Nonlinear Integral Equation Formulation of Orthogonal Polynomials

Eli Ben-Naim
Los Alamos National Laboratory

with: Carl Bender (Washington University, St. Louis)
C.M. Bender and E. Ben-Naim, J. Phys. A: Math. Theor. 40, F9 (2007)

Talk, paper available from: http://cnls.lanl.gov/~ebn

Orthogonal Polynomials IOI

- Definition: A set of polynomials $P_{n}(x)$ is orthogonal with respect to the measure $g(x)$ on the interval $[-\alpha: \beta]$ if

$$
\int_{\alpha}^{\beta} d x g(x) P_{n}(x) P_{m}(x)=0 \quad \text { for all } m \neq n
$$

- Properties: Orthogonal polynomials have many fascinating and useful properties:
- All roots are real and are inside the interval $[-\alpha: \beta]$
- The orthogonal polynomials form a complete basis: any polynomial is a linear combination of orthogonal polynomials of lesser or equal order

Orthogonal Polynomials IOI

- Specification: Orthogonal polynomials can be specified in multiple ways (typically linear)

Example: Legendre Polynomials orthogonal on [-1:1] w.r.t $g(x)=1$
I. Differential Equation:

$$
\left(1-x^{2}\right) P_{n}^{\prime \prime}(x)-2 x P_{n}^{\prime}(x)+n(n+1) P_{n}(x)=0
$$

2. Generating Function:

$$
\frac{1}{\sqrt{1-2 t x+t^{2}}}=\sum_{n=0}^{\infty} P_{n}(x) t^{n}
$$

3. Rodriguez Formula:

$$
P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}
$$

4. Recursion Formula:

$$
(n+1) P_{n+1}(x)-(2 n+1) x P_{n}(x)+n P_{n-1}(x)=0
$$

Nonlinear Integral Equation

- Consider the following nonlinear integral equation

$$
P(x)=\int_{\alpha}^{\beta} d y w(y) P(y) P(x+y)
$$

- No restriction on integration limits
- Weight function restricted: non-vanishing integral

$$
\int_{\alpha}^{\beta} d x w(x) \neq 0
$$

- Motivation: stochastic process involving subtraction

$$
x_{1}, x_{2} \rightarrow\left|x_{1}-x_{2}\right|
$$

- Reduces to the Wigner function equation when

$$
[\alpha: \beta]=[-\infty: \infty] \quad w(y)=e^{i y}
$$

Constant Solution ($\mathrm{n}=0$)

- Consider the constant polynomial

$$
P_{0}(x)=a \quad a \neq 0
$$

- A constant solves the nonlinear integral equation
- When

$$
P(x)=\int_{\alpha}^{\beta} d y w(y) P(y) P(x+y)
$$

$$
a=\int_{\alpha}^{\beta} d y w(y) a^{2}
$$

- Since $a \neq 0$ we can divide by a

$$
1=\int_{\alpha}^{\beta} d y w(y) a
$$

A constant solution exists

Linear Solution $(\mathrm{n}=\mathrm{I})$

- Consider the linear polynomial

$$
P_{1}(x)=a+b x \quad b \neq 0
$$

- Let us introduce the shorthand notation

$$
\langle f(x)\rangle \equiv \int_{\alpha}^{\beta} d x w(x) f(x)
$$

- The nonlinear integral equation $P(x)=\langle P(y) P(x+y)\rangle$ reads

$$
a+b x=\left\langle P_{1}(y)[a+b y+b x]\right\rangle
$$

I. Equate the coefficients of x^{1} and divide by $b \neq 0$

$$
b=b\left\langle P_{1}\right\rangle \quad \Rightarrow \quad\left\langle P_{1}(x)\right\rangle=1
$$

2. Equate the coefficients of x^{0} and divide by $b \neq 0$

$$
a=a\left\langle P_{1}\right\rangle+b\left\langle y P_{1}(y)\right\rangle \quad \Rightarrow \quad\left\langle x P_{1}(x)\right\rangle=0
$$

Linear solution generally exists
Nonlinear equation reduces to 2 linear inhomogeneous equations for a, b

Quadratic Solution ($\mathrm{n}=2$)

