Escape and Finite-Size Scaling in Diffusion-Controlled Annihilation Eli Ben-Naim Los Alamos National Laboratory

with: Paul Krapivsky (Boston University)

J. Phys. A **49**, 504004 (2016) J. Phys. A **49**, 504005 (2016)

Talk, publications available from: http://cnls.lanl.gov/~ebn

Kinetic Descriptions of Chemical and Biological Systems Ames IA, March 23, 2017

Plan

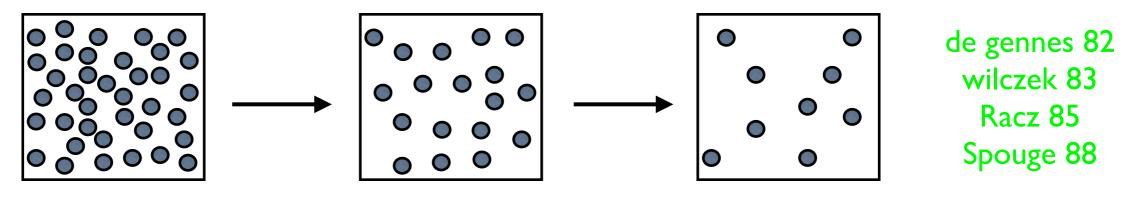
I. Reaction-diffusion with compact initial conditions

• Finite number of particles

2. Reaction-diffusion with sparse initial conditions

• Reaction kinetics

Diffusion-Controlled Annihilation



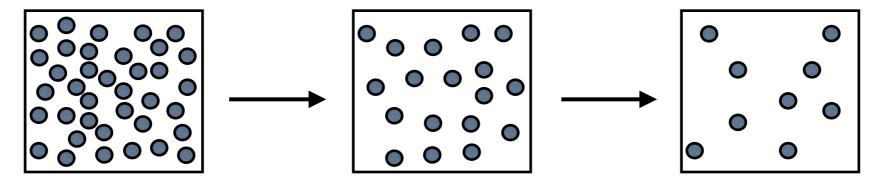
Diffusion: particles move randomly

• Annihilation: two particles annihilate upon contact

- Theory: role of spatial correlations & fluctuations
- Experiments: photoexcitations in nanotubes
 PRB 2013
 Textbook model of Nonequilibrium Stat. Phys.

A Kinetic View of Statistical Physics, Krapivsky, Redner, EB

Infinite system: uniform density



Hydrodynamic approach

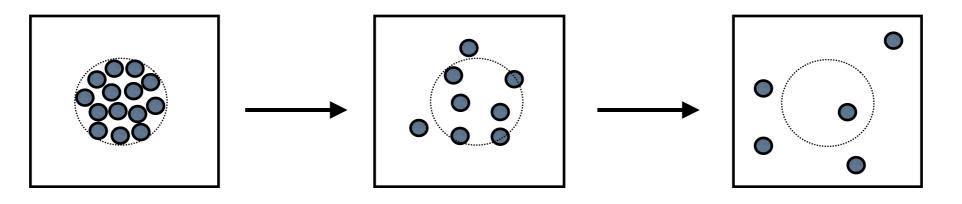
$$\frac{d\rho}{dt} = -K\rho^2$$

- Dimensional analysis for reaction rate $[K] = \frac{L^d}{T} \longrightarrow K \propto \begin{cases} D\rho^{2-d} & d < 2 \\ DR^{d-2} & d > 2 \end{cases}$
- Fluctuations dominate below critical dimension

$$\rho \sim \begin{cases} (Dt)^{-d/2} & d < 2\\ R^{2-d} (Dt)^{-1} & d > 2 \end{cases}$$

Reaction rate reduced in low spatial dimensions

Infinite system: finite number of particles



- Initial condition: uniform density in compact domain
- Initial number of particles is N
- Final state: average number of particles is M
- Scaling law for final number of surviving particles

$$M \sim \begin{cases} 0 & d < 2 \\ N^{(d-2)/d} & d > 2 \end{cases}$$

Number of reaction events reduced in high spatial dimensions!

