On the Solutions of the Inelastic Boltzmann Equation

Eli Ben-Naim

Los Alamos National Laboratory

Talk, papers available from: http://cnls.lanl.gov/~ebn
Analytical and numerical issues on quantum, kinetic, and statistical evolution Austin, October 9, 2009

Plan

I. One Dimension
A. Similarity solutions
B. Stationary solutions
C. Hybrid solutions
II. General Dimension
A. Stationary solutions
B. Similarity solutions

Part I: One Dimension

Inelastic collisions

- Relative velocity reduced by $0 \leq r<1$

$$
v_{1}-v_{2}=-r\left(u_{1}-u_{2}\right)
$$

- Momentum is conserved

$$
v_{1}+v_{2}=u_{1}+u_{2}
$$

- Energy is dissipated

$$
\Delta E=\frac{1-r^{2}}{4}\left(u_{1}-u_{2}\right)^{2}
$$

- Limiting cases

$$
r= \begin{cases}0 & \text { completely inelastic }(\Delta E=\max) \\ 1 & \text { elastic }(\Delta E=0)\end{cases}
$$

Inelastic collisions: symmetries

- Galliean invariance

$$
v \longrightarrow v+v_{0}
$$

- Set average velocity is zero

$$
\langle v\rangle=0
$$

- Scale invariance

$$
v \longrightarrow \gamma v
$$

- Stationary solution

$$
P(v) \rightarrow \gamma P(\gamma v)
$$

The inelastic Boltzmann equation

- Collision rule $\quad r=1-2 p \quad p+q=1 \quad 0<p \leq 1 / 2$

$$
\left(u_{1}, u_{2}\right) \rightarrow\left(p u_{1}+q u_{2}, p u_{2}+q u_{1}\right)
$$

- General collision rate

$$
K\left(v_{1}, v_{2}\right)=\left|v_{1}-v_{2}\right|^{\lambda} \quad \lambda= \begin{cases}0 & \text { Maxwell molecules } \\ 1 & \text { Hard spheres }\end{cases}
$$

- Boltzmann equation (nonlinear and nonlocal)

$$
\begin{gathered}
\frac{\partial P(v)}{\partial t}=\iint d u_{1} d u_{2} P\left(u_{1}\right) P\left(u_{2}\right)\left|u_{1}-u_{2}\right|^{\lambda}\left[\delta\left(v-p u_{1}-q u_{2}\right)-\delta\left(v-u_{2}\right)\right] \\
\text { Theolision rate } \underset{\text { gain }}{\text { Theory: non-linear, non-local }} \\
\text { energy dissipation, no explicit forcing }
\end{gathered}
$$

The inelastic Boltzmann equation

$$
\frac{\partial P(v)}{\partial t}=\iint d u_{1} d u_{2} P\left(u_{1}\right) P\left(u_{2}\right)\left|u_{1}-u_{2}\right|^{\lambda}\left[\delta\left(v-p u_{1}-q u_{2}\right)-\delta\left(v-u_{2}\right)\right]
$$

What is the solution of this equation?
What is the nature of the velocity distribution?

The inelastic Maxwell Model $(\lambda=0)$

- Constant collision rate

$$
\frac{\partial P(v)}{\partial t}=\iint d u_{1} d u_{2} P\left(u_{1}\right) P\left(u_{2}\right)\left|u_{1}-u_{2}\right|^{\lambda}\left[\delta\left(v-p u_{1}-q u_{2}\right)-\delta\left(v-u_{2}\right)\right]
$$

- Moments obey closed equations

$$
T=\left\langle v^{2}\right\rangle \quad \frac{d T}{d t}=-\lambda_{2} T \quad \lambda_{n}=1-p^{n}-q^{n}
$$

