How to choose a champion

Eli Ben-Naim

Los Alamos National Laboratory

Nicholas Hengartner (Los Alamos National Laboratory) Sidney Redner and Federico Vazquez (Los Alamos & Boston University) Micha Ben-Naim (Los Alamos Middle School)

Talk, papers available from: http://cnls.lanl.gov/~ebn

How to choose a champion

I. Using trees

(tournament = post-season)

II. Using complete graphs (league = regular season)

III. Using regular random graphs and complete graphs

Randomness in competitions

What is the most competitive sport?

How to quantify competitiveness?

Parity of a sports league

- Teams ranked by win-loss record
 - Win percentage $x = \frac{\text{Number of wins}}{\text{Number of games}}$
- Standard deviation in win-percentage

$$\sigma = \sqrt{\langle x^2 \rangle - \langle x \rangle^2}$$

 Cumulative distribution = Fraction of teams with winning percentage < x
 F(x) Major League Baseball American League 2005 Season-end Standings

East	w	L	PCT	
Boston	95	67	.586	
New York	95	67	.586	
Toronto	80	82	.494	
Baltimore	74	88	.457	
Tampa Bay	67	95	.414	
Central	w	L	PCT	
Chicago	99	63	.611	
Cleveland	93	69	.574	
Minnesota	83	79	.512	
Detroit	71	91	.438	
Kansas City	56	106	.346	
West	W	L	PCT	
Los Angeles	95	67	.586	
Oakland	88	74	.543	
Texas	79	83	.488	
Seattle	69	93	.426	

In baseball 0.400 < x < 0.600 $\sigma = 0.08$

Data

- 300,000 Regular season games (all games ever played)
- 5 Major sports leagues in United States & England

sport	league	full name	country	years	games
soccer	FA	Football Association	England	1888-2005	43,350
baseball	MLB	Major League Baseball	US	1901-2005	163,720
hockey	NHL	National Hockey League	US	1917-2005	39,563
basketball	NBA	National Basketball Association	US	1946-2005	43,254
football	NFL	National Football League	US	1922-2004	11,770

source: http://www.shrpsports.com/ http://www.the-english-football-archive.com/

Standard deviation in winning percentage

Distribution of winning percentage clearly distinguishes sports

Fort and Quirk, 1995

The competition model

- Two, randomly selected, teams play
- Outcome of game depends on team record
 - Weaker team wins with probability $q < 1/2 \rightarrow \begin{cases} q = 1/2 & random \\ q = 0 & deterministic \end{cases}$
- Stronger team wins with probability p>1/2 p+q=1 $(i,j) \rightarrow \begin{cases} (i+1,j) & \text{probability } p \\ (i,j+1) & \text{probability } 1-p \end{cases}$ i>j
 - When two equal teams play, winner picked randomly
- Initially, all teams are equal (0 wins, 0 losses)
- Teams play once per unit time $\langle x \rangle = \frac{1}{2}$

Rate equation approach

• Probability distribution functions

 $g_k =$ fraction of teams with k wins $G_k = \sum_{j=1}^{k} g_j$ = fraction of teams with less than k wins $H_k = 1 - G_{k+1} = \sum_{j=1}^{k} g_j$ i=k+1j=0 Evolution of the probability distribution $\frac{dg_k}{dt} = (1-q)(g_{k-1}G_{k-1} - g_kG_k) + q(g_{k-1}H_{k-1} - g_kH_k) + \frac{1}{2}(g_{k-1}^2 - g_k^2)$ better team wins worse team wins equal teams play equal teams play Closed equations for the cumulative distribution $\frac{dG_k}{dt} = q(G_{k-1} - G_k) + (1/2 - q)\left(G_{k-1}^2 - G_k^2\right)$ **Boundary Conditions** $G_0 = 0$ $G_{\infty} = 1$ **Initial Conditions** $G_k(t = 0) = 1$

Nonlinear Difference-Differential Equations

Scaling analysis

• Rate equation

$$\frac{dG_k}{dt} = q(G_{k-1} - G_k) + (1/2 - q)\left(G_{k-1}^2 - G_k^2\right)$$

• Treat number of wins as continuous $G_{k+1} - G_k \rightarrow \frac{\partial G}{\partial k}$ Inviscid Burgers equation $\frac{\partial V}{\partial t} + v \frac{\partial v}{\partial x} = 0$ $\frac{\partial G}{\partial t} + [q + (1 - 2q)G] \frac{\partial G}{\partial k} = 0$

Stationary distribution of winning percentage

$$G_k(t) \to F(x) \qquad x = \frac{k}{t}$$

Scaling equation

$$[(x-q) - (1-2q)F(x)]\frac{dF}{dx} = 0$$

Scaling solution

Stationary distribution of winning percentage

F(x)

$$F(x) = \begin{cases} 0 & 0 < x < q \\ \frac{x-q}{1-2q} & q < x < 1-q \\ 1 & 1-q < x. \end{cases}$$

$$f(x) = F'(x) = \begin{cases} 0 & 0 < x < q \\ \frac{1}{1 - 2q} & q < x < 1 - q \\ 0 & 1 - q < x. \end{cases} \xrightarrow{f(x)} f(x)$$

