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Diffusion-Controlled Annihilation

•  Diffusion: particles move randomly                                       	


!

• Annihilation: two particles annihilate upon contact	


!

• Theory: role of spatial correlations & fluctuations 	


• Experiments: photoexcitations in nanotubes
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Infinite system: uniform density

• Hydrodynamic approach	


!

• Dimensional analysis for reaction rate	


!

• Fluctuations dominate below critical dimension
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Infinite system: finite number of particles

• Initial condition: uniform density in compact domain	


• Initial number of particles is N	


• Final state: average number of particles is M 

• Scaling law for final number of surviving particles

Number of reaction events reduced in high spatial dimensions!
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Below critical dimension: no escape
• Probability a random walk returns to origin	


!

• The separation between two random walks itself 
performs a random walk	


• Two diffusing particles are guaranteed to meet

P = 1 when d  2

Above critical dimension: escape feasible
• Probability a random walk at distance r returns to origin	


!

• Two diffusing particles may or may not meet

P ⇠ r�(d�2) when d > 2

All particles eventually disappear



Uniform-density approximation
• Concentration obeys reaction-diffusion equation	


!

• Dimensionless form 	


• Total number of particles obeys rate equation	


!

• Two simplifying assumptions	

1. Particles confined to volume 	

2. Spatial distribution remains uniform 	


• Closed equation for number of remaining particles
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Early phase: fast reactions

• Particles still inside initial-occupied domain	


!

• Mean-field like decay	


!

• Valid until particles exit initially-occupied domain	


!

• Diffusion time scale gives number of particles 
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Intermediate phase: slow reactions

• Particles confined to a growing volume	


!

• Slower decay of the density	


!

• Recover scaling law for final number of particles	


!

• Reaction rate gives “escape time” for final reaction 
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Three Phases
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• Most reactions	


!

• Few reactions	


!

• No reactions at all	


!

• Two length scales
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Finite-size scaling
• Universal behavior, independent of system size	


!

• Scaling function 	


!

!

• Average lifetime of particles logarithmic in N	

!

• Numerical simulations can not measure M directly	


• Confirm finite-size scaling, extrapolate M	


• Brute-force Monte Carlo (keep track of sites, not particles)
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R
• Particles occupy a fractal region	


!

• Co-dimension controls the behavior	

!

• Scaling law for the number of escaping particles	

!

!

!

• Example: two-dimensional disk in three dimensions 

Sparse & compact initial conditions
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Conclusions
• Diffusion-controlled annihilation, starting with finite 

number of particles	


• Finite number of particles escape annihilation	


• Two time scales control the kinetics	


• Escape time scale is nontrivial	


• Average lifetime is logarithmic	


• Scaling law for time-dependence	


• Scaling law for final number of particles	


• Finite-size scaling allows for numerical verification	


• Beyond scaling arguments?	


• Other reaction schemes: two-species annihilation?


