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• Opinion measured by a discrete variable	


!

1. Compromise: reached by pairwise interactions 	


!

2. Conviction: restricted interaction range	


!

• Only next-nearest neighbors interact 

The Bounded Confidence Model
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Minimal, parameter-free model	

Mimics competition between compromise and conviction
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Consensus vs Discord
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System evolves toward frozen state	

Consensus when opinion spectrum is small	


Generall, multiple opinion clusters (=political parties)

Monte Carlo simulations (100 agents)



Periodic Pattern of Clusters
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• Given uniform initial (un-normalized) distribution	


!

!

• Find final distribution	

!

• Multitude of final steady-states	


!

• Dynamics selects one (deterministically!)

Problem set-up

Multiple localized clusters	

separation > interaction range
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>:
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•Compromise process	


!

•Master equation (infinite population limit)	


!

•Two conservation laws: population, opinion	


!

•Characterize cluster by mass and location (opinion)	


!

•Goal: find average cluster mass (=average spacing)

Master Equation
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The final state

Probability density is not periodic	

Cluster masses are (nearly) identical	

Clusters are (nearly) equally spaced
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Traveling Wave

Traveling wave nucleates at domain boundary	

Propagates into unstable uniform state	


Leaves in its wake frozen clusters

t



• Linear stability analysis	


!

• Fastest growing mode	


!

• Traveling wave (FKPP saddle point analysis)

Pattern Selection

Wavelength obtained analytically!

Patterns induced by wave propagation from boundary	

Doppler-like shift in wavenumber, wavelength
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Excellent agreement with 	

theoretical predictions!

Numerical Verification
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Small variations in cluster mass	

Pattern is quasi-periodic	


Clusters arrangement shows intricate patterns

�m/m ⇡ 10�3

Numerical integration of coupled ODEs: Runge-Kutta (4,5)
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Cluster masses are periodic!

Tiny undulations in cluster mass are periodic	

Period of 363 is huge compared with selected wavelength of ~5.67 



• Wavelength is non-integer	


• Incommensurate with unit lattice spacing 	


• Continued-fraction expansion of wavelength	


!

!

• Hierarchy of patterns	

1. A pattern of 3 clusters with period 17	


2. A pattern of 64 clusters with period 363	


3. A pattern of 259 clusters with period 1469?

Super-patterns
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Hierarchy of patterns with increasing complexity
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• Compromise process	


!

• Master equation	


!

• Linear Stability & dispersion relation	


!

• Selected wavelength

Continuous opinions
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Conclusions
• Bounded confidence model studied using pattern formation 

techniques	


• Clusters are quasi-periodic, wavelength obtained analytically	


• Wavelength incommensurate with lattice	


• Superpatterns: integer number of clusters with integer period	


• Intricate features can not be detected by Monte Carlo, require 
sophisticated numerical integration techniques

Outlook
• Two dimensions: opinions on two separate political issues	


• Selection mechanism for super-patterns? all integers realized?


