Statistical Mechanics of Granular Materials

Eli Ben-Naim

Theoretical Division, Los Alamos National Lab

- I Introduction
- II Density relaxation in granular compaction
- III Knots in granular chains
- IV Shocks in inelastic gases
- V Conclusions & Outlook

Theory: Grossman, Zhou (Chicago), Krapivsky, Redner (Boston)
Simulation: Chen, Nie (Johns Hopkins)
Experiment: Daya, Ecke, Vorobief (LANL), Knight, Nowak,
Jaeger, Nagel (Chicago)

Granular Materials

Properties:

- Ensembles of macroscopic particles
- Interaction hard core exclusion
- Collisions dissipative

Interesting collective phenomena:

- Phase transitions
- Pattern formation
- Solitary waves
- Force chains
- Size segregation

Urbach 98

Swinney 95

Umbanhowar 95

Coppersmith 95

Compaction

- Uniform, simple system
- Probes the density a fundamental quantity
- Slow density relaxation

Knight 95

$$\rho(t) = \rho_{\infty} - \frac{\rho_{\infty} - \rho_0}{1 + B \ln(t/\tau)}$$

- Parameters depend on Γ only
- Robust behavior independent of grain type, grain size, container geometry, etc.

What causes logarithmic relaxation?

Heuristic picture

- ρ = volume fraction
- V = particle volume

 V_0 = pore volume/particle

$$\frac{V}{V+V_0} \qquad \text{or} \qquad V_0 = V \frac{1-\rho}{\rho}$$

Assumption: Cooperative rearrangement

$$NV_0 = V$$
 or $N = \frac{\rho}{1-\rho}$

Assumption: Exponential rearrangement time

$$\frac{d\rho}{dt} \propto \frac{T = e^N = e^{\frac{\rho}{1-\rho}}}{\binom{1}{\rho(t)} \stackrel{P}{=} 1 - \frac{1}{\ln t}} \rho e^{-\frac{\rho}{1-\rho}}$$

Volume exclusion causes slow relaxation

- 1D Adsorption-desorption process
- Adsorption subject to volume constrains
- Desorption not restricted
- Detailed balance satisfied
- System reaches equilibrium steady state

Ignores: mechanical stability Realistic: excluded volume interaction

Theory

P(x,t) =Density of x-size voids at time t

$$1 = \int dx(x+1)P(x,t) \qquad \rho(t) = \int dxP(x,t)$$

Master equation:

$$\begin{split} &\frac{\partial P(x)}{\partial t} = 2k_+ \int_{x+1} dy P(y) - 2k_- P(x) \\ &+ \theta(x\!-\!1) \bigg[\frac{k_-}{\rho(t)} \! \int_0^{x-1} \! dy P(y) P(x\!-\!1\!-\!y) - k_+(x\!-\!1) P(x) \bigg] \\ & \text{Density rate equation:} \end{split}$$

 $\frac{\partial \rho(t)}{\partial t} = -k_{-}\rho(t) + k_{+}\int_{1} dx(x-1)P(x,t)$

Convolution term assumes voids are uncorrelated (exact in equilibrium)

Exact Equilibrium Properties

Exponential void distribution

$$P_{\infty}(x) = \frac{\rho_{\infty}^2}{1 - \rho_{\infty}} \exp\left[-\frac{\rho_{\infty}}{1 - \rho_{\infty}}x\right]$$

Sticking Probability

$$S(\rho_{\infty}) = \exp\left[-\frac{\rho_{\infty}}{1-\rho_{\infty}}\right]$$

Gaussian Density Distribution

$$P_{\infty}(\rho) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(\rho - \rho_{\infty})^2}{2\sigma^2}\right]$$

Variance decreases with density $\sigma^2 = \rho_{\infty}(1 - \rho_{\infty})^2/L \qquad \beta = 2$

Volume exclusion dominates at high densities

Relaxation Properties

Quasistatic (near equilibrium) approximation

$$\frac{\partial \rho(t)}{\partial t} = -k_{-}\rho(t) + k_{+}(1-\rho) \exp\left[-\frac{\rho}{1-\rho}\right]$$