- Temperature decays exponentially with time

$$
T=T_{0} e^{-\lambda_{2} t}
$$

- All energy is eventually dissipated
- Trivial steady-state

$$
P(v) \rightarrow \delta(v)
$$

The Fourier transform

- The Fourier transform $\quad F(k)=\int d v e^{i k v} P(v, t)$
- Obeys closed, nonlinear, nonlocal equation Krup 67

$$
\frac{\partial F(k)}{\partial t}+F(k)=F(p k) F(q k)
$$

- Scaling behavior, scale set by temperature

$$
F(k, t) \rightarrow f\left(k e^{-\lambda t}\right) \quad \lambda=\frac{\lambda_{2}}{2}
$$

- Nonlinear differential equation

$$
-\lambda z f^{\prime}(z)+f(z)=f(p z) f(q z) \quad \begin{aligned}
f(0) & =1 \\
f^{\prime}(0) & =0
\end{aligned}
$$

- Exact solution

$$
f(z)=(1+|z|) e^{-|z|}
$$

Similarity solution

- Self-similar form

$$
P(v, t) \rightarrow e^{\lambda t} p\left(v e^{\lambda t}\right)
$$

- Obtained by inverse Fourier transform

$$
p(w)=\frac{2}{\pi} \frac{1}{\left(1+w^{2}\right)^{2}}
$$

- Power-law tail

$$
p(w) \sim w^{-4}
$$

I. Self-similar solution
2. Power-law tail

Homogeneous cooling state: temperature decay ($\lambda>0$)

- Energy loss

$$
\Delta T \sim(\Delta v)^{2}
$$

- Collision rate

$$
\Delta t \sim 1 /(\Delta v)^{\lambda}
$$

- Energy balance equation

$$
\frac{d T}{d t} \sim-(\Delta v)^{2+\lambda} \quad \Longrightarrow \quad \frac{d T}{d t}=-T^{1+\lambda / 2}
$$

- Temperature decays, system comes to rest

$$
T \sim t^{-2 / \lambda} \quad \Longrightarrow \quad P(v) \rightarrow \delta(v)
$$

Trivial stationary solution

Homogeneous cooling states: similarity solutions ($\lambda>0$)

- Similarity solution

$$
P(v, t)=t^{1 / \lambda} p\left(v t^{1 / \lambda}\right)
$$

- Scaling function: stretched exponential

$$
p(w) \sim \exp \left(-|w|^{\lambda}\right)
$$

- Overpopulated (with respect to Maxwellian) tails

Are there nontrivial stationary solutions?

- Stationary Boltzmann equation

$$
\frac{\partial P(v)}{\partial t}=\iint \underset{\text { collision rate }}{\int u_{1} d u_{2} P\left(u_{1}\right) P\left(u_{2}\right)\left|u_{1}-u_{2}\right|^{\lambda}\left[\delta\left(v-p u_{1}-q u_{2}\right)-\delta\left(v-u_{2}\right)\right]}
$$

Naive answer: NO!

- According to the energy balance equation

$$
\frac{d T}{d t}=-\Gamma
$$

- Dissipation rate is positive

$$
\Gamma>0
$$

Stationary solutions $(\lambda=0)$

- Stationary solutions do exist!

$$
F(k)=F(p k) F(q k)
$$

- Family of exponential solutions, parametrized by v_{0}

$$
F(k)=\exp \left(-|k| v_{0}\right)
$$

- Lorentz/Cauchy distribution:

$$
P(v)=\frac{1}{\pi v_{0}} \frac{1}{1+\left(v / v_{0}\right)^{2}}
$$

Divergent energy, divergent dissipation rate

Properties of stationary solution

- Perfect balance between collisional loss and gain
- Purely collisional dynamics (no source term)
- Family of solutions: scale invariance $v \rightarrow v / v_{0}$
- Power-law high-energy tail
- Divergent energy, divergent dissipation rate!

Questions about stationary solutions

- How is a steady state consistent with dissipation?
- Are these stationary solutions physical?
- How to simulate numerically?
- How to realize experimentally?
- A family of solutions: which one is selected by dynamics?

The answers to all of these questions require understanding dynamics of extreme velocities!