• Variance in winning percentage

$$\sigma = \frac{1/2 - q}{\sqrt{3}}$$

 $\longrightarrow \begin{cases} q = 1/2 & \text{perfect parity} \\ q = 0 & \text{maximum disparity} \end{cases}$

Approach to scaling

Numerical integration of the rate equations, q=1/40.5 League Theory games 0.8 t=100 MLB 160 NFL 0.4 FA 40 $t^{-1/2}$ $\mathbf{H}_{\mathbf{X}}^{\mathbf{H}}$ 80 NHL NBA 80 σ 0.3 **MLB** $t^{-1/2}$ 16 NFL 0.2 $4\sqrt{3}$ 0.2 0.1 200 400 800 1000 0.8 600 0.4 0.6 0.2 Χ

•Winning percentage distribution approaches scaling solution •Correction to scaling is very large for realistic number of games •Large variance may be due to small number of games $\sigma(t) = \frac{1/2 - q}{\sqrt{3}} + f(t)$ Large!

Variance inadequate to characterize competitiveness!

The distribution of win percentage

Treat q as a fitting parameter, time=number of games
Allows to estimate q_{model} for different leagues

The upset frequency

• Upset frequency as a measure of predictability

 $q = \frac{\text{Number of upsets}}{\text{Number of games}}$

- Addresses the variability in the number of games
- Measure directly from game-by-game results
 - Ties: count as 1/2 of an upset (small effect)
 - Ignore games by teams with equal records
 - Ignore games by teams with no record

The upset frequency

League	q	q model
FA	0.452	0.459
MLB	0.44 I	0.413
NHL	0.414	0.383
NBA	0.365	0.316
NFL	0.364	0.309

q differentiates
 the different
 sport leagues!

Soccer, baseball most competitive Basketball, football least competitive

Evolution with time

•Parity, predictability mirror each other $\sigma = \frac{1/2 - q}{\sqrt{3}}$ •Football, baseball increasing competitiveness •Soccer decreasing competitiveness (past 60 years)

S.J. Gould, Full House, The spread of excellence from Pluto to Darwin, 1996

Recap

- Randomness crucial for modeling competitions
- Basic competition model incorporates upsets
- I parameter model
- Captures major statistical characteristics of sports leagues
- Enables quantitative theoretical analysis

I. Tournaments (trees)

Single-elimination Tournaments

© 2005 National Collegiste Athletic Association. No commercial use without the NCAA's written permission. The NCAA opposes all sports wagering. This bracket should not be used for sweepstakes, contests, office pools or other gambling activities.

Binary Tree Structure

The competition model

• Two teams play, loser is eliminated

 $N \to N/2 \to N/4 \to \cdots \to 1$

• Teams have inherent strength (or fitness) x

• Outcome of game depends on team strength $(x_1, x_2) \rightarrow \begin{cases} x_1 & \text{probability } 1 - q \\ x_2 & \text{probability } q \end{cases} \quad x_1 < x_2$

Recursive approach

• Number of teams

$$N = 2^k = 1, 2, 4, 8, \dots$$

- G_N(x) = Cumulative probability distribution function for teams with fitness less than x to win an N-team tournament
- Closed equations for the cumulative distribution

$$G_{2N}(x) = 2p G_N(x) + (1 - 2p) [G_N(x)]^2$$

Nonlinear Recursion Equation

Scaling properties

- 1. Scale of Winner $x_* \sim N^{-\ln 2p/\ln 2}$ 2. Scaling Function $G_N(x) \rightarrow \Psi(x/x_*)$
- 3. Algebraic Tail
- $1 \Psi(z) \sim z^{\ln 2p / \ln 2q}$

Large tournaments produce strong winners
 High probability for an upset

The scaling function

Universal shape

Broad tail

 $\Psi(2pz) = 2p\Psi(z) + (1-2p)\Psi^{2}(z)$

 $\Psi'(z) \sim z^{\ln 2p / \ln 2q - 1}$

College Basketball

- <u>Teams ranked I-16</u> Well defined favorite Well defined underdog
- 4 winners each year
- Theory: q=0.18
- Simulation: q=0.22
- Data: q=0.27
- Data: 1978-2006
- 1600 games

I. Conclusions

- <u>Tournaments are efficient but not fair</u>
- Strong teams fare better in large tournaments
- Tournaments can produce major upsets
- Distribution of winner relates parity with predictability

II. Leagues (complete graphs)

League champions

- N teams with fixed ranking
- In each game, favorite and underdog are well defined
- Favorite wins with probability p > 1/2Underdog wins with probability q < 1/2 p + q = 1
- Each team plays t games against random opponents
 - Regular random graph

• Team with most wins is the champion

How many games are needed for best team to win?