- Consider the quadratic polynomial

$$
P_{2}(x)=a+b x+c x^{2} \quad c \neq 0
$$

- The nonlinear integral equation becomes
$\left.\underline{\underline{\underline{a}}}+\underline{\underline{b x}}+c x^{2}=\left\langle P_{2}(y) \underline{\underline{\underline{a+b} b y+b x}}+c y^{2}+2 c x y+c x^{2}\right]\right\rangle$
- Successively equating coefficients

$$
\begin{gathered}
c=c\left\langle P_{2}(y)\right\rangle \quad \Rightarrow \quad\left\langle P_{2}(x)\right\rangle=1 \\
b=b\left\langle P_{2}(y)\right\rangle+2 c\left\langle y P_{2}(y)\right\rangle \quad \Rightarrow \quad\left\langle x P_{2}(x)\right\rangle=0 \\
a=a\left\langle P_{2}(y)\right\rangle+b\left\langle y P_{2}(y)\right\rangle+c\left\langle y^{2} P_{2}(y)\right\rangle \quad \Rightarrow \quad\left\langle x^{2} P_{2}(x)\right\rangle=0
\end{gathered}
$$

Quadratic solution generally exists Miraculous cancelation of terms
Nonlinear equation reduces to 3 linear inhomogeneous equations for a,b,c

General Properties

- The nonlinear integral equation has two remarkable properties:
I. This equation preserves the order of a polynomial

2. For polynomial solutions, the nonlinear equation reduces to a linear set of equations for the coefficients of the polynomials

- In general, a polynomial of degree n

$$
P_{n}(x)=\sum_{k=0}^{n} a_{n, k} x^{k}
$$

- Is a solution of the integral equation if and only if its $\mathrm{n}+\mathrm{I}$ coefficients satisfy the following set of $\mathrm{n}+\mathrm{I}$ linear inhomogeneous equations

$$
\left\langle x^{k} P_{n}(x)\right\rangle=\delta_{k, 0} \quad(k=0,1, \ldots, n)
$$

Infinite number of polynomial solutions

The set of polynomial solutions is orthogonal!

- The polynomial solutions are orthogonal w.r.t.

$$
g(x)=x w(x)
$$

- Because

$$
\left\langle x P_{n} P_{m}\right\rangle=\sum_{k=0}^{m} a_{m, k}\left\langle x^{k+1} P_{n}(x)\right\rangle=\sum_{k=1}^{m+1} a_{m, k-1}\left\langle x^{k} P_{n}(x)\right\rangle=0
$$

- As follows immediately from

$$
\left\langle x^{k} P_{n}(x)\right\rangle=\delta_{k, 0}
$$

I.The nonlinear integral equation admits an infinite set of polynomial solutions
2. The polynomial solutions forms an orthogonal set

The equations for the coefficients

- The equations for the coefficients

$$
\left\langle x^{k} P_{n}(x)\right\rangle=\delta_{k, 0} \quad(k=0,1, \ldots, n)
$$

- Can be compactly written as

$$
\sum_{j=0}^{n} a_{n, j} m_{k+j}=\delta_{k, 0} \quad(k=0,1, \ldots, n)
$$

- Or in matrix form

$$
\left(\begin{array}{cccc}
m_{0} & m_{1} & \cdots & m_{n} \\
m_{1} & m_{2} & \cdots & m_{n+1} \\
\vdots & \vdots & \ddots & \vdots \\
m_{n} & m_{n+1} & \cdots & m_{2 n}
\end{array}\right)\left(\begin{array}{c}
a_{n, 0} \\
a_{n, 1} \\
\vdots \\
a_{n, n}
\end{array}\right)=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

- In terms of the moments of the weight function

$$
m_{n}=\left\langle x^{n}\right\rangle
$$

Formula for the polynomials

- Using Cramer's rule, the polynomials can be expressed as a ratio of determinants

$$
\begin{gathered}
A_{n}=\left(\begin{array}{cccc}
1 & x & \cdots & x^{n} \\
m_{1} & m_{2} & \cdots & m_{n+1} \\
\vdots & \vdots & \ddots & \vdots \\
m_{n} & m_{n+1} & \cdots & m_{2 n}
\end{array}\right), \quad B_{n}=\left(\begin{array}{cccc}
m_{0} & m_{1} & \cdots & m_{n} \\
m_{1} & m_{2} & \cdots & m_{n+1} \\
\vdots & \vdots & \ddots & \vdots \\
m_{n} & m_{n+1} & \cdots & m_{2 n}
\end{array}\right) \\
P_{n}(x)=\frac{\operatorname{det} A_{n}}{\operatorname{det} B_{n}}
\end{gathered}
$$

Examples

- Interval [0:I], weight function $\mathrm{w}(\mathrm{x})=\mathrm{I}$

$$
\begin{aligned}
& P_{0}(x)=1 \\
& P_{1}(x)=4-6 x \\
& P_{2}(x)=9-36 x+30 x^{2} \\
& P_{3}(x)=16-120 x+240 x^{2}-140 x^{3} .
\end{aligned}
$$