Extreme statistics

- When $v_{1} \rightarrow \infty$ the binary collision process

$$
\left(v_{1}, y_{2}\right) \rightarrow\left(p v_{1}+q<_{2}, \underline{p} 反_{2}+q v_{1}\right)
$$

turns into the linear cascade process

$$
v \rightarrow(p v, q v)
$$

- Cascade: conserves momentum, dissipates energy, doubles number of particles!
- Linear Boltzmann equation for extreme velocities

$$
\frac{\partial P(v)}{\partial t}=\frac{1}{p} P\left(\frac{v}{p}\right)+\frac{1}{q} P\left(\frac{v}{q}\right)-P(v)
$$

- Steady-state: power-law tail

$$
P(v) \sim v^{-2}
$$

The linear Boltzmann equation

- For extreme velocities, double integral factorizes

$$
\begin{aligned}
\frac{\partial P(v)}{\partial t} & =\iint d u_{1} d u_{2} P\left(u_{1}\right) P\left(u_{2}\right)\left|u_{1}-u_{2}\right|^{\lambda}\left[\delta\left(v-p u_{1}-p u_{2}\right)-\delta\left(v-u_{1}\right)\right] \\
& =\int d u_{<} P\left(u_{<}\right) \int d u_{>} P\left(u_{>}\right)\left|u_{>}\right|^{\lambda}\left[\delta\left(v-p u_{>}\right)+\delta\left(v-q u_{>}\right)-\delta\left(v-u_{>}\right)\right]
\end{aligned}
$$

- Extreme velocities: linear but nonlocal equation

$$
\frac{\partial P(v)}{\partial t}=|v|^{\lambda}\left[\frac{1}{p^{1+\lambda}} P\left(\frac{v}{p}\right)+\frac{1}{q^{1+\lambda}} P\left(\frac{v}{q}\right)-P(v)\right]
$$

- Stationary solution: power-law distribution

$$
P(v) \sim v^{-2-\lambda}
$$

Stationary solution: always power-law Hard spheres and Maxwell Molecules

Numerical solution

- Force constant energy
- Inject energy:
-At extremely large scales
-With extremely small rate
- "Lottery" implementation:
-Keep track of total energy dissipated, $\mathrm{E}_{\boldsymbol{T}}$
-With small rate, boost one particle by E_{T}

Lottery Monte Carlo simulation

Excellent agreement between theory and simulation Injection selects one solution with one particular v_{0} !!!

Injection, Cascade, Dissipation

Experimental realization?

Energetic particle "shot" into static medium

Energy balance
$\Gamma \sim \gamma V^{2}$
-Energy is injected only at large velocity scales!
-Energy cascades from large velocities to small velocities
-Energy dissipated at small velocity scales

Energy balance

- Energy injection rate γ
- Energy injection scale V
- Typical velocity scale v_{0}
- Balance between energy injection and dissipation

$$
\gamma \sim V^{\lambda}\left(V / v_{0}\right)^{d-\sigma}
$$

- For "lottery" injection: injection scale diverges with injection rate

$$
V \sim \begin{cases}\gamma^{-1 /(2-\lambda)} & \sigma<d+2 \\ \gamma^{-1 /(\sigma-d-\lambda)} & \sigma>d+2\end{cases}
$$

Energy injection selects stationary solution

Hybrid solutions

- Suppose the system is stationary; then, we turn off energy injection. The system will start cooling
- Hybrid solution
- Stationary at small velocities $v \ll V(t)$
- Self-similar at large velocities $v \gg V(t)$

$$
P(v, t) \sim v^{-2-\lambda} \phi\left(v t^{1 / \lambda}\right)
$$

- Cutoff velocity decays following Haff law $V(t) \sim t^{-1 / \lambda}$
- Scaling solution $p=q=1 / 2$

$$
\phi(x)=\sum_{n=1}^{\infty} a_{n} \exp \left[-\left(2^{n} x\right)^{\lambda}\right] \quad a_{n}=\prod_{\substack{k=1 \\ k \neq n}}^{\infty} \frac{1}{1-2^{\lambda(n-k)}}
$$

