Granular Gases

Eli Ben-Naim Theoretical Division, Los Alamos National Lab

> Shiyi Chen (J Hopkins/LANL) Xiaobo Nie (J Hopkins/LANL) Gary Doolen (LANL) Paul Krapivsky (Boston) Sidney Redner (Boston)

Plan

- | Granular gases
- II Burgers shocks: 1D,2D freely cooling
- III Scaling, multiscaling, nontrivial exponents: the inelastic Maxwell model

"A gas of marbles"

- Granular materials: powders, grains
- Geophysics: sand dunes, volcanic flows
- Astrophysics: large scale formation

Characteristics

- Hard sphere interactions
- Dissipative collisions

Challenges

- Hydrodynamics: flow equations
- Kinetic Theory: velocity statistics
- Sharp validity criteria are missing

Experiments

• Vibrated horizontal monolayers

$$P(v) \sim \begin{cases} \exp(-v), & g \cong 1;\\ \exp(-v^2), & g \cong 6. \end{cases}$$

- Vibrated vertical monolayers
- Menon 00
- Electrostatically vibrated layers Aronson 01 $P(v) \sim \exp\left(-|v|^{3/2}\right)$
- Kinetic theory (white noise forcing) Ernst 97

$$P(v) \sim \exp\left(-A(r)|v|^{3/2}\right)$$

non-Maxwellian statistics

Inelastic collisions

Freely cooling gases

- N point particles in 1D ring. Random velocity distribution. Typical velocity v_0 . Typical distance x_0 .
- Dimensionless variables $x \to x/x_0$, $t \to tv_0/x_0$

— "Temperature"
$$T(t) = \langle v^2(t) \rangle - \langle v(t) \rangle^2$$

— Characteristic time/length scales.

Mean Field Theory

- Energy dissipation $\Delta T \propto -\epsilon (\Delta v)^2$
- Collision frequency $\Delta t \sim \ell / \Delta v \sim (\Delta v)^{-1}$
- Assuming uniform gas $dT/dt \propto -\epsilon T^{3/2}$

The Inelastic Collapse: N = 3

1D: Bernu 91, Young 91, 2D: Kadanoff 95

- Deterministic collision sequence $12, 23, 12, \ldots$
- Velocities given by linear combination

$$\left(\begin{array}{c} v_1'\\ v_2'\\ v_3' \end{array}\right) = \left(\begin{array}{ccc} \epsilon & 1-\epsilon & 0\\ 1-\epsilon & \epsilon & 0\\ 0 & 0 & 1 \end{array}\right) \left(\begin{array}{c} v_1\\ v_2\\ v_3 \end{array}\right)$$

• After a pair of collisions (12,23)

$$\mathbf{v}' = \mathbf{M}\mathbf{v}$$
 $\mathbf{M} = \mathbf{M}_{12}\mathbf{M}_{23}$

• $r < 7 - 4\sqrt{3} \Rightarrow$

$$\Delta x, \Delta t \propto \lambda^n \qquad \lambda < 1$$

• Infinite number of collisions in finite time

Particles clump

The Sticky Gas (r = 0)

Carnavale, Pomeau, Young 90

- Multiparticle aggregate of typical mass \boldsymbol{m}
- Momentum conservation

$$P_m = \sum_{i=1}^m P_i \quad \Rightarrow \quad P \sim m^{1/2}, \quad v \sim m^{-1/2}$$

Mass conservation

$$\rho = cm = \text{const} \quad \Rightarrow \quad c \sim m^{-1}$$

• Dimensional analysis $[cv] = [t]^{-1}$

$$m \sim t^{2/3}$$
 $v \sim t^{-1/3}$ $T \sim t^{-2/3}$

• Final state 1 aggregate with m = N

$$T(t) \sim \begin{cases} 1 & t \ll 1; \\ t^{-2/3} & 1 \ll t \ll N^{3/2}; \\ N^{-1} & N^{3/2} \ll t \end{cases}$$

- $T(\epsilon,t)$ decreases monotonically with $\epsilon,\,t$
- Sticky gas ($\epsilon = 1/2$) is a lower bound
- Homogeneous when $N \ll \epsilon^{-1} \mbox{ or } t \ll \epsilon^{-3/2}$
- Clustering when $N \gg \epsilon^{-1}$ and $t \gg \epsilon^{-3/2}$

The crossover picture

 Method: relax dissipation below cutoff (mimic granular particles)

$$r(\Delta v) = \begin{cases} 1 & \Delta v < \delta \\ r & \Delta v > \delta \end{cases}$$

