How to choose a champion

Eli Ben-Naim
Los Alamos National Laboratory

Nicholas Hengartner (Los Alamos National Laboratory)
Sidney Redner and Federico Vazquez (Los Alamos \& Boston University)
Micha Ben-Naim (Los Alamos Middle School)

Talk, papers available from: http://cnls.lanl.gov/~ebn

How to choose a champion

I. Using trees
(tournament $=$ post-season)
II. Using complete graphs
(league = regular season)
III.Using regular random graphs and complete graphs

Randomness in competitions

What is the most competitive sport?

How to quantify competitiveness?

Parity of a sports league

- Teams ranked by win-loss record
- Win percentage

$$
x=\frac{\text { Number of wins }}{\text { Number of games }}
$$

- Standard deviation in win-percentage

$$
\sigma=\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}}
$$

- Cumulative distribution $=$ Fraction of teams with winning percentage $<\mathrm{x}$

$$
F(x)
$$

Major League Baseball
American League
2005 Season-end Standings

		L	PCT
Boston	95	67	. 586
New York	95	67	. 586
Toronto	80	82	. 494
Baltimore	74	88	. 457
Tampa Bay	67	95	. 414
Centrol	w	L	PCT
Chicago	99	63	. 611
Cleveland	93	69	. 574
Minnesota	83	79	. 512
Detroit	71	91	. 438
Kansas City	56	106	. 346
Wost	w	L	PCT
Los Angeles	95	67	. 586
Oakland	88	74	. 543
Texas	79	83	. 488
Seattle	69	93	. 426

In baseball
$0.400<x<0.600$
$\sigma=0.08$

Data

- 300,000 Regular season games (all games ever played)
- 5 Major sports leagues in United States \& England

sport	league	full name	country	years	games
soccer	FA	Football Association	England	$1888-2005$	43,350
baseball	MLB	Major League Baseball	US	$1901-2005$	163,720
hockey	NHL	National Hockey League	US	$1917-2005$	39,563
basketball	NBA	National Basketball Association	US	$1946-2005$	43,254
football	NFL	National Football League	US	$1922-2004$	11,770

Standard deviation in winning percentage

Distribution of winning percentage clearly distinguishes sports

The competition model

- Two, randomly selected, teams play
- Outcome of game depends on team record
- Weaker team wins with probability $q<1 / 2 \rightarrow \begin{cases}q=1 / 2 & \text { random } \\ q=0 & \text { determinisicic }\end{cases}$
- Stronger team wins with probability $\mathrm{p}>\mathrm{I} / 2 \quad p+q=1$
$(i, j) \rightarrow\left\{\begin{array}{lll}(i+1, j) & \text { probability } p \\ (i, j+1) & \text { probability } 1-p\end{array} \quad i>j\right.$
- When two equal teams play, winner picked randomly
- Initially, all teams are equal (0 wins, 0 losses)
- Teams play once per unit time $\langle x\rangle=\frac{1}{2}$

Rate equation approach

- Probability distribution functions
$g_{k}=$ fraction of teams with k wins
$G_{k}=\sum_{j=0}^{k-1} g_{j}=$ fraction of teams with less than k wins $\quad H_{k}=1-G_{k+1}=\sum_{j=k+1}^{\infty} g_{j}$
- Evolution of the probability distribution

$$
\frac{d g_{k}}{d t}=(1-q)\left(g_{k-1} G_{k-1}-g_{k} G_{k}\right)+q\left(g_{k-1} H_{k-1}-g_{k} H_{k}\right)+\frac{1}{2}\left(g_{k-1}^{2}-g_{k}^{2}\right)
$$

- Closed equations for the cumulative distribution

$$
\begin{aligned}
& \frac{d G_{k}}{d t}=q\left(G_{k-1}-G_{k}\right)+(1 / 2-q)\left(G_{k-1}^{2}-G_{k}^{2}\right) \\
& \quad \text { Boundary Conditions } G_{0}=0 \quad G_{\infty}=1 \quad \text { Initial Conditions } \quad G_{k}(t=0)=1
\end{aligned}
$$

Nonlinear Difference-Differential Equations

Scaling analysis

- Rate equation

$$
\frac{d G_{k}}{d t}=q\left(G_{k-1}-G_{k}\right)+(1 / 2-q)\left(G_{k-1}^{2}-G_{k}^{2}\right)
$$

- Treat number of wins as continuous $G_{k+1}-G_{k} \rightarrow \frac{\partial G}{\partial k}$ Inviscid Burgers equation

$$
\frac{\partial v}{\partial t}+v \frac{\partial v}{\partial x}=0
$$

$$
\frac{\partial G}{\partial t}+[q+(1-2 q) G] \frac{\partial G}{\partial k}=0
$$

- Stationary distribution of winning percentage

$$
G_{k}(t) \rightarrow F(x) \quad x=\frac{k}{t}
$$

- Scaling equation

$$
[(x-q)-(1-2 q) F(x)] \frac{d F}{d x}=0
$$

Scaling solution

- Stationary distribution of winning percentage

$$
F(x)= \begin{cases}0 & 0<x<q \\ \frac{x-q}{1-2 q} & q<x<1-q \\ 1 & 1-q<x\end{cases}
$$