- Jacobi polynomials $P_{n}(x) \propto G_{n}(2,2, x)$ orthogonal w.r.t the measure $g(x)=x$
I. Generalized Laguerre polynomials

$$
L_{n}^{(\gamma)}(x) \quad \alpha=0, \quad \beta=\infty, \quad w(x)=x^{\gamma-1} e^{-x}
$$

2. Jacoby polynomials
$G_{n}(p, q, x)$

$$
\alpha=0, \quad \beta=1, \quad w(x)=x^{q-2}(1-x)^{p-q}
$$

3. Shifted Chebyshev of the second kind polynomials

$$
U_{n}^{*}(x) \quad \alpha=0, \quad \beta=1, \quad w(x)=(1-x)^{1 / 2} x^{-1 / 2}
$$

Integration in the complex domain

- To specify the Legendre Polynomials

$$
P(x)=\int_{-1}^{1} d y \frac{1}{y} P(y) P(x+y)
$$

- Perform integration in the complex domain

$$
\int_{-1}^{1} \frac{d x}{x}=i \pi
$$

- This integration path gives the Legendre Polynomials

$$
\begin{aligned}
& P_{0}(x)=1, \\
& P_{1}(x)=\frac{i \pi}{2} x, \\
& P_{2}(x)=1-3 x^{2}, \\
& P_{3}(x)=\frac{3 i \pi}{8}\left(3 x-5 x^{3}\right),
\end{aligned}
$$

Nonlinear integral equation extends to complex domain

Generalization: multiplicative arguments

- Nonlinear equation with multiplicative argument

$$
P(x)=\int_{\alpha}^{\beta} d y w(y) P(y) P(x y)
$$

- Infinite set of polynomial solutions when

$$
\left\langle x^{k} P_{n}(x)\right\rangle=1
$$

- These polynomials are orthogonal

$$
\left\langle(1-x) P_{n} P_{m}\right\rangle=\sum_{k=0}^{m} a_{m, k}\left(\left\langle x^{k} P_{n}\right\rangle-\left\langle x^{k+1} P_{n}\right\rangle\right)=0
$$

- Now, the orthogonality measure is

$$
g(x)=(1-x) w(x)
$$

A series of nonlinear integral formulations

Summary

- A set of orthogonal polynomials w.r.t the measure $g(x)$ can be specified thorugh the nonlinear integral equation

$$
P(x)=\int_{\alpha}^{\beta} d y \frac{g(y)}{y} P(y) P(x+y)
$$

- For polynomial solutions, this nonlinear equation reduces to a linear set of equations
- Simple, compact, and completely general way to specify orthogonal polynomials
- Natural way to extend theory to complex domain

Outlook

- Non-polynomial solutions
- Multi-dimensional polynomials
- Higher-order nonlinear integral equations
- Polynomials defined on multi-connected domains
- Asymptotic properties of polynomials
- Use nonlinear formulation to derive integral identities

Nonlinear Integral Identities

- Let $P_{n}(x)$ be the set of orthogonal polynomials specified by the nonlinear integral equation

$$
P_{n}(x)=\int_{\alpha}^{\beta} d y \frac{g(y)}{y} P_{n}(y) P_{n}(x+y)
$$

- Then, any polynomial $Q_{m}(x)$ of degree $m \leq n$ satisfies the nonlinear integral identity

$$
Q_{m}(x)=\int_{\alpha}^{\beta} d y \frac{g(y)}{y} P_{n}(y) Q_{m}(x+y)
$$

Asymptotic Properties \& Integral Identities

- Combining the asymptotics of the Laguerre Polynomials

$$
\lim _{n \rightarrow \infty} n^{-\gamma} L_{n}^{\gamma}\left(\frac{x}{n}\right)=x^{-\gamma / 2} J_{\gamma}(2 \sqrt{x})
$$

- And the nonlinear integral equation with scaled variables

$$
\frac{1}{n^{\gamma}} L_{n}^{\gamma}\left(\frac{x}{n}\right)=\frac{1}{\Gamma(\gamma)} \int_{0}^{\infty} d y y^{\gamma-1} e^{-y / n} \frac{1}{n^{\gamma}} L_{n}^{\gamma}\left(\frac{y}{n}\right) \frac{1}{n^{\gamma}} L_{n}^{\gamma}\left(\frac{x+y}{n}\right)
$$

- Gives a standard identity for the Bessel functions

$$
2^{\gamma-1} \frac{J_{\gamma}(z)}{2 z^{\gamma}}=\frac{1}{\Gamma(\gamma)} \int_{0}^{\infty} d w w^{\gamma-1} J_{\gamma}(w) \frac{J_{\gamma}\left(\sqrt{w^{2}+z^{2}}\right)}{\left(w^{2}+z^{2}\right)^{\gamma / 2}}
$$

