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• Mixing: well-studied in fluids, granular media, not in diffusion

• System: N independent random walks in one dimension

Diffusion in One Dimension

trajectories cross many times

Strong Mixing Poor Mixing
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trajectories rarely cross

How to quantify mixing of diffusing particles? 



• Measures how “scrambled” a list of numbers is

• Used for ranking, sorting, recommending (books, songs, movies)

- I rank: 1234, you rank 3142

- There are three inversions: {1,3}, {2,3}, {2,4}

• Definition: The inversion number m equals the number of 
pairs that are inverted = out of sort

• Bounds: 

The Inversion Number

0 ≤ m ≤ N(N − 1)

2

McMahon 1913



• Initial conditions: particles are ordered

• Each particle is an independent random walk

• Inversion number

• Strong mixing: large inversion number

• Weak mixing: small inversion number persists

 Random Walks and Inversion Number

Inversion number is a natural measure of mixing 
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Trajectory crossing = “collision”
Collision have + or - “charge” 
Inversion number = sum of charges

Space-time representation



• Diffusion is ergodic, order is completely random when  

• Every permutation occurs with the same weight 

• Probability            of inversion number     for     particles

• Recursion equation

• Generating Function

Equilibrium Distribution
t → ∞
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• Average inversion number scales quadratically with N

• Variance scales cubically with N

• Asymptotic distribution is Gaussian

• Large fluctuations 

Equilibrium Properties
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• Assume particles well mixed on a growing length scale

• Use equilibrium result for the sub-system

• Length scale must be diffusive

• Equilibrium behavior reached after a transient regime

• Nonequilibrium distribution is Gaussian as well

Transient Behavior
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• Survival probability           that inversion number          until time

1. Probability there are no crossing 

2. Two-particles: coordinate               performs a random walk

• Map N 1-dimensional walks to 1 walk in N dimensions

• Absorbing boundary condition

First-Passage Kinetics
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- Allowed region: inversion number

- Forbidden region: inversion number  

Problem reduces to diffusion in
N dimensions in presence of complex absorbing boundary

Fisher 1984



• Diffusion in three dimensions; Allowed regions are wedges

• Survival probability in wedge with “fractional volume” 

• Survival probabilities decay as power-law with time

• In general, the survival probabilities decay as power-law

Three particles

S(t) ∼ t−1/(4V )

S1 ∼ t−3/2, S2 ∼ t−1/2, S3 ∼ t−3/10
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Huge spectrum of first-passage exponents 

Redner 2001
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• Fractional volume of allowed region given by equilibrium 
distribution of inversion number

• Replace allowed region with cone with same fractional volume

• Use analytically known exponent for first-passage in cone

• Good approximation for four particles

Cone approximation
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EB, Krapivsky 2010
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• By construction, cone approximation is exact for N=3

• Cone approximation produces close estimates for first-passage 
exponents when the number of particles is small

• Cone approximation gives a formal lower bound

Small number of particles 



• Gaussian equilibrium distribution implies 

• Volume of cone is also given by error function

• First-passage exponent has the scaling form 

• Scaling function is root of equation involving parabolic cylinder function

Very large number of particles (            )

Vm(N) → 1

2
+

1

2
erf

�
z√
2

�
with z =

m− �m�
σ

V (α, N) → 1

2
+

1

2
erf

�
−y√
2

�
with y = (cosα)

√
N

βm(N) → β(z) with z =
m− �m�

σ

Scaling exponents have scaling behavior!

EB, Krapivsky 2010

D2β(−z) = 0

N → ∞
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Simulation results

Cone approximation is asymptotically exact!



Summary
• Inversion number as a measure for mixing

• Distribution of inversion number is Gaussian

• First-passage kinetics are rich

• Large spectrum of first-passage exponents

• Cone approximation gives good estimates for exponents

• Exponents follow a scaling behavior 

• Cone approximation yields the exact scaling function

• Geometric proof for exactness

• Use inversion number to quantify mixing in 2 & 3 dimensions


