Mixing of Diffusing Particles

Eli Ben-Naim
Los Alamos National Laboratory

E. Ben-Naim, Phys. Rev. E 82, 061103 (2010)

Talk, paper available from: http://cnls.lanl.gov/~ebn

Diffusion in One Dimension

- Mixing: well-studied in fluids, granular media, not in diffusion
- System: N independent random walks in one dimension

trajectories cross many times trajectories rarely cross How to quantify mixing of diffusing particles?

The Inversion Number

- Measures how "scrambled" a list of numbers is
- Used for ranking, sorting, recommending (books, songs, movies)
- I rank: I234, you rank 3142
- There are three inversions: $\{1,3\},\{2,3\},\{2,4\}$
- Definition:The inversion number m equals the number of pairs that are inverted = out of sort
- Bounds:

$$
0 \leq m \leq \frac{N(N-1)}{2}
$$

Random Walks and Inversion Number

- Initial conditions: particles are ordered $x_{1}(0)<x_{2}(0)<\cdots<x_{N-1}(0)<x_{N}(0)$
- Each particle is an independent random walk

$$
x \rightarrow \begin{cases}x-1 & \text { with probability } 1 / 2 \\ x+1 & \text { with probability } 1 / 2\end{cases}
$$

- Inversion number

$$
m(t)=\sum_{i=1}^{N} \sum_{j=i+1}^{N} \Theta\left(x_{i}(t)-x_{j}(t)\right)
$$

- Strong mixing: large inversion number
- Weak mixing: small inversion number persists

Space-time representation

Trajectory crossing = "collision"
Collision have + or - "charge"
Inversion number $=$ sum of charges

Inversion number is a natural measure of mixing

Equilibrium Distribution

- Diffusion is ergodic, order is completely random when $t \rightarrow \infty$
- Every permutation occurs with the same weight $1 / N$!
- Probability $P_{m}(N)$ of inversion number m for N particles

$$
\left(P_{0}, P_{1}, \ldots, P_{M}\right)=\frac{1}{N!} \times \begin{cases}(1) & N=1 \\ (1,1) & N=2 \\ (1,2,2,1) & N=3 \\ (1,3,5,6,5,3,1) & N=4\end{cases}
$$

- Recursion equation

$$
P_{m}(N)=\frac{1}{N} \sum_{l=0}^{N-1} P_{m-l}(N-1)
$$

- Generating Function

$$
\sum_{m=0}^{M} P_{m}(N) s^{m}=\frac{1}{N!} \prod_{n=1}^{N}\left(1+s+s^{2}+\cdots+s^{n-1}\right)
$$

Equilibrium Properties

- Average inversion number scales quadratically with N

$$
\langle m\rangle=\frac{N(N-1)}{4}
$$

- Variance scales cubically with N

$$
\sigma^{2}=\frac{N(N-1)(2 N+5)}{72}
$$

- Asymptotic distribution is Gaussian

$$
P_{m}(N) \simeq \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[-\frac{(m-\langle m\rangle)^{2}}{2 \sigma^{2}}\right]
$$

- Large fluctuations

$$
m-N^{2} / 4 \sim N^{3 / 2}
$$

Transient Behavior

- Assume particles well mixed on a growing length scale
- Use equilibrium result for the sub-system $\langle m\rangle / N \sim \ell$
- Length scale must be diffusive $\ell \sim \sqrt{t}$

$$
\langle m(t)\rangle \sim N \sqrt{t} \quad \text { when } \quad t \ll N^{2}
$$

- Equilibrium behavior reached after a transient regime
- Nonequilibrium distribution is Gaussian as well

First-Passage Kinetics

- Survival probability $S_{m}(t)$ that inversion number $<m$ until time t
I. Probability there are no crossing

Fisher 1984

$$
S_{1}(t) \sim t^{-N(N-1) / 4}
$$

2. Two-particles: coordinate $x_{1}-x_{2}$ performs a random walk

$$
S_{1}(t) \sim t^{-1 / 2}
$$

- Map N l-dimensional walks to 1 walk in N dimensions
- Allowed region: inversion number $<m$
- Forbidden region: inversion number $\geq m$
- Absorbing boundary condition

