Escape and Finite-Size Scaling in Diffusion-Controlled Annihilation

Eli Ben-Naim
Los Alamos National Laboratory

with: Paul Krapivsky (Boston University)

J. Phys. A 49, 504004 (2016)
J. Phys. A 49, 504005 (2016)

Talk, publications available from: http://cnls.lanl.gov/~ebn

Diffusion-Controlled Annihilation

$$
\left.\left[\begin{array}{cccc}
00 & 0 & 0 & 0 \\
00 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0
\end{array}\right]\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \longrightarrow \begin{array}{|ccc|}
\hline 0 & 0 \\
0 & 0 \\
0 & 0 & 0 \\
0 & 0
\end{array}\right] \begin{gathered}
\text { de gennes } 82 \\
\text { wilczek } 83 \\
\text { Racz } 85 \\
\text { Spouge } 88
\end{gathered}
$$

- Diffusion: particles move randomly

$$
\bigcirc \bigcirc \bigcirc \bigcirc \stackrel{D}{\longleftrightarrow} \bigcirc \bigcirc \bigcirc \bigcirc \quad \text { reversible }
$$

- Annihilation: two particles annihilate upon contact

$$
\bigcirc \bigcirc \bigcirc \bigcirc \xrightarrow{2 D} \bigcirc \bigcirc \bigcirc \bigcirc \quad \text { irreversible }
$$

- Theory: role of spatial correlations \& fluctuations
- Experiments: photoexcitations in nanotubes

Paradigmatic model of Nonequilibrium Stat. Phys.

Infinite system: uniform density

$$
\left.\left[\begin{array}{cccc|}
\hline 0 & 0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \longrightarrow \begin{array}{|lll}
0 & 0 & 0 \\
0 & 0 \\
0 & 0 & 0 \\
0 & & 0
\end{array}\right]
$$

- Hydrodynamic approach

$$
\frac{d \rho}{d t}=-K \rho^{2}
$$

- Dimensional analysis for reaction rate

$$
[K]=\frac{L^{d}}{T} \quad \longrightarrow \quad K \propto \begin{cases}D \rho^{2-d} & d<2 \\ D R^{d-2} & d>2\end{cases}
$$

- Fluctuations dominate below critical dimension

$$
\rho \sim \begin{cases}(D t)^{-d / 2} & d<2 \\ R^{2-d}(D t)^{-1} & d>2\end{cases}
$$

Reaction rate reduced in low spatial dimensions

Infinite system: finite number of particles

- Initial condition: uniform density in compact domain
- Initial number of particles is N
- Final state: average number of particles is M
- Scaling law for final number of surviving particles

$$
M \sim \begin{cases}0 & d<2 \\ N^{(d-2) / d} & d>2\end{cases}
$$

Number of reaction events reduced in high spatial dimensions!

Below critical dimension: no escape

- Probability a random walk returns to origin

$$
P=1 \quad \text { when } \quad d \leq 2
$$

- The separation between two random walks itself performs a random walk
- Two diffusing particles are guaranteed to meet All particles eventually disappear
Above critical dimension: escape feasible
- Probability a random walk at distance r returns to origin

$$
P \sim r^{-(d-2)} \quad \text { when } \quad d>2
$$

- Two diffusing particles may or may not meet

Uniform-density approximation

- Concentration obeys reaction-diffusion equation

$$
\frac{\partial c(\mathbf{r}, t)}{\partial t}=D \nabla^{2} c(\mathbf{r}, t)-K c^{2}(\mathbf{r}, t)
$$

- Dimensionless form $D=K=a=c_{0}=1$
- Total number of particles obeys rate equation

$$
n(t)=\int d \mathbf{r} c(\mathbf{r}, t) \quad \Longrightarrow \quad \frac{d n(t)}{d t}=-\int d \mathbf{r} c^{2}(\mathbf{r}, t)
$$