Below critical dimension: no escape

• Probability a random walk returns to origin

P = 1 when $d \le 2$

- The separation between two random walks itself performs a random walk
- Two diffusing particles are guaranteed to meet All particles eventually disappear

Above critical dimension: escape feasible

• Probability a random walk at distance r returns to origin

 $P \sim r^{-(d-2)}$ when d > 2

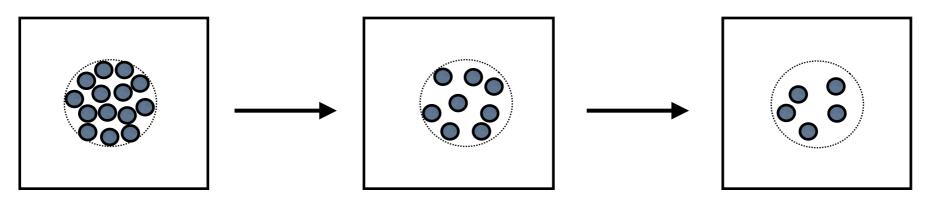
• Two diffusing particles may or may not meet

Uniform-density approximation

- Concentration obeys reaction-diffusion equation $\frac{\partial c(\mathbf{r},t)}{\partial t} = D \nabla^2 c(\mathbf{r},t) - K c^2(\mathbf{r},t)$
- Dimensionless form $D = K = a = c_0 = 1$
- Total number of particles obeys rate equation $n(t) = \int d\mathbf{r} \, c(\mathbf{r}, t) \implies \frac{dn(t)}{dt} = -\int d\mathbf{r} \, c^2(\mathbf{r}, t)$
- Two simplifying assumptions
 - I. Particles confined to volume V
 - 2. Spatial distribution remains uniform
- Closed equation for number of remaining particles

$$\frac{dn}{dt} = -\frac{n^2}{V}$$

Early phase: fast reactions



Particles still inside initial-occupied domain

$$V \sim N \implies \frac{dn}{dt} = -\frac{n^2}{N}$$

Mean-field like decay

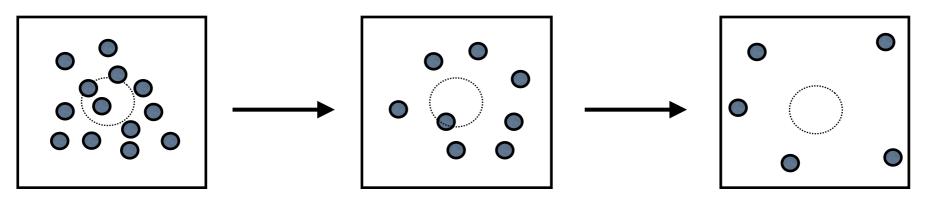
$$n(t) \sim N t^{-1}$$

• Valid until particles exit initially-occupied domain

$$\ell^d \sim t^{d/2} \sim N \quad \Longrightarrow \quad T \sim N^{2/d}$$

• Diffusion time scale gives number of particles $n(T) \sim N^{(d-2)/d}$

Intermediate phase: slow reactions



• Particles confined to a growing volume

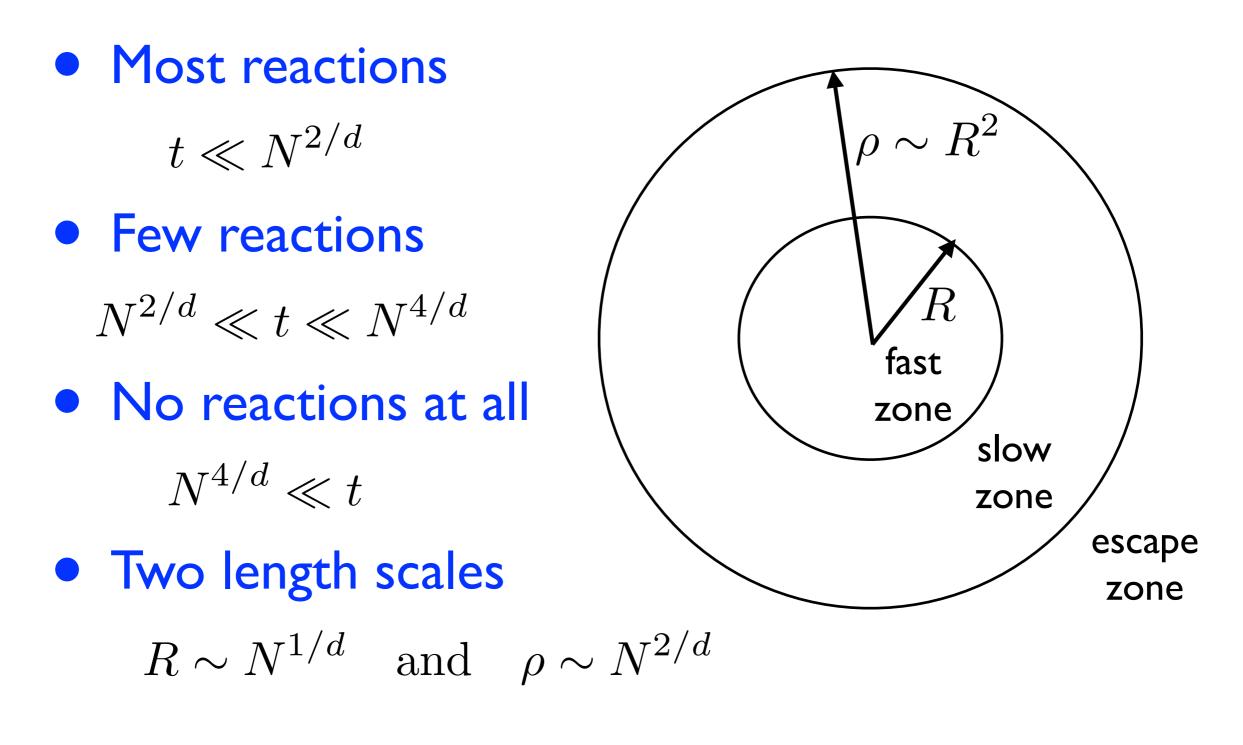
$$V \sim t^{d/2} \implies \frac{dn}{dt} = -\frac{n^2}{t^{d/2}}$$

