Front Propagation in the Simplex Algorithm

Eli Ben-Naim

Los Alamos National Laboratory

with: Tibor Antal (Harvard) Daniel Ben-Avraham (Clarkson) Paul Krapivsky (Boston)

T. Antal, D. Ben-Avraham, E. Ben-Naim, and P.L. Krapivsky, J. Phys. A 41, 465002 (2008)

Talk, paper available from: http://cnls.lanl.gov/~ebn

Physics of Algorithms, Santa Fe, August 31, 2009

A peculiar spin-flip process t ...01001101... t ...01001010... ...00110101... ...00110101...

• System: unbounded one-dimensional lattice of spins

 $\sigma_i = 0 \text{ or } 1$

• **Dynamics:**

- Each I-spin flips independently
- A flip causes all spins to the right to flip as well

$$\sigma_i \to 1 - \sigma_i, \quad \text{for all} \quad i \ge j$$
 Racz 85

 Every I-spin affects an infinite number of spins! How good is the simplex algorithm?
 Klee & Minty 72 Pemantle 07

Front propagation

- Stable phase = no I-spins (...000000...)
- Unstable phase = some I-spins (...I0II0I...)
- Stable phase propagates into unstable phase
- Front = position of leftmost I

A problem with no parameters!
 Universal state regardless of initial state

Questions

- What is the speed of the front?
- What is the shape of the front?
- What is the spatial structure of the front?
- What is the time evolution of the front?
- What is the speed of the front?

$$v = ?$$

Monte Carlo simulations

On average, front propagates ballistically

 $v_{\rm MC} = 1.7624 \pm 0.0001$

A simple observation

- Take the first neighbor to the front
- Lifetime of 0 is double that of I

 $|1\underline{0} \rightarrow X\underline{1} \quad \text{with rate} = 1$ $|1\underline{1} \rightarrow X\underline{0} \quad \text{with rate} = 2$

 $\rho_1 = \frac{1}{3}$

• Twice more likely that first spin is 0

$$\rho_k \equiv \langle \sigma_k \rangle$$

• Similarly, we expect for all k>0

Depletion of I spins, nonuniform density

 $\rho_k < \frac{1}{2}$

Depletion

• Two assumptions

- I. Quasi-static: no evolution in front reference frame $\frac{d\rho_k}{dt} = 0$
- 2. Mean-field: no correlations between spins $\langle \sigma_j \sigma_k \rangle \rightarrow \langle \sigma_j \rangle \langle \sigma_k \rangle$
- Generalize argument for k=l $\frac{d\rho_k}{dt} = (\rho_0 + \rho_1 + \dots + \rho_{k-1})(1 - \rho_k) - (1 + \rho_0 + \rho_1 + \dots + \rho_{k-1})\rho_k$ $0 \rightarrow 1$ $1 \rightarrow 0$
- Recursion relation for "density"

$$\rho_k = \frac{\rho_0 + \rho_1 + \dots + \rho_{k-1}}{2(\rho_0 + \rho_1 + \dots + \rho_{k-1}) + 1}$$

Indeed, there is a depletion of I spins

$$\rho_k = 1, \frac{1}{3}, \frac{4}{11}, \frac{56}{145}, \qquad k = 0, 1, 2, 3, \cdots$$

Depletion of I spins, nonuniform density

Depletion

Depletion penetrates deep into the front

 $ho_k \simeq rac{1}{2} - rac{1}{2k} \qquad k \gg 1 \qquad {\rm asymptotically\ exact}$ • Depletion of 0-spins grows logarithmically

Velocity and strings

 $\cdots 0000 \left| \underbrace{11111}_{n} 0100 \cdots \rightarrow \cdots 0000 \underbrace{00000}_{n} \right| 1011 \cdots$

• Velocity equals the average size of 1 strings $v = \sum_{n} n(S_n - S_{n-1})$

$$v = \langle n \rangle = \sum_{n} S_n \qquad S_n \equiv \operatorname{Prob}(\underbrace{11111}_{n})$$

• Bounds for velocity

$$1 \le v \le 2$$

• Mean-field: string probability given by product $S_n^{\mathrm{MF}} = \rho_1 \rho_2 \cdots \rho_{n-1}$

Quasi-static approximation: poor estimate for velocity

$$v_{\rm QSA} = 1.534070$$

Strong spatial correlations

Spatial correlations

• Properly characterized by strings

$$S_n \equiv \operatorname{Prob}(\underbrace{11111}) \sim n^{-\nu} \lambda^n$$

Much more likely than Mean-Field suggests

$$\lambda_{\rm MC} = 0.745$$
 $\lambda_{\rm QSA} = 1/2$ $\nu = 1$

Temporal correlations

- For a renewal process, if n and n' are successive jumps $\langle nn'\rangle = \langle n\rangle^2 = v^2$
- For flipping process, successive jumps anti-correlated $\langle n\,n'\rangle < v^2$
- Define "age" = time since last jump
- Velocity is age-dependent

$$v = \int_0^\infty d\tau \, u(\tau) \, e^{-\tau}$$

• Density is age-dependent

$$c_k(\tau) = \langle \sigma_k(\tau) \rangle \qquad \rho_k = \int_0^\infty d\tau \, c_k(\tau) \, e^{-\tau}$$

