Scaling Laws for First-Passage Exponents

Eli Ben-Naim
 Los Alamos National Laboratory

with: Paul Krapivsky (Boston University)

EB PRE 82, 061103 (2010), E. Ben-Naim and P.L. Krapivsky, J. Phys. A 43, 495007 \& 495008 (2010); arxiv:1306:2990: First passage in conical geometry and ordering of Brownian particles in First-Passage Phenomena, editors: R. Metzler, G. Oshanin, S. Redner

Talk, publications available from: http://cnls.lanl.gov/~ebn
STATPHYS25, Seoul, Korea, July 22, 2013

First-Passage Process

- Process by which a fluctuating quantity reaches a threshold for the first time.
- First-passage probability: for the random variable to reach the threshold as a function of time.
- Total probability: that threshold is ever reached. May or may not equal 1.
- First-passage time: the mean duration of the first-passage process. Can be finite or infinite.

Typically defined by a single threshold

Ordering of Brownian particles

- System: N independent Brownian particles in one dimension
- What is the probability that original leader maintains the lead?
- N Brownian particles

$$
\frac{\partial \varphi_{i}(x, t)}{\partial t}=D \nabla^{2} \varphi_{i}(x, t)
$$

- Initial conditions

$$
x_{N}(0)<x_{N-1}(0)<\cdots<x_{2}(0)<x_{1}(0)
$$

- Survival probability $S(t)=$ probability leader remains first until t
- Independent of initial conditions, power-law asymptotic behavior

$$
S(t) \sim t^{-\beta} \quad \text { as } \quad t \rightarrow \infty
$$

Bramson 91

- Monte Carlo: nontrivial exponents that depend on N

N	2	3	4	5	6	10
$\beta(N)$	$1 / 2$	$3 / 4$	0.913	1.032	1.11	1.37

Redner 96
benAvraham 02
Grassberger 03
No analytic expressions for exponents

Order statistics

- Generalize the capture problem: $S_{m}(t)$ is the probability that the leader does not fall below rank m until time t
- $S_{1}(t)$ is the probability that leader remains first
- $S_{N-1}(t)$ is the probability that leader never becomes last
- Power-law asymptotic behavior is generic

$$
S_{m}(t) \sim t^{-\beta_{m}(N)}
$$

- Spectrum of first-passage exponents

$$
\beta_{1}(N)>\beta_{2}(N)>\cdots>\beta_{N-1}(N)
$$

Can't solve the problem? Make it bigger!

Two particles

- We need the probability that two particles do not meet
- Map two one-dimensional walks onto one two-dimensional walk
- Space is divided into allowed and forbidden regions
- Boundary separating the two regions is absorbing
- Coordinate $x_{1}-x_{2}$ performs one-dimensional random walk
- Survival probability decays as power-law

$$
S_{1}(t) \sim t^{-1 / 2}
$$

- In general, map N one-dimensional walk onto one walk in N dimension with complex boundary conditions

Three particles

- Diffusion in three dimensions; now, allowed regions are wedges

$m=1$
$m=2$

$$
\alpha=\pi / 3
$$

$$
\alpha=2 \pi / 3
$$

$x_{1}=x_{3}$

- Survival probability in wedge with opening angle $0<\alpha<\pi$

$$
S(t) \sim t^{-\pi /(4 \alpha)}
$$

- Survival probabilities decay as power-law with time

$$
S_{1} \sim t^{-3 / 4} \quad \text { and } \quad S_{2} \sim t^{-3 / 8}
$$

- Indeed, a family of nontrivial first-passage exponents

$$
\begin{aligned}
& S_{m} \sim t^{-\beta_{m}} \quad \text { with } \quad \beta_{1}>\beta_{2}>\cdots>\beta_{N-1} \\
& \text { Large spectrum of first-passage exponents }
\end{aligned}
$$

First passage in a wedge

- Survival probability obeys the diffusion equation

$$
\frac{\partial S(r, \theta, t)}{\partial t}=D \nabla^{2} S(r, \theta, t)
$$

- Focus on long-time limit

$$
S(r, \theta, t) \simeq \Phi(r, \theta) t^{-\beta}
$$

- Amplitude obeys Laplace's equation

$$
\nabla^{2} \Phi(r, \theta)=0
$$

- Use dimensional analysis

$$
\Phi(r, \theta) \sim\left(r^{2} / D\right)^{\beta} \psi(\theta) \quad \Longrightarrow \quad \psi_{\theta \theta}+(2 \beta)^{2} \psi=0
$$