• Simulation results: $N = 10^7$, $\delta = 10^{-3}$

• Universal cooling law $T(t) \sim t^{-2/3}$

Asymptotic behavior is independent of \boldsymbol{r}

The Velocity Distribution

• Self similar distribution

$$P(v,t) \sim t^{1/3} \Phi(vt^{1/3})$$

Anomalous tail

Frachebourg 99

 $\Phi(z) \sim \exp(-\text{const.} \times z^3) \qquad z \gg 1$

• Simulation results r = 0, 0.5, 0.9

P(r, v, t) is function of $z = vt^{1/3}$ only

The Inviscid Burgers Equation

• Nonlinear diffusion equation

 $v_t + vv_x = \nu v_{xx} \qquad \nu \to 0$

• Transform to linear diffusion equation

$$u_t = \nu u_{xx} \qquad \Leftarrow \qquad v = -2\nu(\ln u)_x$$

• Sawtooth (shock) velocity profile

$$v(x,t) = \frac{x - q(x,t)}{t}$$

- Shock collisions conserve mass & momentum
- Describes "sticky gas" r=0 Zeldovich RMP 89

Burgers equation \equiv sticky gas \equiv inelastic gas

Burgers' eqn Predictions verified in 1D

- Velocity statistics $v \sim t^{-1/3}$
- Discontinuous (shock) velocity profile
- Slope $= t^{-1}$ (simulation with r = 0.99)

 $\textbf{Collapse} \equiv \textbf{shock formation}$

Two Dimensions

Goldhirsch/Zannetti 93

- Simulations: $N = 10^6$, $\delta = 10^{-5}$
- Universal temperature, velocity distributions

Preliminary evidence: r = 0 remains fixed point

Conclusions I

Asymptotic behavior:

- Governed by cluster-cluster coalescence
- Independent of restitution coefficient
- Described by inviscid Burgers equation

Outlook

- Velocity & spatial correlations
- Higher dimensions

EB, Chen, Doolen, Redner, PRL 83, 4069 (1999)

The Elastic Maxwell Model

J.C. Maxwell, Phil. Tran. Roy. Soc 157, 49 (1867)

- Infinite particle system
- Binary collisions
- Random collision partners
- \bullet Random impact directions ${\bf n}$
- Elastic collisions $(\mathbf{g} = \mathbf{v_1} \mathbf{v_2})$

$$v_1 \to v_1 - g \cdot n \, n$$

- Mean-field collision process is solvable
- Purely Maxwellian velocity distributions

$$P(\mathbf{v}) = \frac{1}{(2\pi T)^{d/2}} \exp\left(-\frac{v^2}{2T}\right)$$

What about inelastic, dissipative collisions?

The Inelastic Maxwell Model

• Inelastic collisions $r=1-2\epsilon$

$$\mathbf{v}_{1,2} = \mathbf{u}_{1,2} \mp (1-\epsilon) \left(\mathbf{g} \cdot \mathbf{n}\right) \mathbf{n},$$

• Boltzmann equation $\mathbf{g} \cdot \mathbf{n} \rightarrow \langle g \rangle$

$$\frac{\partial P(\mathbf{v}, t)}{\partial t} = \int d\mathbf{n} \int d\mathbf{u}_1 \int d\mathbf{u}_2 \langle g \rangle P(\mathbf{u}_1, t) P(\mathbf{u}_2, t) \\ \times \left\{ \delta \left(\mathbf{v} - \mathbf{v}_1 \right) - \delta \left(\mathbf{v} - \mathbf{u}_1 \right) \right\}$$

Fourier transform

$$F(\mathbf{k},t) = \int d\mathbf{v} e^{i\mathbf{k}\cdot\mathbf{v}} P(\mathbf{v},t)$$

• Closed equations $\mathbf{q} = (1 - \epsilon)\mathbf{k} \cdot \mathbf{n} \, \mathbf{n}$

$$\frac{\partial}{\partial t}F(\mathbf{k},t) + F(\mathbf{k},t) = \int d\mathbf{n} F\left[\mathbf{k} - \mathbf{q}, t\right] F\left[\mathbf{q}, t\right],$$

Theory is analytically tractable

One Dimension

Scaling of velocity distribution

$$P(\mathbf{v},t) \to \frac{1}{T^{d/2}} \Phi\left(\frac{v}{T^{1/2}}\right) \quad \text{or} \quad F(k,t) \to f\left(k^2 T\right)$$

Governing equation

$$-2\epsilon(1-\epsilon)f'(x) + f(x) = f(\epsilon^2 x)f\left((1-\epsilon)^2 x\right)$$

• Exact solution

$$f(x) = (1 + \sqrt{x}) e^{-\sqrt{x}} \cong 1 - \frac{1}{2}x + \frac{1}{3}x^{3/2} + \cdots$$