~ ~~

Strong temporal correlations

Aging & rejuvenation

- Young fronts are fast, old fronts are slow!
- Rejuvenation: flip re-invigorates slow fronts $\dots 0|100000 \dots \rightarrow \dots 00|111111\dots$
- Shape inversion: new is mirror image of old one

A perpetually repeating life-cycle

Small segments

- Problem: infinite hierarchy of equations
- Solution: consider small segments of size L
- Assumption: complete randomness outside segment
- Technically: Approach is exact as $L \to \infty$
- Evolution equation for all possible 2^{L-1} states

$$\frac{dP_{100}}{dt} = -P_{100} + \frac{3}{2}P_{101} + \frac{1}{4}P_{110} + \frac{5}{4}P_{111} \\
\frac{dP_{101}}{dt} = -\frac{3}{2}P_{101} + \frac{5}{4}P_{110} + \frac{1}{4}P_{111} \\
\frac{dP_{110}}{dt} = \frac{1}{2}P_{100} - \frac{7}{4}P_{110} + \frac{5}{4}P_{111} \\
\frac{dP_{111}}{dt} = \frac{1}{2}P_{100} + \frac{1}{4}P_{110} - \frac{11}{4}P_{111}.$$

Is this brute-force approach useful?

Shanks transformation

- Obtain velocities from steady-state
- Shanks transformation extrapolates to infinity

$$v_k^{(m+1)} = \frac{v_{k-1}^{(m)}v_{k+1}^{(m)} - v_k^{(m)}v_k^{(m)}}{v_{k-1}^{(m)} + v_{k+1}^{(m)} - 2v_k^{(m)}}$$

• Fast convergence for exponential corrections

k	$v_k^{(0)}$	$v_k^{(1)}$	$v_k^{(2)}$	$v_k^{(3)}$	$v_k^{(4)}$
2	1.500000				
3	1.535714	1.418947			
4	1.587165	1.826205	1.779225		
5	1.629503	1.773099	1.765862	1.764458	
6	1.662201	1.766730	1.764592	1.758245	1.762322
7	1.687108	1.765129	1.763533	1.770104	1.765175
8	1.705987	1.764330	1.762272	1.761669	
9	1.720251	1.763754	1.761864		
10	1.730993	1.763313			
11	1.739055				

Good estimate for the velocity

 $v_{\rm shanks} = 1.76 \pm 0.01$

Pinned fronts

 $\sigma_0 = 1$

• Small modification: fixed one spin to I

- 0101001 0100110 0111001 0111000
- Front does not move, but we can still calculate v!
- Provides excellent approximation: velocity within 1% $v_{\rm pinned} = 1.7753 \pm 0.0001$
- Quasi-static description becomes exact
- Small segment approach exact for all segment lengths
- Some exact results for correlation functions

$$\left\langle \sigma_k \sigma_{k+1} \right\rangle = \frac{1}{2} \left\langle \sigma_{k+1} \right\rangle$$

Correlations decay slowly

$$\langle \sigma_k \sigma_{k+1} \rangle - \langle \sigma_k \rangle \langle \sigma_{k+1} \rangle \simeq (4k)^{-1}$$

Small segments

- Now, small segment results are exact
- Shanks transformation converges rapidly and gives impressive estimates

k	$v_k^{(0)}$	$v_k^{(1)}$	$v_k^{(2)}$	$v_k^{(3)}$	$v_k^{(4)}$
1	1.				
2	1.333333	1.666666			
3	1.5	1.72549	1.769737		
4	1.595833	1.750742	1.773156	1.775020	
5	1.655039	1.762616	1.774362	1.775178	1.775278
6	1.693228	1.768521	1.774849	1.775239	1.775289
7	1.718565	1.771576	1.775065	1.775267	1.775293
8	1.735709	1.773205	1.775170	1.775280	1.775293
9	1.747473	1.774095	1.775223	1.775287	
10	1.755632	1.774593	1.775252		
11	1.761337	1.774876			
12	1.765350				

Perfect estimate for the velocity

 $v_{\rm shanks} = 1.7753 \pm 0.0001$ $v_{\rm MC} = 1.7753 \pm 0.0001$

Depletion & aging

Age-dependent densities can now be calculated

$$c_{1}(\tau) = \frac{2}{3}e^{-\tau}$$

$$c_{2}(\tau) = \frac{1}{3}(2\tau - 1)e^{-\tau} + e^{-2\tau}$$

Pinned fronts capture all the physics, provide excellent approximation

Summary

- Analysis in a reference frame with the front is useful
- All the hallmarks of nonequilirbium physics
 - Depletion
 - Strong spatial and temporal correlations
 - Aging and rejuvenation
- Mean-field theory explains depletion
- Small segment analysis + extrapolation provides good estimate for velocity
- Pinning the fronts provides excellent approximation and reproduces all qualitative features

Outlook

Exact analytical solution for the velocity remains an open question, requires exact closure