- Enforce boundary condition $\left.S\right|_{\theta=\alpha}=\left.\Phi\right|_{\theta=\alpha}=\left.\psi\right|_{\theta=\alpha}$
- Lowest eigenvalue is the relevant one

$$
\psi_{2}(\theta)=\cos (2 \beta \theta) \quad \Longrightarrow \quad \beta=\frac{\pi}{4 \alpha}
$$

Monte Carlo simulations

3 particles

confirm wedge theory results

4 particles

$$
\begin{aligned}
& \beta_{1}=0.913 \\
& \beta_{2}=0.556 \\
& \beta_{3}=0.306
\end{aligned}
$$

as expected, there are 3 nontrivial exponents

Simulations: small number of particles

 strongly hints at asymptotic scaling behavior!
$\beta_{m}(N) \rightarrow F(m / N) \quad$ when $\quad N \rightarrow \infty$
Scaling law for first-passage exponents

Kinetics of first passage in a cone

- Repeat wedge calculation step by step

$$
S(r, \theta, t) \sim \psi(\theta)\left(D t / r^{2}\right)^{-\beta}
$$

- Angular function obeys Poisson-like equation

$$
\frac{1}{(\sin \theta)^{d-2}} \frac{d}{d \theta}\left[(\sin \theta)^{d-2} \frac{d \psi}{d \theta}\right]+2 \beta(2 \beta+d-2) \psi=0
$$

- Solution in terms of associated Legendre functions

$$
\psi_{d}(\theta)=\left\{\begin{array}{ll}
(\sin \theta)^{-\delta} P_{2 \beta+\delta}^{\delta}(\cos \theta) & d \text { odd, } \\
(\sin \theta)^{-\delta} Q_{2 \beta+\delta}^{\delta}(\cos \theta) & d \text { even }
\end{array} \quad \delta=\frac{d-3}{2}\right.
$$

- Enforce boundary condition, choose lowest eigenvalue

$$
\begin{aligned}
& P_{2 \beta+\delta}^{\delta}(\cos \alpha)=0 \quad d \text { odd }, \\
& Q_{2 \beta+\delta}^{\delta}(\cos \alpha)=0 \quad d \text { even. }
\end{aligned}
$$

Exponent is root of Legendre function

Additional results

- Explicit results in $2 d$ and $4 d$

$$
\beta_{2}(\alpha)=\frac{\pi}{4 \alpha} \quad \text { and } \quad \beta_{4}(\alpha)=\frac{\pi-\alpha}{2 \alpha}
$$

- Root of ordinary Legendre function in $3 d$

$$
P_{2 \beta}(\cos \alpha)=0
$$

- Flat cone is equivalent to one-dimension

$$
\beta_{d}(\alpha=\pi / 2)=1 / 2
$$

- First-passage time obeys Poisson's equation

$$
D \nabla^{2} T(r, \theta)=-1
$$

- First-passage time (when finite)

$$
T(r, \theta)=\frac{r^{2}}{2 D} \frac{\cos ^{2} \theta-\cos ^{2} \alpha}{d \cos ^{2} \alpha-1}
$$

Asymptotic analysis

- Limiting behavior of scaling function

$$
\beta(y) \simeq \begin{cases}\sqrt{y^{2} / 8 \pi} \exp \left(-y^{2} / 2\right) & y \rightarrow-\infty \\ y^{2} / 8 & y \rightarrow \infty\end{cases}
$$

- Thin cones: exponent diverges

$$
\beta_{d}(\alpha) \simeq B_{d} \alpha^{-1} \quad \text { with } \quad J_{\delta}\left(2 B_{d}\right)=0
$$

- Wide cones: exponent vanishes when $d \geq 3$

$$
\beta_{d}(\alpha) \simeq A_{d}(\pi-\alpha)^{d-3} \quad \text { with } \quad A_{d}=\frac{1}{2} B\left(\frac{1}{2}, \frac{d-3}{2}\right)
$$

- A needle is reached with certainty only when $d<3$
- Large dimensions

$$
\beta_{d}(\alpha) \simeq \begin{cases}\frac{d}{4}\left(\frac{1}{\sin \alpha}-1\right) & \alpha<\pi / 2, \\ C(\sin \alpha)^{d} & \alpha>\pi / 2\end{cases}
$$

High dimensions

- Exponent varies sharply for opening angles near $\pi / 2$
- Universal behavior in high dimensions

$$
\beta_{d}(\alpha) \rightarrow \beta(\sqrt{N} \cos \alpha)
$$

- Scaling function is smallest root of parabolic cylinder function

$$
D_{2 \beta}(y)=0
$$

Exponent is function of one scaling variable, not two

Diffusion in high dimensions

- In general, map N one-dimensional walk onto one walk in N dimension with complex boundary conditions

