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Working with Carl
• Data: 50 email messages received during collaboration

• AM: 25%, PM: 75%

• “Midnight singularity”
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• Definition:  A set of polynomials           is orthogonal with 
respect to the measure         on the interval              if

• Properties: Orthogonal polynomials have many fascinating  
and useful properties: 

‣ All roots are real and are inside the interval

‣ The orthogonal polynomials form a complete basis:    
any polynomial is a linear combination of orthogonal 
polynomials of lesser or equal order 

Orthogonal Polynomials 101

Pn(x)
g(x)∫ β

α
dx g(x)Pn(x)Pm(x) = 0 for all m != n

[α : β]

[α : β]



Orthogonal Polynomials 101

1. Differential Equation: 
   
2. Generating Function:

3. Rodriguez Formula:

4. Recursion Formula:

1√
1− 2tx + t2

=
∞∑

n=0

Pn(x)tn

Pn(x) =
1

2n n!
dn

dxn
(x2 − 1)n

(n + 1)Pn+1(x)− (2n + 1)xPn(x) + nPn−1(x) = 0

• Specification: Orthogonal polynomials can be  
specified in multiple ways (typically linear)

Example: Legendre Polynomials orthogonal on              w.r.t [−1 : 1] g(x) = 1

(1− x2)P ′′
n (x)− 2xP ′

n(x) + n(n + 1)Pn(x) = 0



Nonlinear Integral Equation
• Consider the following nonlinear integral equation

• No restriction on integration limits

• Weight function restricted: non-vanishing integral

• Motivation: stochastic process involving subtraction

• Reduces to the Wigner function equation when 

P (x) =
∫ β

α
dy w(y) P (y) P (x + y)

[α : β] = [−∞ :∞] w(y) = eiy

x1, x2 → |x1 − x2|

∫ β

α
dx w(x) != 0

e−x = 2
∫ ∞

0
dy e−ye−(x+y)



Constant Solution (n=0)
• Consider the constant polynomial

• A constant solves the nonlinear integral equation 

• When

• Since           we can divide by 

P (x) =
∫ β

α
dy w(y) P (y) P (x + y)

a =
∫ β

α
dy w(y)a2

P0(x) = a a != 0

a != 0 a

1 =
∫ β

α
dy w(y)a.

A constant solution exists



Linear Solution (n=1)
• Consider the linear polynomial

• Let us introduce the shorthand notation

• The nonlinear integral equation                        reads 

1. Equate the coefficients of       and divide by

2. Equate the coefficients of       and divide by    

b != 0P1(x) = a + bx

a + bx = 〈P1(y) [a + by + bx]〉
x1 b != 0

b = b〈P1〉 ⇒ 〈P1(x)〉 = 1

x0

a = a〈P1〉+ b〈yP1(y)〉 ⇒ 〈xP1(x)〉 = 0

Linear solution generally exists
Nonlinear equation reduces to 2 linear inhomogeneous equations for a,b

〈f(x)〉 ≡
∫ β

α
dx w(x)f(x)

P (x) = 〈P (y)P (x + y)〉

b != 0



Quadratic Solution (n=2)

• Consider the quadratic polynomial

• The nonlinear integral equation becomes

• Successively equating coefficients

Quadratic solution generally exists
Miraculous cancelation of terms

Nonlinear equation reduces to 3 linear inhomogeneous equations for a,b,c

P2(x) = a + bx + cx2 c != 0

c = c〈P2(y)〉 ⇒ 〈P2(x)〉 = 1
b = b〈P2(y)〉+ 2c〈yP2(y)〉 ⇒ 〈xP2(x)〉 = 0

a = a〈P2(y)〉+ b〈yP2(y)〉+ c〈y2P2(y)〉 ⇒ 〈x2P2(x)〉 = 0

a + bx + cx2 = 〈P2(y)
[
a + by + cy2 + bx + 2cxy + cx2

]
〉



General Properties
• The nonlinear integral equation has two remarkable properties: 

1. This equation preserves the order of a polynomial

2. For polynomial solutions, the nonlinear equation 
reduces to a linear set of equations for the 
coefficients of the polynomials

• In general, a polynomial of degree n

• Is a solution of the integral equation if and only if its n+1 coefficients 
satisfy the following set of n+1 linear inhomogeneous equations

Pn(x) =
n∑

k=0

an,k xk

〈xkPn(x)〉 = δk,0 (k = 0, 1, . . . , n)

Infinite number of polynomial solutions



The set of polynomial solutions is orthogonal!

• The polynomial solutions are orthogonal w.r.t. 

• Because for

• As follows immediately from 

g(x) = xw(x)

〈xPnPm〉 =
m∑

k=0

am,k〈xk+1 Pn(x)〉 =
m+1∑

k=1

am,k−1〈xk Pn(x)〉 = 0

〈xkPn(x)〉 = δk,0

1.The nonlinear integral equation admits an infinite set    
of polynomial solutions
2.The polynomial solutions form an orthogonal set

m < n



The equations for the coefficients

• The equations for the coefficients

• Can be compactly written as

• Or in matrix form

• In terms of the “moments” of the weight function

〈xkPn(x)〉 = δk,0 (k = 0, 1, . . . , n)

n∑

j=0

an,jmk+j = δk,0 (k = 0, 1, . . . , n)

mn = 〈xn〉





m0 m1 · · · mn

m1 m2 · · · mn+1
...