Hybrid between steady-state and time dependent state

Extreme statistics

- Scaling function

$$
\phi(x)=\sum_{n=1}^{\infty} a_{n} \exp \left[-\left(2^{n} x\right)^{\lambda}\right] \quad a_{n}=\prod_{\substack{k=1 \\ k \neq n}}^{\infty} \frac{1}{1-2^{\lambda(n-k)}}
$$

- Large velocities: stretched exponential (like free cooling)

$$
\phi(x) \sim \exp \left(-x^{\lambda}\right) \quad \text { as } \quad x \rightarrow \infty
$$

- Small velocities: log-normal distribution

$$
1-\phi(x) \sim \exp \left[-(\ln x)^{2}\right] \quad \text { as } \quad x \rightarrow 0
$$

Hybrid between steady-state and time dependent state
Maxwell Model $(\lambda=0)$ only unsolved case!

Obtaining the scaling function $(\lambda=0, p=1 / 2)$

- Substitute scaling form into linear equation

$$
\phi^{\prime}(x)=2[\phi(2 x)-\phi(x)]
$$

- Use Laplace transform

$$
(2+s) \phi(s)=1+\phi(s / 2) \quad \phi(s)=\int d x e^{-s x} \phi(x)
$$

- Make a further transformation

$$
u(s)=\frac{1}{1+s / 2} u(s / 2) \quad u(s)=\frac{1-\phi(s)}{s}
$$

- Iterative solution through an infinite product

$$
\phi(s)=\frac{1}{s}\left(1-\prod_{n=1}^{\infty} \frac{1}{1+\frac{s}{2^{n}}}\right)
$$

Numerical confirmation

Velocity distribution

Scaling function

A third family of solutions does exist

Part II: General Dimensions

Inelastic collisions

- Normal relative velocity reduced by $0 \leq r<1$

$$
\left(\mathbf{v}_{1}-\mathbf{v}_{\mathbf{2}}\right) \cdot \mathbf{n}=-r\left(\mathbf{u}_{1}-\mathbf{u}_{2}\right) \cdot \mathbf{n} \quad r=1-2 p
$$

- Momentum conservation

$$
\mathbf{v}_{1}+\mathbf{v}_{\mathbf{2}}=\mathbf{u}_{1}+\mathbf{u}_{2}
$$

- Energy loss

$$
\Delta E=\frac{1-r^{2}}{4}\left[\left(\mathbf{u}_{1}-\mathbf{u}_{2}\right) \cdot \mathbf{n}\right]
$$

- Collision rate

$$
K\left(v_{1}, v_{2}\right)=\left|\left(\mathbf{v}_{1}-\mathbf{v}_{2}\right) \cdot \mathbf{n}\right|^{\lambda} \quad \lambda= \begin{cases}0 & \text { Maxwell molecules } \\ 1 & \text { Hard spheres }\end{cases}
$$

Collision rules

- Collision process

$$
\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right) \rightarrow\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)
$$

- Explicit collision rule for all velocities

$$
\begin{aligned}
& \mathbf{v}_{1}=\mathbf{u}_{1}-(1-p)\left(\mathbf{u}_{1}-\mathbf{u}_{2}\right) \cdot \hat{\mathbf{n}} \hat{\mathbf{n}} \\
& \mathbf{v}_{2}=\mathbf{u}_{2}-(1-p)\left(\mathbf{u}_{2}-\mathbf{u}_{1}\right) \cdot \hat{\mathbf{n}} \hat{\mathbf{n}}
\end{aligned}
$$

- Cascade process

$$
\mathbf{u} \rightarrow\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)
$$

- Explicit cascade rules for extremely large velocities

$$
\begin{aligned}
& \mathbf{v}_{1}=\mathbf{u}-(1-p) \mathbf{u} \cdot \hat{\mathbf{n}} \hat{\mathbf{n}} \\
& \mathbf{v}_{2}=(1-p) \mathbf{u} \cdot \hat{\mathbf{n}} \hat{\mathbf{n}}
\end{aligned}
$$