- There are $\binom{N}{2}=\frac{N(N-1)}{2}$ planes of the type $\stackrel{x_{1}=x_{3}}{x_{i}}=x_{j}$
- These planes divide space into N ! "chambers"
- Particle order is unique to each chamber
- The absorbing boundary encloses multiple chambers
- We do not know the shape of the allowed region
- However, we do know the volume of the allowed region
- Equilibrium distribution of particle order

$$
V_{m}=\frac{m}{N}
$$

Cone approximation

- Fractional volume of allowed region given by equilibrium distribution of particle order

$$
V_{m}(N)=\frac{m}{N}
$$

- Replace allowed region with cone of same fractional volume

$$
V(\alpha)=\frac{\int_{0}^{\alpha} d \theta(\sin \theta)^{N-3}}{\int_{0}^{\pi} d \theta(\sin \theta)^{N-3}} \quad d \Omega \propto \sin ^{d-2} \theta d \theta
$$

- Use analytically known exponent for first passage in cone

$$
\begin{array}{lll}
Q_{2 \beta+\gamma}^{\gamma}(\cos \alpha)=0 & N \text { odd, } & \gamma=\frac{N-4}{2} \\
P_{2 \beta+\gamma}^{\gamma}(\cos \alpha)=0 & N \text { even. }
\end{array}
$$

- Good approximation for four particles

m	1	2	3
V_{m}	$1 / 4$	$1 / 2$	$3 / 4$
$\beta_{m}^{\text {cone }}$	0.888644	$1 / 2$	0.300754
β_{m}	0.913	0.556	0.306

Small number of particles

- By construction, cone approximation is exact for $N=3$
- Cone approximation gives a formal lower bound

Faber-Krahn theorem

Excellent, consistent approximation!

Very large number of particles $(N \rightarrow \infty)$

- Equilibrium distribution is simple

$$
V_{m}=\frac{m}{N}
$$

- Volume of cone is also given by error function

$$
V(\alpha, N) \rightarrow \frac{1}{2}+\frac{1}{2} \operatorname{erf}\left(\frac{-y}{\sqrt{2}}\right) \quad \text { with } \quad y=(\cos \alpha) \sqrt{N}
$$

- First-passage exponent has the scaling form

$$
\beta_{m}(N) \rightarrow \beta(x) \quad \text { with } \quad x=m / N
$$

- Scaling function is root of equation involving parabolic cylinder function

$$
D_{2 \beta}\left(\sqrt{2} \operatorname{erfc}^{-1}(2 x)\right)=0
$$

Scaling law for scaling exponents!

Simulation results

Numerical simulation of diffusion in 10,000 dimensions!
Cone approximation is asymptotically exact!

Extreme exponents

- Extremal behavior of first-passage exponents

$$
\beta(x) \simeq \begin{cases}\frac{1}{4} \ln \frac{1}{2 x} & x \rightarrow 0 \\ (1-x) \ln \frac{1}{2(1-x)} & x \rightarrow 1\end{cases}
$$

- Probability leader never loses the lead (capture problem)

$$
\beta_{1} \simeq \frac{1}{4} \ln N
$$

- Probability leader never becomes last (laggard problem)

$$
\beta_{N-1} \simeq \frac{1}{N} \ln N
$$

- Both agree with previous heuristic arguments

Extremal exponents can not be measured directly Indirect measurement via exact scaling function

Small number of particles

N	$\beta_{1}^{\text {cone }}$	β_{1}
3	$3 / 4$	$3 / 4$
4	0.888644	0.91
5	0.986694	1.02
6	1.062297	1.11
7	1.123652	1.19
8	1.175189	1.27
9	1.219569	1.33
10	1.258510	1.37

N	$\beta_{N-1}^{\text {cone }}$	β_{N-1}
2	$1 / 2$	$1 / 2$
3	$3 / 8$	$3 / 8$
4	0.300754	0.306
5	0.253371	0.265
6	0.220490	0.234
7	0.196216	0.212
8	0.177469	0.190
9	0.162496	0.178
10	0.150221	0.165

Decent approximation for the exponents even for small number of particles

Summary

- First-passage kinetics are rich
- Family of first-passage exponents
- Cone approximation gives good estimates for exponents
- Exponents follow a scaling behavior in high dimensions
- Cone approximation yields the exact scaling function
- Combine equilibrium distribution and geometry to obtain exact or approximate nonequilibrium behavior, namely, first-passage kinetics

Outlook

- Heterogeneous Diffusion
- Accelerated Monte Carlo methods
- Scaling occurs in general
- Cone approximation: sometimes exact,
- is not always asymptotically exact
- Geometric proof for exactness
- Limiting shapes in general

Number of pair inversions

Cone approximation is asymptotically exact!

Number of particles avoiding the origin

Counter example: cone is not limiting shape