I Desorption-limited case $(k_- \rightarrow 0)$

$$\rho(t) \cong 1 - \frac{1}{\ln k_+ t}$$

Slow density relaxation

The sticking probability

Total adsorption rate

$$\int_{1} dx (x-1) P_{\infty}(x) = k_{+} (1-\rho_{\infty}) \exp\left[-\frac{\rho_{\infty}}{1-\rho_{\infty}}\right]$$

Reduced adsorption rate $k_+ \rightarrow k_+ s(\rho)$

Sticking probability

$$s(\rho) = e^{-N} \qquad N = \frac{\rho}{1-\rho}$$

Heuristic picture is exact in 1D

Cooperative behavior in dense limit

Spectrum of density fluctuations Definition

$$\mathsf{PSD}(f) = \left| \int d\tau e^{if\tau} \langle \rho(t)\rho(t+\tau) \rangle \right|^2$$

Leading behavior

$$\mathsf{PSD}(f) \cong \begin{cases} f^0 & f \ll f_L \\ f^{-\alpha} & f_L \ll f \ll f_H \\ f^{-2} & f_H \ll f \end{cases}$$

For noninteracting dilute case, linear theory, PSD $(f) \propto [1 + (f/f_0)^2]$, with $f_0 = \tau^{-1} = k_+ + k_-$

In general, still open problem. Reasonable that $f_L \approx k_-$ and $f_H \approx k_+$

Similar noise spectrum for finite system Monte Carlo and experimental data

Conclusions I

- Compaction dominated by exponentially rare grain size voids
- Growing time scales associated with cooperative bead rearrangements
- Argument is general should hold for aspherical grains or horizontal tapping
- Gaussian density fluctuations

Vibrated Knot Experiment

- t = 0: knot placed at chain center
- Parameters:
- Number of monomers: 30 < N < 200
- Minimal knot size: $N_0 = 15$
- Driving conditions:
- Frequency: $\nu = 13Hz$
- Acceleration: $\Gamma = A\omega^2/g = 2.37$
- Measurement: opening time t

Questions

- 1. Average opening time $\tau(N)$?
- 2. Survival probability S(t, N)? Distribution of opening times R(t, N)?

Motivation

Topological constraints, entanglements:

- Reduce accessible phase space
- Involve large relaxation time scales
- Affect dynamics, flow

$$\eta \sim \tau \sim N^3$$

Relevance:

- Polymers: melts, rubber, gels
- DNA, biomolecules

Difficulties:

- Hard to observe directly
- Slow dynamics
- Finite size effects

Granular "Polymers"

Mechanical bead-spring:

$$U(\{\mathbf{R}_i\}) = v_0 \sum_{i \neq j} \delta(\mathbf{R}_i - \mathbf{R}_j) + \frac{3}{2b^2} \sum_i (\mathbf{R}_i - \mathbf{R}_{i+1})^2$$

- Beads interact via hard core repulsions
- Rods act as springs (nonlinear, dissipative)
- Inelastic collisions: bead-bead, bead-plate
- Vibrating plate supplies energy

Advantages:

- Number of "monomers" can be controlled
- Topological constraints: can be prepared, observed directly

The Average Opening Time

$$\tau(N) \sim (N - N_0)^{\nu}$$
 $\nu = 2.0 \pm 0.1$

Opening time is diffusive

The Survival Probability

- S(t,N) Probability knot "alive" at time t
- R(t,N) Probability knot opens at time t

$$R(t,N) = -\frac{d}{dt}S(t,N)$$

• S(t, N) obeys scaling

 τ only relevant time scale

Theoretical Model

Assumptions:

- Knot \equiv 3 exclusion points
- Points hop randomly
- Points move independently (no correlation)
- Points are equivalent (size $= N_0/3$)
- **3 Random Walk Model:**
- 1D walks with excluded volume interaction
- first point reaches boundary \rightarrow knot opens

Diffusion in 3D

- Continuum limit $x_i
 ightarrow \infty$, $N
 ightarrow \infty$
- Dimensionless time $t \rightarrow Dt/[(N-N_0)^2]$, space $(x,y,z) = (x_1,x_2,x_3)/N$

$$1 < x_1 < x_2 < x_3 < N - N_0 \longrightarrow 0 < x < y < z < 1$$
$$\frac{\partial}{\partial t} P(x, y, z, t) = \nabla^2 P(x, y, z, t)$$