• Slower decay of the density

$$n(t) - n(\infty) \sim N^{2(d-2)/d} t^{-(d-2)/2}$$

- Recover scaling law for final number of particles $M \sim N^{(d-2)/d}$
- Reaction rate gives "escape time" for final reaction $n(t) n(\infty) \sim 1 \implies \tau \sim N^{4/d}$

Three phases



Two time and length scales

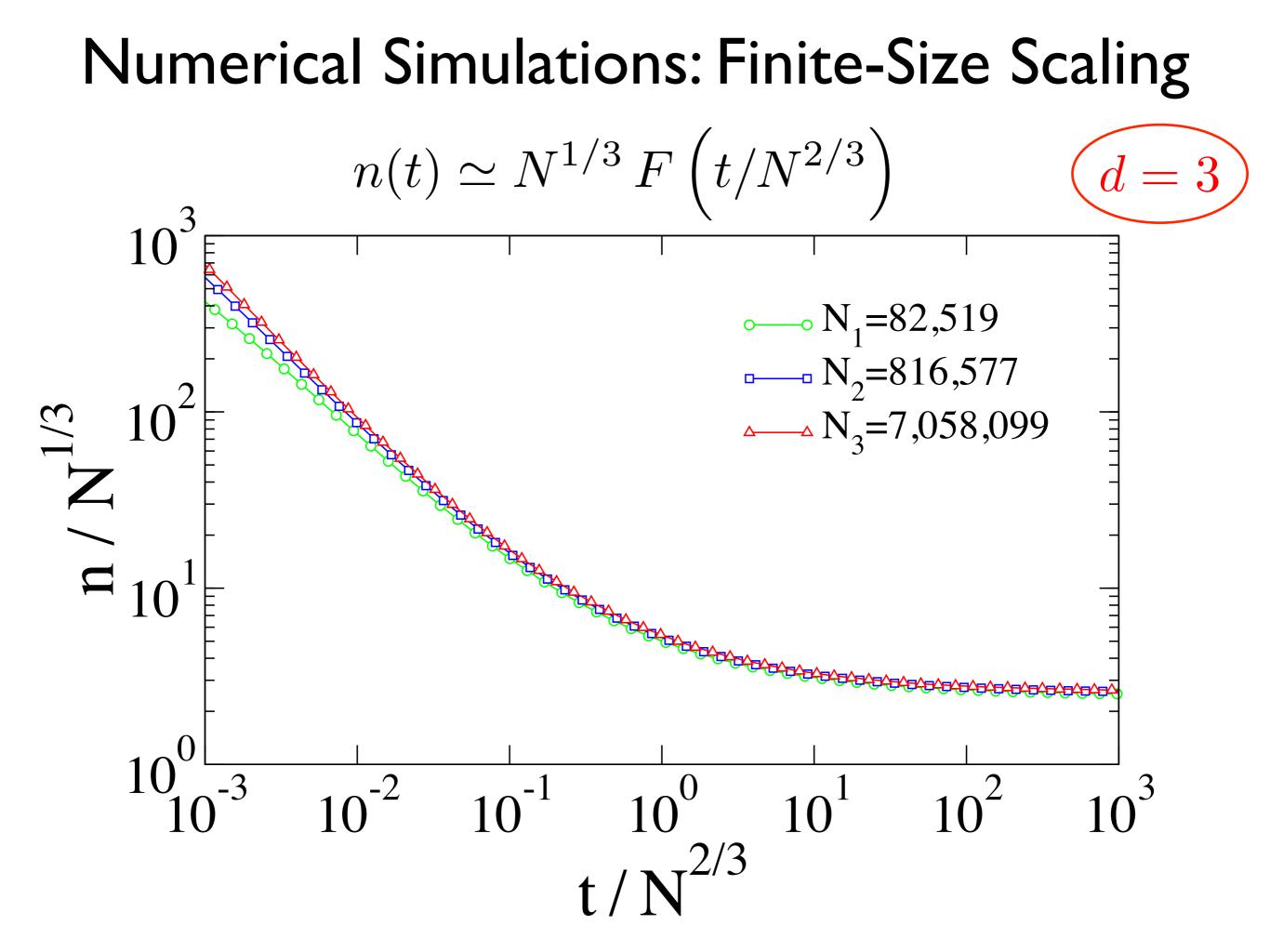
Finite-size scaling