• Lorentzian² velocity distribution

$$\Phi(w) = \frac{2}{\pi} \frac{1}{(1+w^2)^2}$$

• Algebraic tail

Baldassari 01

$$\Phi(w) \sim w^{-4} \qquad w \gg 1$$

Universal scaling function, exponent

BKW

Scaling, Nontrivial Exponents

• Freely cooling case

$$T = \langle v^2 \rangle \sim t^{-2}$$

Scaling equation

$$-\lambda x \Phi'(x) + \Phi(x) = \int d\mathbf{n} \Phi(x\xi) \Phi(x\eta)$$

 $\lambda = 2\epsilon(1-\epsilon)/d$, $\xi = 1 - (1-\epsilon^2)\cos^2\theta$, $\eta = (1-\epsilon)^2\cos^2\theta$

• Power-law tails

$$\Phi(w) \sim w^{-\sigma}, \qquad w \to \infty.$$

• Exact solution for the exponent σ

 $1 - \epsilon (1 - \epsilon) \frac{\sigma - d}{d} = {}_2F_1 \left[\frac{d - \sigma}{2}, \frac{1}{2}; \frac{d}{2}; 1 - \epsilon^2 \right] + (1 - \epsilon)^{\sigma - d} \frac{\Gamma\left(\frac{\sigma - d + 1}{2}\right)\Gamma\left(\frac{d}{2}\right)}{\Gamma\left(\frac{\sigma}{2}\right)\Gamma\left(\frac{1}{2}\right)}$

Nonuniversal tails, exponents depend on ϵ , d

- Maxwellian distributions: $d = \infty$, $\epsilon = 0$
- Diverges in high dimensions

$$\sigma \cong d f(\epsilon)$$

• Diverges for low dissipation

$$\sigma \cong d \, \epsilon^{-1}$$

• In practice, huge

$$\sigma(d=3, r=0.8) \cong 30!$$

Moments of the velocity distribution

$$M_{2n}(t) = \int d\mathbf{v} |\mathbf{v}|^{2n} P(\mathbf{v}, t)$$

• Multiscaling asymptotic behavior

$$M_{2n} \sim M_2^{\xi_n/2} \qquad \xi_n = \begin{cases} n & d < d_n(\epsilon), \\ \alpha_n(\epsilon) & d > d_n(\epsilon). \end{cases}$$

- Crossover dimensions: $d_2(\epsilon) = 1 + 3\epsilon^2$
- Nonlinear multiscaling spectrum (1D):

$$\alpha_n(\epsilon) = \frac{1 - \epsilon^{2n} - (1 - \epsilon)^{2n}}{1 - \epsilon^2 - (1 - \epsilon)^2}$$

Sufficiently large moments exhibit multiscaling

Velocity Correlations

• Definition (correlation between v_x^2 and v_y^2)

$$Q = \frac{\langle v_x^2 v_y^2 \rangle - \langle v_x^2 \rangle \langle v_y^2 \rangle}{\langle v_x^2 \rangle \langle v_y^2 \rangle}$$

• Unforced case (freely cooling): $P(v) \sim v^{-\sigma}$

$$Q = \frac{6\epsilon^2}{d - (1 + 3\epsilon^2)}$$

• Forced case (white noise): $P(v) \sim e^{-|v|}$

$$Q = \frac{6\epsilon^2(1-\epsilon)}{(d+2)(1+\epsilon) - 3(1-\epsilon)(1+\epsilon^2)}.$$

Correlations diminish with energy input

The "brazil nut" problem

- \bullet Fluid background: mass 1, restitution α
- Impurity: mass m, restitution β
- Theory: impurity enslaved to background
- Series of transition masses

$$1 < m_1 < m_2 < \dots < m_\infty$$

• Ratio of moments diverges asymptotically

$$\frac{\langle v_I^{2n} \rangle}{\langle v_F^{2n} \rangle} \sim \begin{cases} c_n & m < m_n; \\ \infty & m > m_n. \end{cases}$$

- Light impurity: moderate violation of equipartition, impurity mimics the fluid
- Heavy impurity: extreme violation of equipartition, impurity sees a static fluid

series of phase transitions

Conclusions II

- Velocity distribution obeys scaling
- Power-law high energy tails
- Exponent depends on d and ϵ
- Multiscaling of the moments, Temperature insufficient to characterize large moments
- Velocity correlations develop
- Algebraic autocorrelations, aging
- Inelasticity responsible for "fat" tails
- E. Ben-Naim and P. L. Krapivsky, *J. Phys. A* **35**, L147 (2002); Phys. Rev. E **66**, 011309 (2002); EPJE, in press.
- M. H. Ernst and R. Britto, Europhys. Lett. 58, 182 (2002). Phys. Rev. E 65, 040301 (2002).
- A. Baldassari, U. M. B Marconi, and A Puglisi, Europhys. Lett. 58, 14 (2002); Phys Rev. E 65, 011301 (2002).