Kinetics of Brownian Maxima

Eli Ben-Naim
Los Alamos National Laboratory

with: Paul Krapivsky (Boston University)
Phys. Rev. Lett. 113, 030604 (2014)
Talk, publications available from: http://cnls.lanl.gov/~ebn

First-Passage Kinetics: Brownian Positions

Probability two Brownian particle do not meet

- Universal probability Sparre

$$
S_{t}=\binom{2 t}{t} 2^{-t}
$$

- Asymptotic behavior Feller 68

$$
S \sim t^{-1 / 2}
$$

Behavior holds for Levy flights, different mobilities, etc Universal first-passage exponent

First-Passage Kinetics: Brownian Maxima

 Probability maximal positions remain ordered

- Numerical simulations

$$
S \sim t^{-\beta}
$$

- First-passage exponent

$$
\beta=0.2503 \pm 0.0005
$$

Is $1 / 4$ exact?
Is exponent universal?

$$
m_{1}>m_{2} \quad \text { if and only if } \quad m_{1}>x_{2}
$$

From four variables to three

- Four variables: two positions, two maxima

$$
m_{1}>x_{1} \quad \text { and } \quad m_{2}>x_{2}
$$

- The two maxima must always be ordered

$$
m_{1}>m_{2}
$$

- Key observation: trailing maximum is irrelevant!

$$
m_{1}>m_{2} \quad \text { if and only if } \quad m_{1}>x_{2}
$$

- Three variables: two positions, one maximum

$$
m_{1}>x_{1} \quad \text { and } \quad m_{1}>x_{2}
$$

From three variables to two

- Introduce two distances from the maximum

$$
u=m_{1}-x_{1} \quad \text { and } \quad v=m_{1}-x_{2}
$$

- Both distances undergo Brownian motion

$$
\frac{\partial \rho(u, v, t)}{\partial t}=D \nabla^{2} \rho(u, v, t)
$$

- Boundary conditions: (i) absorption (ii) advection

$$
\left.\rho\right|_{v=0}=0 \quad \text { and }\left.\quad\left(\frac{\partial \rho}{\partial u}-\frac{\partial \rho}{\partial v}\right)\right|_{u=0}=0
$$

- Probability maxima remain ordered

$$
P(t)=\int_{0}^{\infty} \int_{0}^{\infty} d u d v \rho(u, v, t)
$$

Diffusion in corner geometry

u

- Study evolution as function of initial conditions

$$
P \equiv P\left(u_{0}, v_{0}, t\right)
$$

- Obeys diffusion equation

$$
\frac{\partial P\left(u_{0}, v_{0}, t\right)}{\partial t}=D \nabla^{2} P\left(u_{0}, v_{0}, t\right)
$$

- Boundary conditions: (i) absorption (ii) advection

$$
\left.P\right|_{v_{0}=0}=0 \quad \text { and }\left.\quad\left(\frac{\partial P}{\partial u_{0}}+\frac{\partial P}{\partial v_{0}}\right)\right|_{u_{0}=0}=0
$$

- Advection boundary condition is conjugate

Solution

- Use polar coordinates

$$
r=\sqrt{u_{0}^{2}+v_{0}^{2}} \quad \text { and } \quad \theta=\arctan \frac{v_{0}}{u_{0}}
$$

- Laplace operator

$$
\nabla^{2}=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}
$$

- Boundary conditions: (i) absorption (ii) advection

$$
\left.P\right|_{\theta=0}=0 \quad \text { and }\left.\quad\left(r \frac{\partial P}{\partial r}-\frac{\partial P}{\partial \theta}\right)\right|_{\theta=\pi / 2}=0
$$

- dimensional analysis + power law + separable form

$$
P(r, \theta, t) \sim\left(\frac{r^{2}}{D t}\right)^{\beta} f(\theta)
$$

Selection of exponent

- Exponent related to eigenvalue of angular part of Laplacian

$$
f^{\prime \prime}(\theta)+(2 \beta)^{2} f(\theta)=0
$$

- Absorbing boundary condition selects solution

$$
f(\theta)=\sin (2 \beta \theta)
$$

- Advection boundary condition selects exponent

$$
\tan (\beta \pi)=1
$$

- First-passage probability

$$
P \sim t^{-1 / 4}
$$

General diffusivities

- Particles have diffusion constants D_{1} and D_{2}

$$
\left(x_{1}, x_{2}\right) \rightarrow\left(\widehat{x}_{1}, \widehat{x}_{2}\right) \quad \text { with } \quad\left(\widehat{x}_{1}, \widehat{x}_{2}\right)=\left(\frac{x_{1}}{\sqrt{D_{1}}}, \frac{x_{2}}{\sqrt{D_{2}}}\right)
$$

- Condition on maxima involves ratio of mobilities

$$
\sqrt{\frac{D_{1}}{D_{2}}} \widehat{m}_{1}>\widehat{m}_{2}
$$

- Analysis straightforward to repeat

$$
\sqrt{\frac{D_{1}}{D_{2}}} \tan (\beta \pi)=1
$$

- First-passage exponent: nonuniversal, mobility-dependent

$$
\beta=\frac{1}{\pi} \arctan \sqrt{\frac{D_{2}}{D_{1}}}
$$

Duality Relation

- Depends on ratio of diffusion constants

$$
\beta\left(D_{1}, D_{2}\right) \equiv \beta\left(\frac{D_{1}}{D_{2}}\right)
$$

- Bounds: involve one immobile particle

$$
\beta(0)=\frac{1}{2} \quad \beta(\infty)=0
$$

- Rational for special values of diffusion constants

$$
\beta(1 / 3)=1 / 3 \quad \beta(1)=1 / 4 \quad \beta(3)=1 / 6
$$

- Duality: between "fast chasing slow" and "slow chasing fast"

$$
\beta\left(\frac{D_{1}}{D_{2}}\right)+\beta\left(\frac{D_{2}}{D_{1}}\right)=\frac{1}{2}
$$

Alternating kinetics: slow-fast-slow-fast

Summary

- First-passage kinetics of extremes in Brownian motion
- Problem reduces to diffusion in a two-dimensional corner with mixed boundary conditions
- First-passage exponent obtained analytically
- Exponent is continuously varying function of mobilities
- Relaxation is generally slower compared with positions
- Open questions: multiple particles, higher dimensions
- "Race between maxima" as a data analysis tool