- Universal behavior, independent of system size $n(t) \simeq N^{(d-2)/d} F\left(t/N^{2/d}\right)$
- Scaling function

$$F(x) \sim \begin{cases} x^{-1} & x \ll 1; \\ 1 + \text{const.} \times x^{(2-d)/2} & x \gg 1 \end{cases}$$

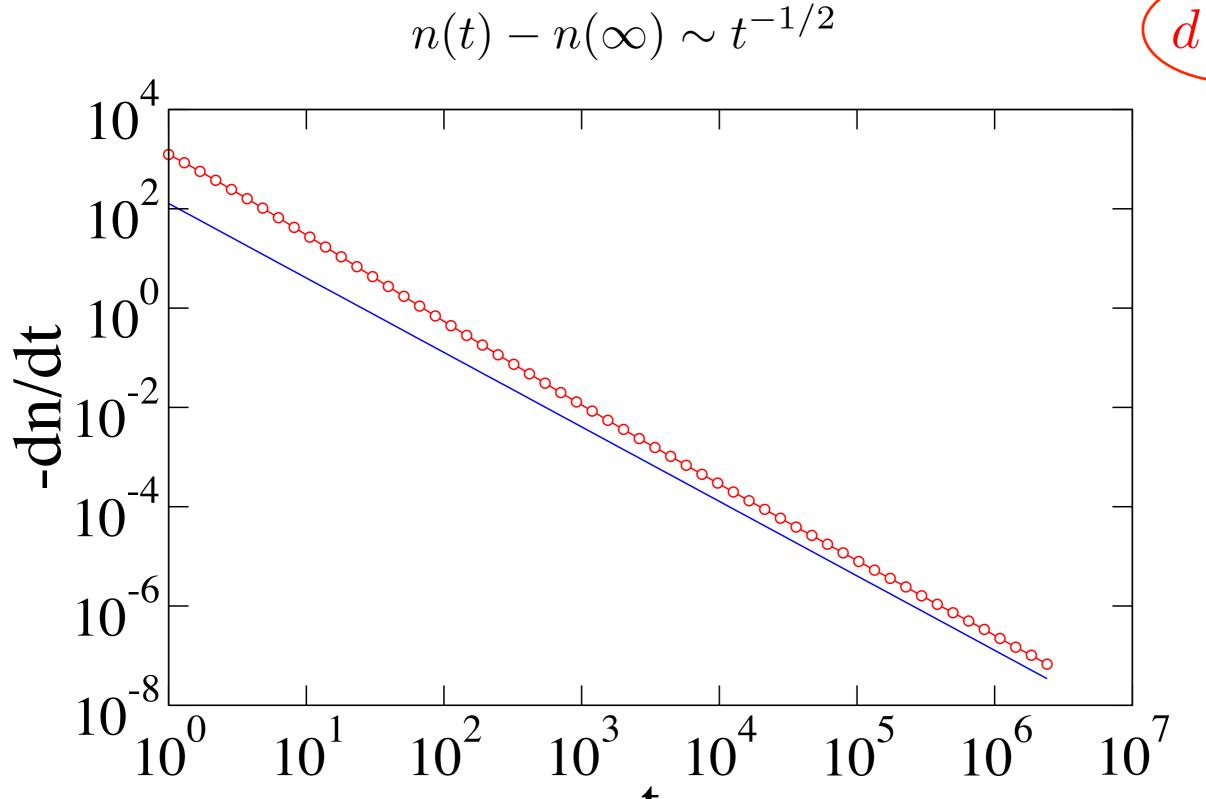
- Average lifetime of particles logarithmic in N
 ∫^{N^{2/d}} dt t t⁻² ⇒ ⟨t⟩ ~ ln N