...
. . .

...
mn mn+1 · · · m2n









an,0

an,1
...

an,n




=





1
0
...
0







Formulas for the polynomials

• Using Cramer’s rule, the polynomials can be 
expressed as a ratio of determinants

• Explicit expressions

An =





1 x · · · xn

m1 m2 · · · mn+1
...

...
. . .

...
mn mn+1 · · · m2n




, Bn =





m0 m1 · · · mn

m1 m2 · · · mn+1
...

...
. . .

...
mn mn+1 · · · m2n





Pn(x) =
det An

det Bn

P0(x) = 1,

P1(x) =
m2 − xm1

m2 −m2
1

,

P2(x) =
(m2m4−m2

3) + (m2m3−m1m4)x + (m1m3−m2
2)x2

m4(m2 −m2
1)−m2

3 + 2m1m2m3 −m3
2

.



Examples
• Interval [0:1], weight function w(x)=1

• Jacobi polynomials                             orthogonal 
w.r.t the measure g(x)=x

1. Generalized Laguerre polynomials 

2. Jacoby polynomials

3. Shifted Chebyshev  of the second kind polynomials

P0(x) = 1
P1(x) = 4− 6x

P2(x) = 9− 36x + 30x2

P3(x) = 16− 120x + 240x2 − 140x3.

Pn(x) ∝ Gn(2, 2, x)

L(γ)
n (x)

Gn(p, q, x)

α = 0, β =∞, w(x) = xγ−1e−x

U∗
n(x) α = 0, β = 1, w(x) = (1− x)1/2x−1/2

α = 0, β = 1, w(x) = xq−2(1− x)p−q



Integration in the complex domain

• To specify the Legendre Polynomials  

• Perform integration in the complex domain

• This integration path gives the Legendre Polynomials

P (x) =
∫ 1

−1
dy

1
y

P (y) P (x + y)

∫ 1

−1

dx

x
= iπ

P0(x) = 1,

P1(x) =
iπ

2
x,

P2(x) = 1− 3x2,

P3(x) =
3iπ

8
(3x− 5x3),

Nonlinear integral equation extends to complex domain

w(x) =
1

iπ x



Generalization I: multiplicative arguments

• Nonlinear equation with multiplicative argument  

• Infinite set of polynomial solutions when

• These polynomials are orthogonal

• Now, the orthogonality measure is  

A series of nonlinear integral formulations

P (x) =
∫ β

α
dy w(y) P (y) P (x y)

〈xkPn(x)〉 = 1

〈(1 − x)PnPm〉 =
m∑

k=0

am,k

(
〈xkPn〉 − 〈xk+1Pn〉

)
= 0 m < n

g(x) = (1− x)w(x)



Generalization II: iterated integrals

• Iterate the nonlinear integral equation

• The double integral equation

  Similarly specifies orthogonal polynomials 

P (x) =
∫ β

α
dy

g(y)
y

P (y) P (x + y)

P (x) =
∫ β

α
dy

g(y)
y

∫ β

α
dz

g(z)
z

P (y) P (z) P (x + y + z)



Summary
• A set of orthogonal polynomials w.r.t the measure g(x) 

can be specified through the nonlinear integral equation

• For polynomial solutions, this nonlinear equation 
reduces to a linear set of equations

• Simple, compact, and completely general way to 
specify orthogonal polynomials

• Natural way to extend theory to complex domain

P (x) =
∫ β

α
dy

g(y)
y

P (y) P (x + y)



Outlook

• Non-polynomial solutions

• Multi-dimensional polynomials

• Matrix polynomials

• Polynomials defined on disconnected domains

• Higher-order nonlinear integral equations

• Use nonlinear formulation to derive integral identities 

• Asymptotic properties of polynomials



Nonlinear Integral Identities

• Let           be the set of orthogonal polynomials specified 
by the nonlinear integral equation

• Then, any polynomial            of degree             satisfies 
the nonlinear integral identity  

m ≤ n

Pn(x)

Qm(x)

Pn(x) =
∫ β

α
dy

g(y)
y

Pn(y) Pn(x + y)

Qm(x) =
∫ β

α
dy

g(y)
y

Pn(y) Qm(x + y)



Asymptotic Properties & Integral Identities

• Combining the asymptotics of the Laguerre Polynomials 

• And the nonlinear integral equation with scaled variables

• Gives a standard identity for the Bessel functions

lim
n→∞

n−γLγ
n

(x

n

)
= x−γ/2Jγ(2

√
x)

1
nγ

Lγ
n

(x

n

)
=

1
Γ(γ)

∫ ∞

0
dy yγ−1e−y/n 1

nγ
Lγ

n

( y

n

) 1
nγ

Lγ
n

(
x + y

n

)

2γ−1 Jγ(z)
2zγ

=
1

Γ(γ)

∫ ∞

0
dw wγ−1Jγ(w)

Jγ(
√

w2 + z2 )
(w2 + z2)γ/2


