-Tippett 28 Gumbel 35

Scaling behavior

• Distribution of records for incremental sequences $G_N(x)/S_N = x^N = [1 - (1 - x)]^N \rightarrow e^{-s}$

Scaling variable

s = (1 - x)NExponential scaling function

Distribution of increment+records

- Probability density $S_N(x,y)dxdy$ that:
 - I. Sequence is incremental
 - 2. Current record is in range (x, x+dx)
 - 3. Latest increment is in range (y,y+dy) with $0 \le y \le x$
- Gives the probability a sequence is incremental $S_N = \int_0^1 dx \, \int_0^x dy \, S_N(x,y)$
- **Recursion equation incorporates memory** $S_{N+1}(x,y) = x S_N(x,y) + \int_y^{x-y} dy' S_N(x-y,y')$ old record holds a new record is set

• Evolution equation includes integral, has memory $\frac{\partial S_N(x,y)}{\partial N} = -(1-x)S_N(x,y) + \int_{a}^{x-y} dy' S_N(x-y,y')$

Scaling transformation

• Assume record and increment scale similarly

$$y \sim 1 - x \sim N^{-1}$$

• Introduce a scaling variable for the increment

$$s = (1 - x)N$$
 and $z = yN$

Seek a scaling solution

$$S_N(x,y) = N^2 S_N \Psi(s,z)$$

• Eliminate time out of the master equation

$$\left(2-\nu+s+s\frac{\partial}{\partial s}+z\frac{\partial}{\partial z}\right)\Psi(s,z) = \int_{z}^{\infty} dz' \,\Psi(s+z,z')$$

Reduce problem from <u>three</u> variables to <u>two</u>

Factorizing solution

Assume record and increment decouple

 $\Psi(s,z) = e^{-s} f(z)$

Substitute into equation for similarity solution

$$\left(2-\nu+s+s\frac{\partial}{\partial s}+z\frac{\partial}{\partial z}\right)\Psi(s,z) = \int_{z}^{\infty} dz' \,\Psi(s+z,z')$$

• First order integro-differential equation

$$zf'(z) + (2 - \nu)f(z) = e^{-z} \int_{z}^{\infty} f(z')dz'$$

• Cumulative distribution of scaled increment $g(z) = \int_{z}^{\infty} f(z')dz'$

g(0) = 1

 $g'(0) = -1/(2 - \nu)$

• Convert into a second order differential equation

$$zg''(z) + (2-\nu)g'(z) + e^{-z}g(z) = 0$$

Reduce problem from <u>two</u> variable to <u>one</u>

Distribution of increment

• Assume record and increment decouple

$$zg''(z) + (2-\nu)g'(z) + e^{-z}g(z) = 0$$

q(0) = 1

 $q'(0) = -1/(2 - \nu)$

• Two independent solutions

 $g(z) = z^{\nu-1}$ and g(z) = const. as $z \to \infty$

- The exponent is determined by the tail behavior $\beta = 0.317621014462...$
- The distribution of increment has a broad tail

$$P_N(y) \sim N^{-1} y^{\nu - 2}$$

Increments can be relatively large problem reduced to second order ODE

Numerical confirmation

Monte Carlo simulation versus integration of ODE

Increment and record become uncorrelated

Conclusions

- Studied persistent configuration of record sequences
- Linear evolution equations (but with memory)
- Dynamic formulation: treat sequence length as time
- Similarity solutions for distribution of records
- Probability a sequence of records is incremental decays as power-law with sequence length
- Power-law exponent is nontrivial, obtained analytically
- Distribution of record increments is broad

First-passage properties of extreme values are interesting

EB, PL Krapivsky, Phys. Rev. E 88, 022145 (2013)