 Numerical simulations can not measure M directly
- Confirm finite-size scaling, extrapolation for M
- Brute-force Monte Carlo (keep track of sites, not particles) $\mathcal{O}(N \times N \times \ln N)$

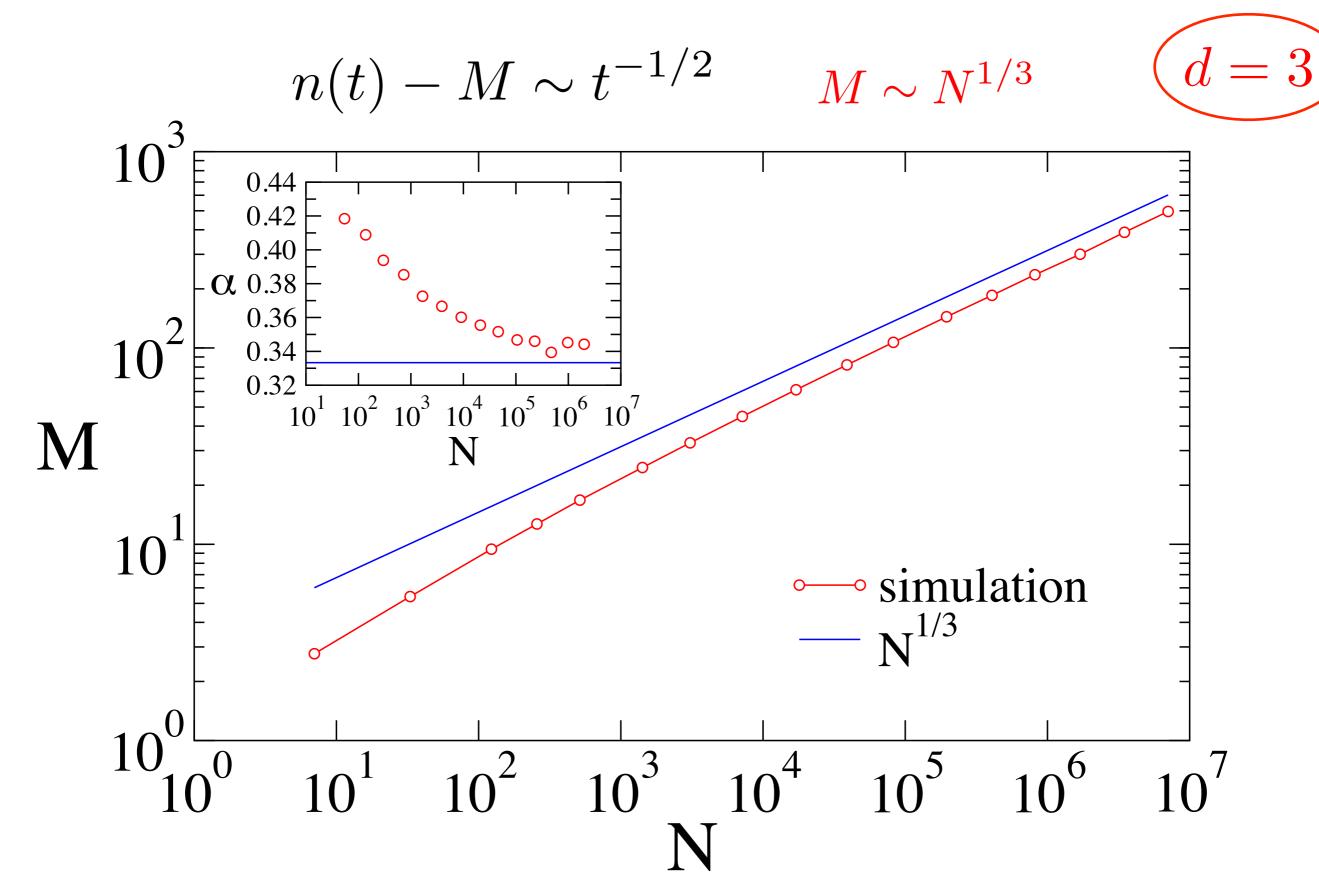


Numerical Simulations: Slow Kinetics

3



Numerical Simulations: Final Number



Reaction-diffusion equations

Concentration obeys reaction-diffusion equation

$$\frac{\partial c(\mathbf{r},t)}{\partial t} = D \nabla^2 c(\mathbf{r},t) - K c^2(\mathbf{r},t)$$