The Boltzmann equation

- Full nonlinear equation

$$
\frac{\partial P(\mathbf{v})}{\partial t}=\iiint d \hat{\mathbf{n}} d \mathbf{u}_{1} d \mathbf{u}_{2}\left|\left(\mathbf{u}_{1}-\mathbf{u}_{2}\right) \cdot \hat{\mathbf{n}}\right|^{\lambda} P\left(\mathbf{u}_{1}\right) P\left(\mathbf{u}_{2}\right)\left[\delta\left(\mathbf{v}-\mathbf{v}_{1}\right)-\delta\left(\mathbf{v}-\mathbf{u}_{1}\right)\right]
$$

angular integration with uniform measure

- Linear equation for large velocities

$$
\frac{\partial P(\mathbf{v})}{\partial t}=\iint d \hat{\mathbf{n}} d \mathbf{u}|\mathbf{u} \cdot \hat{\mathbf{n}}|^{\lambda} P(\mathbf{u})\left[\delta\left(\mathbf{v}-\mathbf{v}_{1}\right)+\delta\left(\mathbf{v}-v_{2}\right)-\delta(\mathbf{v}-\mathbf{u})\right]
$$

- Formulate linear equation for velocity magnitude

$$
P(v) \quad v \equiv|\mathbf{v}|
$$

Extreme statistics

- Collision process: large velocities

$$
v \rightarrow(\alpha v, \beta v)
$$

- Stretching parameters related to impact angle

$$
\alpha=(1-p) \cos \theta \quad \beta=\left[1-\left(1-p^{2}\right) \cos ^{2} \theta\right]^{1 / 2}
$$

- Energy decreases, velocity magnitude increases

$$
\alpha^{2}+\beta^{2} \leq 1 \quad \alpha+\beta \geq 1
$$

- Linear Boltzmann equation $\left\rangle \equiv \int d \mathbf{n}\right.$

$$
\frac{\partial P(v)}{\partial t}=\left\langle v^{\lambda} \cos ^{\lambda / 2} \theta\left(\frac{1}{\alpha^{d+\lambda}} P\left(\frac{v}{\alpha}\right)+\frac{1}{\beta^{d+\lambda}} P\left(\frac{v}{\beta}\right)-P(v)\right)\right\rangle .
$$

Similarity solutions

- Velocity distribution always has power-law tail

$$
P(v) \sim v^{-\sigma} \quad\left\langle\left(a^{\sigma-d \lambda}+\beta^{\sigma-d \lambda}-1\right) \cos ^{\lambda / 2} \theta\right\rangle=0
$$

- Characteristic exponent varies with all parameters

$$
\frac{1-{ }_{2} F_{1}\left(\frac{d+\lambda-\sigma}{2}, \frac{\lambda+1}{2}, \frac{d+\lambda}{2}, 1-p^{2}\right)}{(1-p)^{\sigma-d-\lambda}}=\frac{\Gamma\left(\frac{\sigma-d+1}{2}\right) \Gamma\left(\frac{d+\lambda}{2}\right)}{\Gamma\left(\frac{\sigma}{2}\right) \Gamma\left(\frac{\lambda+1}{2}\right)}
$$

- Range of exponent

$$
1 \leq \sigma-d-\lambda \leq 2
$$

Dissipation rate is always divergent!
Energy may be finite or infinite

The characteristic exponent $\sigma(\mathrm{d}=2,3)$

σ varies with spatial dimension, collision rules

Monte Carlo simulations

d	theory	simulation
1	2	1.995
2	3.19520	3.19

Hard spheres (ID, 2D)
finite energy

d	theory	simulation
1	3	2.994
2	4.14922	4.15

Similarity solution (Maxwell Molecules)

- Temperature follows from full nonlinear equation

$$
T=T_{0} \exp \left(-\lambda_{2} t\right) \quad \lambda_{2}=\frac{2 p(1-p)}{d}
$$