Problem reduces to diffusion in

Three particles

- Diffusion in three dimensions;Allowed regions are wedges

- Survival probability in wedge with "fractional volume" $0<V<1$

$$
S(t) \sim t^{-1 /(4 V)}
$$

Redner 2001

- Survival probabilities decay as power-law with time

$$
S_{1} \sim t^{-3 / 2}, \quad S_{2} \sim t^{-1 / 2}, \quad S_{3} \sim t^{-3 / 10}
$$

- In general, the survival probabilities decay as power-law

$$
S_{m} \sim t^{-\beta_{m}} \quad \text { with } \quad \beta_{1}>\beta_{2}>\cdots>\beta_{N(N-1) / 2}
$$

Huge spectrum of first-passage exponents

Cone approximation

- Fractional volume of allowed region given by equilibrium distribution of inversion number

$$
V_{m}(N)=\sum_{l=0}^{m-1} P_{l}(N)
$$

- Replace allowed region with cone with same fractional volume

$$
V(\alpha)=\frac{\int_{0}^{\alpha} d \theta(\sin \theta)^{N-3}}{\int_{0}^{\pi} d \theta(\sin \theta)^{N-3}}
$$

- Use analytically known exponent for first-passage in cone

$$
\begin{array}{ll}
Q_{2 \beta+\gamma}^{\gamma}(\cos \alpha)=0 & N \text { odd, } \quad \\
P_{2 \beta+\gamma}^{\gamma}(\cos \alpha)=0 & N \text { even. } \quad \gamma=\frac{N-4}{2}
\end{array}
$$

- Good approximation for four particles

m	1	2	3	4	5	6
V_{m}	$\frac{1}{24}$	$\frac{1}{6}$	$\frac{3}{8}$	$\frac{5}{8}$	$\frac{5}{6}$	$\frac{23}{24}$
α_{m}	0.41113	0.84106	1.31811	1.82347	2.30052	2.73045
$\beta_{m}^{\text {cone }}$	2.67100	1.17208	0.64975	0.39047	0.24517	0.14988
β_{m}	3	1.39	0.839	0.455	0.275	0.160

Small number of particles

- By construction, cone approximation is exact for $\mathrm{N}=3$
- Cone approximation produces close estimates for first-passage exponents when the number of particles is small
- Cone approximation gives a formal lower bound

Very large number of particles $(N \rightarrow \infty)$

- Gaussian equilibrium distribution implies

$$
V_{m}(N) \rightarrow \frac{1}{2}+\frac{1}{2} \operatorname{erf}\left(\frac{z}{\sqrt{2}}\right) \quad \text { with } \quad z=\frac{m-\langle m\rangle}{\sigma}
$$

- Volume of cone is also given by error function EB, Krapisky 2010

$$
V(\alpha, N) \rightarrow \frac{1}{2}+\frac{1}{2} \operatorname{erf}\left(\frac{-y}{\sqrt{2}}\right) \quad \text { with } \quad y=(\cos \alpha) \sqrt{N}
$$

- First-passage exponent has the scaling form

$$
\beta_{m}(N) \rightarrow \beta(z) \quad \text { with } \quad z=\frac{m-\langle m\rangle}{\sigma}
$$

- Scaling function is root of equation involving parabolic cylinder function

$$
D_{2 \beta}(-z)=0
$$

Scaling exponents have scaling behavior!

Simulation results

Cone approximation is asymptotically exact!

Summary

- Inversion number as a measure for mixing
- Distribution of inversion number is Gaussian
- First-passage kinetics are rich
- Large spectrum of first-passage exponents
- Cone approximation gives good estimates for exponents
- Exponents follow a scaling behavior
- Cone approximation yields the exact scaling function
- Geometric proof for exactness
- Use inversion number to quantify mixing in $2 \& 3$ dimensions