• Initial state: compact initial conditions with N particles

$$c(\mathbf{r},t) = \begin{cases} 1 & \frac{4\pi r^3}{3} < N\\ 0 & \frac{4\pi r^3}{3} > N \end{cases}$$

• Final state: "Gaussian cloud" with $N^{1/3}$ particles

$$c(\mathbf{r},t) \to \frac{a N^{1/3}}{(4\pi Dt)^{3/2}} \exp\left(-\frac{r^2}{2Dt}\right)$$

Nonlinear "selection" problem for constant a

Probabilistic derivation

- Initial state: many particles uniformly pack a sphere spacing = $1 \implies N \sim L^d$
- Late state: few surviving particles uniformly spaced spacing $= \ell \implies M \sim (L/\ell)^d$
- Survival probability of test particle at the origin spherical shells radius $n\ell$ $n = 1, 2, ..., L/\ell$ $\prod_{\ell=1}^{L/\ell} \left(1 - \frac{1}{(n\ell)^{d-2}}\right)^{n^{d-1}}$
 - Probability finite iff log of product is finite

$$\frac{1}{\ell^{d-2}} \sum_{\ell=1}^{L/\ell} n \sim \frac{L^2}{\ell^d} \sim 1 \implies \ell \sim L^{1/d} \implies M \sim N^{(d-2)/d}$$

Sparse & compact initial conditions

- Particles occupy a fractal region
 - Co-dimension controls the behavior

$$\Delta = d - \delta$$

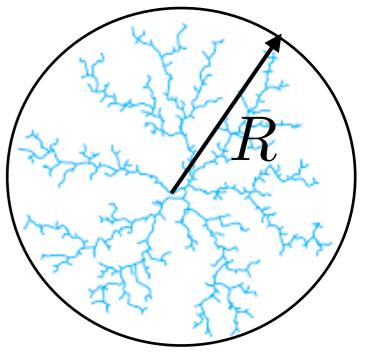
 $N \sim R^{\delta}$

• Scaling law for the number of escaping particles

$$M \sim \begin{cases} N^{(d-2)/\delta} & \Delta < 2, \\ N(\ln N)^{-1} & \Delta = 2, \\ N & \Delta > 2. \end{cases}$$

Example: two-dimensional disk in three dimensions

$$M \sim N^{1/2}$$



Conclusions I

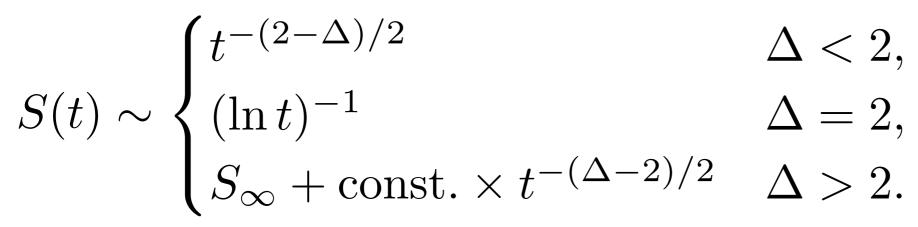
- Diffusion-controlled annihilation, starting with finite number of particles
- Finite number of particles escape annihilation
- Two time scales control the kinetics
- Escape time scale is nontrivial
- Average lifetime is logarithmic
- Scaling law for time-dependence
- Scaling law for final number of particles
- Finite-size scaling allows for numerical verification
- Beyond scaling arguments?
- Other reaction schemes: two-species annihilation?