Boundary conditions

Absorbing: $P|_{x=0} = P|_{x=1} = 0$ Reflecting: $(\partial_x - \partial_y)P|_{x=y} = (\partial_y - \partial_z)P|_{y=z} = 0$

- Initial conditions $P|_{t=0} = \delta(x-x_0)\delta(y-x_0)\delta(z-x_0)$
- Survival probability

$$S_3(t) = \int_0^1 dx \int_x^1 dy \int_y^1 dz \ P(x, y, z, t)$$

3 walks in $1D \equiv 1$ walk in 3D

Experiment vs. Theory

- Work with scaling variable $z = t/\tau$ ($\langle z \rangle = 1$)
- Combine different data sets (5000 pts)
- Fluctuations $\sigma^2 = \langle z^2 \rangle \langle z \rangle^2$

Large Exit Times

- Largest decay time dominates
- Large time tail is exponentially small

$$F(z) \sim e^{-\beta z} \qquad z \to \infty$$

• Decay coefficient

$$\beta_{\rm exp} = 1.65(2)$$
 $\alpha_{\rm theory} = 1.66440$ (1%)

Small Exit Times

• Exponentially small (in 1/z) tail

$$1 - F(z) \sim z^{1/2} e^{-\alpha/z} \qquad z \to 0$$

Decay coefficient

 $\alpha_{\rm exp} = 1.2(1)$, $\beta_{\rm theory} = 1.11184$ (10%)

Conclusions II

- Opening times are diffusive
- Distributions obey scaling
- Extreme statistics are exponential
- Macroscopic observables (t, S(t)) reveals microscopic dynamics
- Knot dynamics determined by 3 diffusing exclusion points

Outlook II

- au(N) gives size of constraint N_0
- S(t,N) gives number of constraints m
- Is motion uncorrelated?
- Is a more detailed model necessary?

Possibilities

Granular Matter

- Phase transitions in monolayers
- Compaction
- Segregation
- Stress Propagation

Polymers

- Chain dynamics
- Entanglements
- Phase separation

Inelastic collisions

• Relative velocity reduced by $r = 1 - 2\epsilon$ $\Delta v' = -r\Delta v$ $v' = v - \epsilon\Delta v$ • Energy dissipation $\Delta E \propto -\epsilon (\Delta v)^2$ \swarrow

Freely evolving gas

- N point particles in 1D ring. Random velocity distribution. Typical velocity v₀. Typical distance x₀.
- Dimensionless variables $x \to x/x_0$, $t \to tv_0/x_0$
- "Temperature" $T(t) = \langle v^2(t) \rangle \langle v(t) \rangle^2$
- Characteristic time/length scales.
- Continuum theory?

 $\epsilon = 1/2$

Motivation: Granular Gases

- Applications:
- Granular materials: powders, grains.
- Geophysical flows.
- Large scale formation in universe.
- Characteristics:
- Hard sphere interactions.
- Dissipative collisions.
- Experimental observations (1D, 2D, 3D):
- **Density** inhomogeneities.
- Velocity correlations, non-Gaussian stat
- Phase transitions: order-disorder.

Mean Field Theory

• Energy dissipation

$$\Delta T \propto -\epsilon (\Delta v)^2$$

• Collision frequency

$$\Delta t \sim \ell / \Delta v \sim (\Delta v)^{-1}$$

• Assuming a uniform gas

$$v \sim \Delta v \sim T^{1/2} \qquad \Delta \ell / \ell \ll 1$$

 $\frac{dT}{dt} \propto \frac{\Delta T}{\Delta t} \propto -\epsilon (\Delta v)^3 \propto -\epsilon T^{3/2}$

• Cooling law

Haff 83

$$T(t) \simeq (1 + A\epsilon t)^{-2} \sim \begin{cases} 1 & t \ll \epsilon^{-1} \\ \epsilon^{-2} t^{-2} & t \gg \epsilon^{-1} \end{cases}$$