Random walk approach

• Probability team ranked n wins a game n-1 N-n

n

Ν

$$P_n = p \frac{n - 1}{N - 1} + q \frac{n - n}{N - 1}$$

p

Number of wins performs a biased random walk

$$w_n = P_n t \pm \sqrt{D_n t}$$

• Team n can finish first at early times as long as

$$(2p-1)\frac{n}{N} t \sim \sqrt{t}$$

Rank of champion as function of N and t

$$n_* \sim \frac{N}{\sqrt{t}}$$

Length of season

• For best team to finish first

I. Normal leagues are too short
2. Normal leagues: rank of winner ~ \sqrt{N}
3. League champions are a transient!

Distribution of outcomes

• Scaling distribution for the rank of champion

$$Q_n(t) \sim \frac{1}{n_*} \psi\left(\frac{n}{n_*}\right) \qquad \qquad n_* \sim \frac{N}{\sqrt{t}}$$

• Probability worst team wins decays exponentially

 $Q_N(t) \sim \exp(-\operatorname{const} \times t)$

• Gaussian tail because $\psi(t^{1/2}) \sim \exp(-t)$ $\psi(z) \sim \exp(-\cosh x z^2)$

• Normal league: Prob. (weakest team wins) $\sim \exp(-N)$ Leagues are fair: upset champions extremely unlikely

Leagues versus Tournaments

16 teams, q=0.4 0.30 • league 0.25 tournament 0.20 $P_{n}^{0.15}$ 0.10 0.05 16 8 n $n_* \sim \sqrt{N}$

n	league	tourna ment
Ι	24.5	12.9
2	18.2	11.4
3	13.6	10.1
4	10.3	8.9
5	7.9	7.9
6	6.1	7.1
7	4.7	6.3
8	3.7	5.7
9	2.9	5.1
10	2.2	4.6
	١.7	4.2
12	1.3	3.8
13	1.0	3.4
14	0.81	3.1
15	0.63	2.8
16	0.49	2.6

II. Conclusions

- <u>Leagues are fair but inefficient</u>
- Leagues do not produce major upsets

III. Gradual Elimination (regular random graphs and complete graphs)

One preliminary round

- Preliminary round
 - Teams play a small number of games $T \sim N t$
 - Top M teams advance to championship round $~M\sim N^{lpha}$
 - Bottom N-M teams eliminated
 - Best team must finish no worse than M place $t \sim \frac{N^2}{M^2}$
- Championship round: plenty of games $T \sim M^3$
- Total number of games

 $T \sim N^{3-2\alpha} + N^{3\alpha}$

• Minimal when

 $M \sim N^{3/5} \qquad T \sim N^{9/5}$

Two preliminary rounds

• Two stage elimination

$$N \to N^{\alpha_2} \to N^{\alpha_2 \alpha_1} \to 1$$

• Second round

$$T_2 \sim N^{3-2\alpha_2} + N^{\alpha_2(3-2\alpha_1)} + N^{3\alpha_1\alpha_2}$$

• Minimize number of games

$$3 - 2\alpha_2 = \alpha_2(3 - 2\alpha_1) \qquad \longrightarrow \qquad \alpha_2 = \frac{15}{19}$$

• Further improvement in efficiency

$$T \sim N^{27/19}$$

Multiple preliminary rounds

• Each additional round further reduces T

$$T_k \sim N^{\gamma_k} \qquad \gamma_k = \frac{1}{1}$$

• Gradual elimination

$$\gamma_k = \frac{1}{1 - (2/3)^{k+1}}$$
$$\gamma_k = 3, \frac{9}{5}, \frac{27}{19}, \frac{81}{65}, \cdots$$

1

$$N \to N^{\frac{57}{65}} \to N^{\frac{57}{65}\frac{15}{19}} \to N^{\frac{57}{65}\frac{15}{19}\frac{3}{5}} \to 1$$

• Teams play a small number of games initially Optimal linear scaling achieved using many rounds $T_{\infty} \sim N$ $M_{\infty} \sim N^{1/3}$ optimal size of playoffs!

Preliminary elimination is very efficient!

III. Conclusions

- Gradual elimination is fair and efficient
- Preliminary rounds reduce the number of games
- In preliminary round, teams play a small number of games and almost all teams advance to next round
- Gradual elimination is fair and efficient

Publications

- How to Choose a Champion E. Ben-Naim, N.W. Hengartner Phys. Rev. E, submitted (2007)
- Scaling in Tournaments
 E. Ben-Naim, S. Redner, F. Vazquez
 Europhysics Letters 77, 30005 (2007)
- What is the Most Competitive Sport?
 E. Ben-Naim, F. Vazquez, S. Redner
 J. Korean Phys. Soc. (2007)
- Dynamics of Multi-Player Games
 E. Ben-Naim, B. Kahng, and J.S. Kim
 J. Stat. Mech. P07001 (2006)
- On the Structure of Competitive Societies
 E. Ben-Naim, F. Vazquez, S. Redner
 Eur. Phys. Jour. B 26 531 (2006)
- Dynamics of Social Diversity E. Ben-Naim and S. Redner J. Stat. Mech. L11002 (2005)