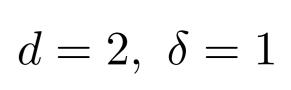
Sparse initial conditions

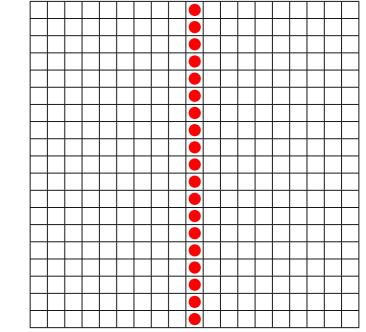
- Particles occupy a sub-space with dimension δ
- Embedded in space with dimension d>2
- Number of particle is unbounded
- Co-dimension controls behavior

$$\Delta = d - \delta$$

Survival probability of a test particle



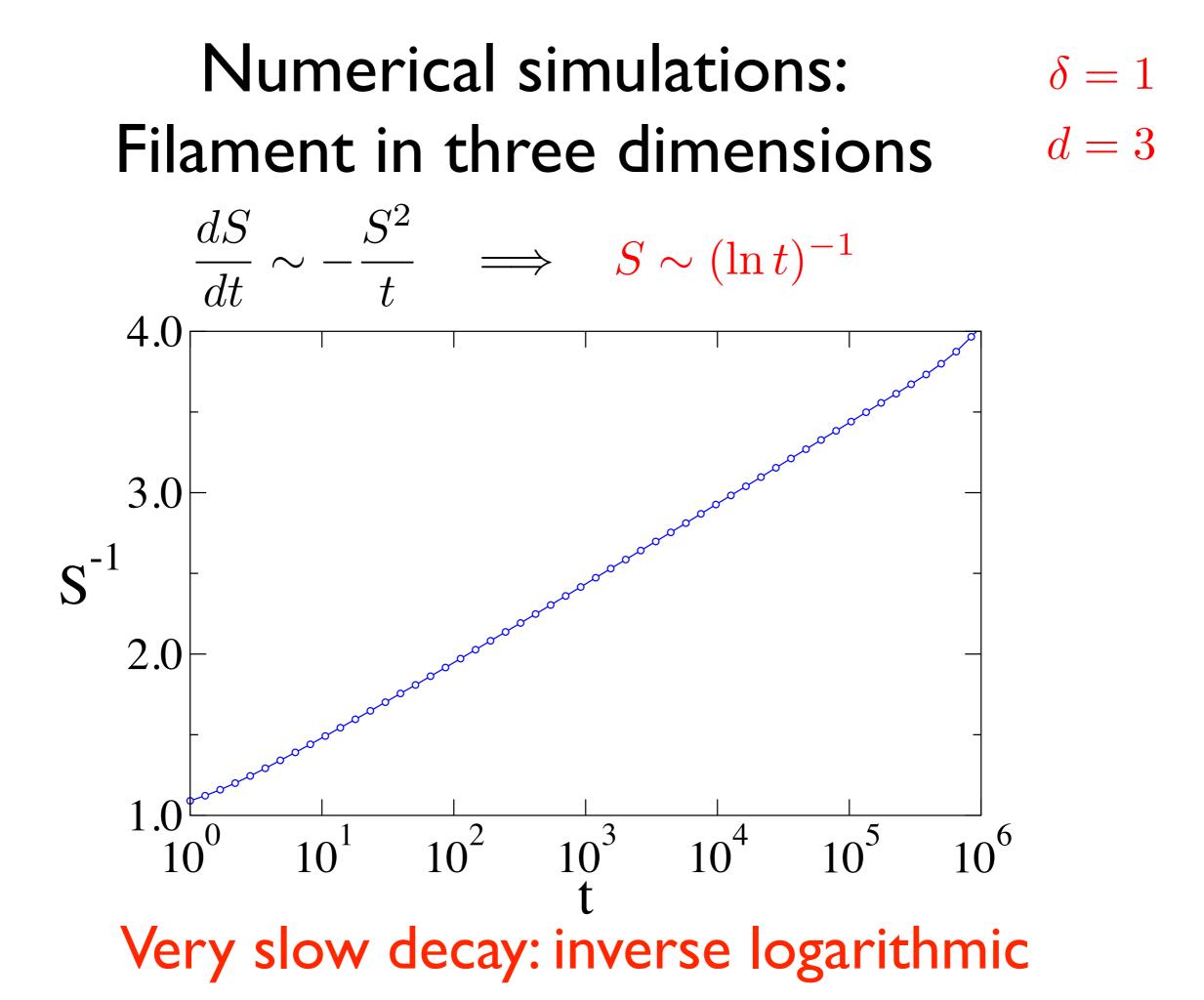




Finite survival probability when $\delta < d-2$

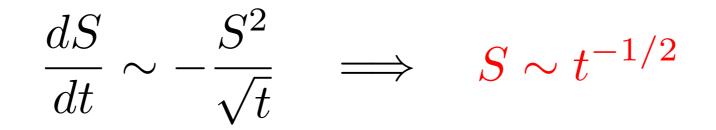
 $\delta = 1$ A filament in three dimensions Concentration obeys reaction-diffusion equation $\frac{\partial c(x, y, z, t)}{\partial t} = \nabla^2 c(x, y, z, t) - c^2(x, y, z, t)$ • Problem is effectively two dimensional $R \sim \sqrt{t}$ $\partial_z = 0 \implies \nabla^2 \equiv \partial_x^2 + \partial_y^2$ • Rate equation for the survival probability $S(t) = \iint dx \, dy \, c(x, y, t) \quad \Longrightarrow \quad \frac{dS}{dt} = -\iint dx \, dy \, c^2$ • Assume uniform distribution inside circle with $c(r,t) \sim \frac{S(t)}{t} \times \begin{cases} 1 & r < \sqrt{t} \\ 0 & r > \sqrt{t} \end{cases} \implies \frac{dS}{dt} \sim -\frac{S^2}{t}$