Holds only in early homogeneous phase

The Inelastic Collapse Bernu 90, Young 91

- 3 particles clump if $r < r_c = 7 4\sqrt{3} \cong 0.07$
- Finite time singularity: Cluster formation via infinite collisions when $N > N_c(r)$.
- Estimating the critical mass:

$$\begin{array}{rcl} v_1 &\cong& 1-\epsilon\\ \vdots &\vdots\\ v_N &\cong& 1-N\epsilon \end{array}$$

- Particle passes through if $N < N_c(\epsilon) \sim \epsilon^{-1}$
- $N_c \sim \epsilon^{-1} \Rightarrow$ collapse always encountered in the thermodynamic limit $N \to \infty$.

Particles coalesce rather than pass through

The Sticky Gas (r = 0)

- Multiparticle aggregate of typical mass \boldsymbol{m}
- Momentum conservation CPY 90

 $P_m = \sum_{i=1}^{m} P_i \quad \Rightarrow \quad P \sim m^{1/2}, \quad v \sim m^{-1/2}$ • Mass conservation

ho = cm = const \Rightarrow $c \sim m^{-1}$ • Dimensional analysis $[cv] = [t]^{-1}$

$$m\sim t^{2/3} \quad v\sim t^{-1/3} \quad T\sim t^{-2/3}$$

 \bullet Final state 1 aggregate with $m=N$

$$T(t) \sim \begin{cases} 1 & t \ll 1; \\ t^{-2/3} & 1 \ll t \ll N^{3/2}; \\ N^{-1} & N^{3/2} \ll t \end{cases}$$

• $T(\epsilon,t)$ decreases monotonically with ϵ , t

Sticky gas r = 0 ($\epsilon = 1/2$) is a lower bound

Crossover Picture

• Universal Cooling law $T(t) \sim t^{-2/3}$

Asymptotic behavior is independent of r

The Velocity Distribution

• Self similar distribution

$$P(v,t) \sim t^{1/3} \Phi(vt^{1/3})$$

• Large velocity tail

$$\Phi(z) \sim \exp(-\text{const.} \times z^3) \qquad z \gg 1$$

• Simulation results r = 0, 0.5, 0.9

P(r, v, t) is function of $z = vt^{1/3}$ only

The Inviscid Burgers Equation

• Nonlinear diffusion equation

 $v_t + vv_x = \nu v_{xx} \qquad \nu \to 0$

• Transform to linear diffusion equation

$$u_t = \nu u_{xx} \qquad \Leftarrow \qquad v = -2\nu(\ln u)_x$$

• Sawtooth (shock) velocity profile

$$v(x,t) = \frac{x - q(x,t)}{t}$$

- Shock collisions conserve mass & momentum
- Describes "sticky gas" r=0 Zeldovich RMP 89

Burgers equation \equiv sticky gas \equiv inelastic gas

Predictions verified in 1D

- Velocity statistics $v \sim t^{-1/3}$
- Discontinuous (shock) velocity profile
- Slope = t^{-1} (simulation with r = 0.99)

Formation of Singularity

Collapse \equiv finite time singularity in $v_t + vv_x = 0$

Higher Dimensions

If $r_{\text{eff}} = 0$, then $\mathbf{v}_t + \mathbf{v} \cdot \nabla \mathbf{v} = \nu \nabla^2 \mathbf{v}$ predicts:

 \bullet Cooling law for $2 \leq d \leq 4$

$$T(t) \sim \begin{cases} 1 & t \ll \epsilon^{-1}; \\ \epsilon^{-2}t^{-2} & \epsilon^{-1} \ll t \ll \epsilon^{-4/(4-d)}; \\ t^{-d/2} & \epsilon^{-4/(4-d)} \ll t \ll N^{2/d}; \\ N^{-1} & N^{2/d} \ll t \end{cases}$$

• Critical size for collapse $N_c(\epsilon) \sim \epsilon^{-2d/(4-d)}$

Luding 99

Conclusions III

Asymptotic behavior:

- Governed by cluster-cluster coalescence
- Independent of restitution coefficient
- Described by inviscid Burgers equation

Outlook

- Velocity & spatial correlations
- Predictions in higher dimensions