- Distribution of winning percentage is uniform

$$
f(x)=F^{\prime}(x)= \begin{cases}0 & 0<x<q \\ \frac{1}{1-2 q} & q<x<1-q \\ 0 & 1-q<x\end{cases}
$$

- Variance in winning percentage

$$
\sigma=\frac{1 / 2-q}{\sqrt{3}} \quad \longrightarrow \begin{cases}q=1 / 2 & \text { perfect parity } \\ q=0 & \text { maximum disparity }\end{cases}
$$

Approach to scaling

Numerical integration of the rate equations, $q=I / 4$

-Winning percentage distribution approaches scaling solution - Correction to scaling is very large for realistic number of games

- Large variance may be due to small number of games

$$
\sigma(t)=\frac{1 / 2-q}{\sqrt{3}}+f(t) \longleftarrow \text { Large! }
$$

Variance inadequate to characterize competitiveness!

The distribution of win percentage

- Treat q as a fitting parameter, time=number of games - Allows to estimate $q_{\text {model }}$ for different leagues

The upset frequency

- Upset frequency as a measure of predictability

$$
q=\frac{\text { Number of upsets }}{\text { Number of games }}
$$

- Addresses the variability in the number of games
- Measure directly from game-by-game results
- Ties: count as I/2 of an upset (small effect)
- Ignore games by teams with equal records
- Ignore games by teams with no record

The upset frequency

League	\mathbf{q}	$q_{\text {model }}$
FA	$\mathbf{0 . 4 5 2}$	0.459
MLB	$\mathbf{0 . 4 4 1}$	0.413
NHL	$\mathbf{0 . 4 1 4}$	0.383
NBA	$\mathbf{0 . 3 6 5}$	0.316
NFL	$\mathbf{0 . 3 6 4}$	0.309

q differentiates the different sport leagues!

Soccer, baseball most competitive
Basketball, football least competitive

Evolution with time

- Parity, predictability mirror each other $\sigma=\frac{1 / 2-q}{\sqrt{3}}$
- Football, baseball increasing competitiveness
- Soccer decreasing competitiveness (past 60 years)

Recap

- Randomness crucial for modeling competitions
- Basic competition model incorporates upsets
- I parameter model
- Captures major statistical characteristics of sports leagues
- Enables quantitative theoretical analysis

I. Tournaments

 (trees)
Single-elimination Tournaments

Binary Tree Structure

The competition model

- Two teams play, loser is eliminated

$$
N \rightarrow N / 2 \rightarrow N / 4 \rightarrow \cdots \rightarrow 1
$$

- Teams have inherent strength (or fitness) x

- Outcome of game depends on team strength

$$
\left(x_{1}, x_{2}\right) \rightarrow\left\{\begin{array}{ll}
x_{1} & \text { probability } 1-q \\
x_{2} & \text { probability } q
\end{array} \quad x_{1}<x_{2}\right.
$$

Recursive approach

- Number of teams

$$
N=2^{k}=1,2,4,8, \ldots
$$

- $G_{N}(x)=$ Cumulative probability distribution function for teams with fitness less than \times to win an N -team tournament
- Closed equations for the cumulative distribution

$$
G_{2 N}(x)=2 p G_{N}(x)+(1-2 p)\left[G_{N}(x)\right]^{2}
$$

Nonlinear Recursion Equation

Scaling properties

I. Scale of Winner

$$
x_{*} \sim N^{-\ln 2 p / \ln 2}
$$

2. Scaling Function
$G_{N}(x) \rightarrow \Psi\left(x / x_{*}\right)$
3. Algebraic Tail

$$
1-\Psi(z) \sim z^{\ln 2 p / \ln 2 q}
$$

I. Large tournaments produce strong winners
3. High probability for an upset

The scaling function

Universal shape

Broad tail

$$
\Psi(2 p z)=2 p \Psi(z)+(1-2 p) \Psi^{2}(z)
$$

$\Psi^{\prime}(z) \sim z^{\ln 2 p / \ln 2 q-1}$

College Basketball

- Teams ranked I-I6 Well defined favorite Well defined underdog
- 4 winners each year
- Theory: $q=0.18$
- Simulation: $q=0.22$
- Data: q=0.27
- Data: I978-2006
- 1600 games

I. Conclusions

- Tournaments are efficient but not fair
- Strong teams fare better in large tournaments
- Tournaments can produce major upsets
- Distribution of winner relates parity with predictability

II. Leagues (complete graphs)

League champions

- N teams with fixed ranking
- In each game, favorite and underdog are well defined
- Favorite wins with probability $p>1 / 2$ Underdog wins with probability $q<1 / 2$
- Each team plays t games against random opponents
- Regular random graph
- Team with most wins is the champion

How many games are needed for best team to win?