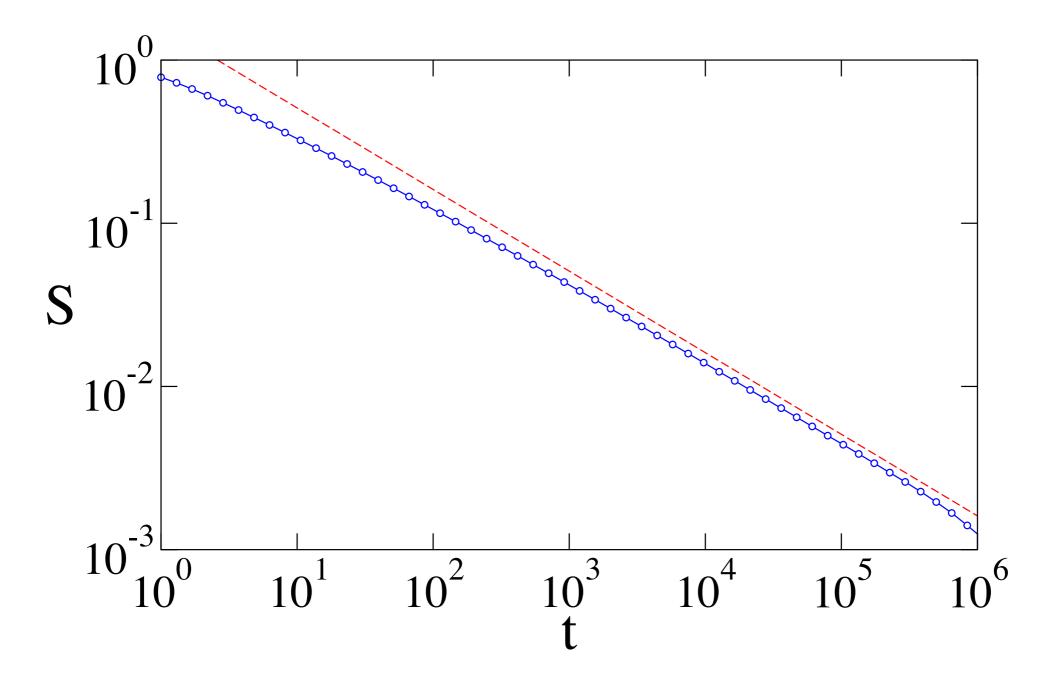
Uniform density approximation, again



Filament in three dimensions

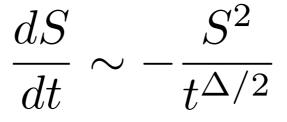
 $\delta = 2$ d = 3





General behavior (d>2)

• Dimension of Laplace operator = co-dimension



• Three regimes of behavior

$$S(t) \sim \begin{cases} t^{-(2-\Delta)/2} & \Delta < 2, \\ (\ln t)^{-1} & \Delta = 2, \\ S_{\infty} + \text{const.} \times t^{-(\Delta-2)/2} & \Delta > 2. \end{cases}$$

Critical dimension (d=2)

Logarithmic correction to reaction rate

$$\frac{dS}{dt} \sim -\frac{S^2}{t^{\Delta/2} \ln(t^{1/2}/S)} \implies S \sim (\ln t) t^{-\delta/2}$$

Conclusions II

- Diffusion-controlled annihilation with sparse initial conditions
- Used same uniform volume approximation
- Co-dimension controls the behavior
- Slow kinetics below critical co-dimension
- Extremely slow (inverse logarithmic) kinetics at the critical co-dimension
- Finite survival probability above the critical co-dimension