- Substitute similarity form

$$
P(v, t) \rightarrow e^{(d-1) \lambda t} p\left(v e^{\lambda t}\right) \quad \lambda=\lambda_{2} / 2
$$

- Into linear Boltzmann equation

$$
\frac{\partial P(v)}{\partial t}=\left\langle\frac{1}{\alpha^{d}} P\left(\frac{v}{\alpha}\right)+\frac{1}{\beta^{d}} P\left(\frac{v}{\beta}\right)-P(v)\right\rangle
$$

- Linear equation for scaling function

$$
\lambda(d-1) p(w)+\lambda w p^{\prime}(w)=\left\langle\frac{1}{\alpha^{d}} p\left(\frac{w}{\alpha}\right)+\frac{1}{\beta^{d}} p\left(\frac{w}{\beta}\right)-p(w)\right\rangle
$$

- Power-law tail

$$
p(w) \sim w^{-\sigma}
$$

- Velocity distribution always has power-law tail

$$
p(w) \sim w^{-\sigma}
$$

- Exponent is solution of transcendental equation
$1-p(1-p) \frac{\sigma-d}{d}={ }_{2} F_{1}\left[\frac{d-\sigma}{2}, \frac{1}{2} ; \frac{d}{2} ; 1-p^{2}\right]+(1-p)^{\sigma-d} \frac{\Gamma\left(\frac{\sigma-d+1}{2}\right) \Gamma\left(\frac{d}{2}\right)}{\Gamma\left(\frac{\sigma}{2}\right) \Gamma\left(\frac{1}{2}\right)}$
- Transparent in terms of stretching parameters

$$
\lambda[(d-1)-\sigma]=\left\langle\alpha^{\sigma-d}+\beta^{\sigma-d}-1\right\rangle
$$

- Energy is finite

Linear analysis for large velocities transparent (compare small wave number Fourier analysis)

Similarity solutions ($\lambda>0$)

- Similarity solution

$$
P(v, t) \simeq t^{(d-1) / \lambda} p\left(v t^{1 / \lambda}\right)
$$

- Scaling function: stretched exponential

$$
p(w) \sim \exp \left(-|w|^{\lambda}\right)
$$

- Overpopulated (with respect to Maxwellian) tails

Summary

- Time dependent solution $P(v, t) \simeq t^{1 / \lambda} p\left(v t^{1 / \lambda}\right)$
- Temperature characterizes the distribution, free cooling
- Shape of velocity distribution invariant after suitable rescaling
- Straightforward numerical implementation, questionable relevance to experiments
- Stationary solution $P_{s}(v) \sim v^{-\sigma}$
- Dissipation rate divergent, energy finite or divergent
- Can be realized using energy injection but only up to large scale
- Numerically: lottery monte carlo
- Experiment: rare but powerful injection of energetic particles
- Hybrid solution $P(v, t) \simeq P_{s}(v) \phi\left(v t^{1 / \lambda}\right)$
- Stationary at small scales
- Self-similar at large scales

Thanks

- Paul Krapivsky (Boston)
- John Machta (Massachusetts)
- Ben Machta (Brown)
- Annette Zippelius (Goettingen)

Publications

1. E. Ben-Naim and P.L. Krapivsky, Phys. Rev. E 61, R5 (2000).
2. E. Ben-Naim and P.L. Krapivsky, Phys. Rev. E 66, 011309 (2002).
3. E. Ben-Naim and P.L. Krapivsky, Lecture notes in Physics 624, 65 (2003).
4. E. Ben-Naim and J. Machta, Phys. Rev. Lett. 94, 138001 (2005).
5. E. Ben-Naim, B. Machta, and J. Machta Phys. Rev. E 72, 021302 (2005).
6. E. Ben-Naim and P.L. Krapivsky, Phys. Rev. E 73, 031109 (2006).
7. E. Ben-Naim and A. Zippelius, J. Stat. Phys. 129, 677 (2007).