- Two simplifying assumptions
I. Particles confined to volume V

2. Spatial distribution remains uniform

- Closed equation for number of remaining particles

$$
\frac{d n}{d t}=-\frac{n^{2}}{V}
$$

Early phase: fast reactions

- Particles still inside initial-occupied domain

$$
V \sim N \quad \Longrightarrow \quad \frac{d n}{d t}=-\frac{n^{2}}{N}
$$

- Mean-field like decay

$$
n(t) \sim N t^{-1}
$$

- Valid until particles exit initially-occupied domain

$$
\ell^{d} \sim t^{d / 2} \sim N \quad \Longrightarrow \quad T \sim N^{2 / d}
$$

- Diffusion time scale gives number of particles

$$
n(T) \sim N^{(d-2) / d}
$$

Intermediate phase: slow reactions

$$
\left.\left[\begin{array}{ccc}
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 & 0 \\
0
\end{array}\right] \longrightarrow \begin{array}{|lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0
\end{array}\right] \longrightarrow \begin{array}{|ccc|}
\hline 0 & & 0 \\
0 & 0 & \\
0 & 0
\end{array}
$$

- Particles confined to a growing volume

$$
V \sim t^{d / 2} \quad \Longrightarrow \quad \frac{d n}{d t}=-\frac{n^{2}}{t^{d / 2}}
$$

- Slower decay of the density

$$
n(t)-n(\infty) \sim N^{2(d-2) / d} t^{-(d-2) / 2}
$$

- Recover scaling law for final number of particles

$$
M \sim N^{(d-2) / d}
$$

- Reaction rate gives "escape time" for final reaction

$$
n(t)-n(\infty) \sim 1 \quad \Longrightarrow \quad \tau \sim N^{4 / d}
$$

Three Phases

- Most reactions

$$
t \ll N^{2 / d}
$$

- Few reactions

$$
N^{2 / d} \ll t \ll N^{4 / d}
$$

- No reactions at all

$$
N^{4 / d} \ll t
$$

- Two length scales

$$
R \sim N^{1 / d} \quad \text { and } \quad \rho \sim N^{2 / d}
$$

Two time and length scales

Finite-size scaling

- Universal behavior, independent of system size

$$
n(t) \simeq N^{(d-2) / d} F\left(t / N^{2 / d}\right)
$$

- Scaling function

$$
F(x) \sim \begin{cases}x^{-1} & x \ll 1 \\ 1+\text { const. } \times x^{(2-d) / 2} & x \gg 1\end{cases}
$$

- Average lifetime of particles logarithmic in N

$$
\int^{N^{2 / d}} d t t t^{-2} \quad \Longrightarrow \quad\langle t\rangle \sim \ln N
$$

- Numerical simulations can not measure M directly
- Confirm finite-size scaling, extrapolate M
- Brute-force Monte Carlo (keep track of sites, not particles)

$$
\mathcal{O}(N \times N \times \ln N)
$$

$d=3$ Numerical Simulations I

$d=3 \quad$ Numerical Simulations II

Sparse \& compact initial conditions

- Particles occupy a fractal region

$$
N \sim R^{\delta}
$$

- Co-dimension controls the behavior

$$
\Delta=d-\delta
$$

- Scaling law for the number of escaping particles

$$
M \sim \begin{cases}N^{(d-2) / \delta} & \Delta<2 \\ N(\ln N)^{-1} & \Delta=2, \\ N & \Delta>2\end{cases}
$$

- Example: two-dimensional disk in three dimensions

$$
M \sim N^{1 / 2}
$$

Conclusions

- Diffusion-controlled annihilation, starting with finite number of particles
- Finite number of particles escape annihilation
- Two time scales control the kinetics
- Escape time scale is nontrivial
- Average lifetime is logarithmic
- Scaling law for time-dependence
- Scaling law for final number of particles
- Finite-size scaling allows for numerical verification
- Beyond scaling arguments?
- Other reaction schemes: two-species annihilation?