Random walk approach

I - Probability team ranked n wins a game
2 -

$$
P_{n}=p \frac{n-1}{N-1}+q \frac{N-n}{N-1}
$$

- Number of wins performs a biased random walk

$$
w_{n}=P_{n} t \pm \sqrt{D_{n} t}
$$

- Team n can finish first at early times as long as

$$
(2 p-1) \frac{n}{N} t \sim \sqrt{t}
$$

- Rank of champion as function of N and t

$$
n_{*} \sim \frac{N}{\sqrt{t}}
$$

Length of season

- For best team to finish first
- Each team must play

$$
t \sim N^{2}
$$

- Total number of games

$$
T \sim N^{3}
$$

I. Normal leagues are too short
2. Normal leagues: rank of winner
3. League champions are a transient!

Distribution of outcomes

- Scaling distribution for the rank of champion

$$
Q_{n}(t) \sim \frac{1}{n_{*}} \psi\left(\frac{n}{n_{*}}\right)
$$

$$
n_{*} \sim \frac{N}{\sqrt{t}}
$$

- Probability worst team wins decays exponentially

$$
Q_{N}(t) \sim \exp (- \text { const } \times t)
$$

- Gaussian tail because $\psi\left(t^{1 / 2}\right) \sim \exp (-t)$

$$
\psi(z) \sim \exp \left(- \text { const } \times z^{2}\right)
$$

- Normal league: Prob. (weakest team wins) $\sim \exp (-N)$

Leagues are fair: upset champions extremely unlikely

Leagues versus Tournaments

16 teams, $q=0.4$

n	league	tourna ment
1	24.5	12.9
2	18.2	11.4
3	13.6	10.1
4	10.3	8.9
5	7.9	7.9
6	6.1	7.1
7	4.7	6.3
8	3.7	5.7
9	2.9	5.1
10	2.2	4.6
11	1.7	4.2
12	1.3	3.8
13	1.0	3.4
14	0.81	3.1
15	0.63	2.8
16	0.49	2.6

II. Conclusions

- Leagues are fair but inefficient
- Leagues do not produce major upsets

III. Gradual Elimination (regular random graphs and complete graphs)

One preliminary round

- Preliminary round
- Teams play a small number of games $T \sim N t$
- Top M teams advance to championship round $\quad M \sim N^{\alpha}$
- Bottom N-M teams eliminated
- Best team must finish no worse than M place $t \sim \frac{N^{2}}{M^{2}}$
- Championship round: plenty of games $T \sim M^{3}$
- Total number of games

$$
T \sim N^{3-2 \alpha}+N^{3 \alpha}
$$

- Minimal when

$$
M \sim N^{3 / 5} \quad T \sim N^{9 / 5}
$$

Two preliminary rounds

- Two stage elimination

$$
N \rightarrow N^{\alpha_{2}} \rightarrow N^{\alpha_{2} \alpha_{1}} \rightarrow 1
$$

- Second round

$$
T_{2} \sim N^{3-2 \alpha_{2}}+N^{\alpha_{2}\left(3-2 \alpha_{1}\right)}+N^{3 \alpha_{1} \alpha_{2}}
$$

- Minimize number of games

$$
3-2 \alpha_{2}=\alpha_{2}\left(3-2 \alpha_{1}\right) \quad \longrightarrow \quad \alpha_{2}=\frac{15}{19}
$$

- Further improvement in efficiency

$$
T \sim N^{27 / 19}
$$

Multiple preliminary rounds

- Each additional round further reduces T

$$
T_{k} \sim N^{\gamma_{k}} \quad \gamma_{k}=\frac{1}{1-(2 / 3)^{k+1}}
$$

- Gradual elimination

$$
\gamma_{k}=3, \frac{9}{5}, \frac{27}{19}, \frac{81}{65}, \cdots
$$

$$
N \rightarrow N^{\frac{57}{65}} \rightarrow N^{\frac{57}{65} \frac{15}{19}} \rightarrow N^{\frac{57}{65} \frac{15}{19} \frac{3}{5}} \rightarrow 1
$$

- Teams play a small number of games initially

Optimal linear scaling achieved using many rounds

$$
T_{\infty} \sim N \quad M_{\infty} \sim N^{1 / 3} \quad \text { optimal size of playoffs! }
$$

Preliminary elimination is very efficient!

III. Conclusions

- Gradual elimination is fair and efficient
- Preliminary rounds reduce the number of games
- In preliminary round, teams play a small number of games and almost all teams advance to next round
- Gradual elimination is fair and efficient

Publications

- How to Choose a Champion E. Ben-Naim, N.W. Hengartner Phys. Rev. E, submitted (2007)
- Scaling in Tournaments E. Ben-Naim, S. Redner, F. Vazquez Europhysics Letters 77, 30005 (2007)
- What is the Most Competitive Sport?
E. Ben-Naim, F. Vazquez, S. Redner
J. Korean Phys. Soc. (2007)
- Dynamics of Multi-Player Games
E. Ben-Naim, B. Kahng, and J.S. Kim
J. Stat. Mech. P07001 (2006)
- On the Structure of Competitive Societies
E. Ben-Naim, F. Vazquez, S. Redner

Eur. Phys. Jour. B 26531 (2006)

- Dynamics of Social Diversity
E. Ben-Naim and S. Redner
J. Stat. Mech. L11002 (2005)

