Kinetics of Averaging

Eli Ben-Naim
Los Alamos National Laboratory

Talk, papers available from: http://cnls.lanl.gov/~ebn

Thanks

- Igor Aronson (Argonne National Lab)
- Daniel ben-Avraham (Clarkson University)
- Michael Cross (Caltech)
- Paul Krapivsky (Boston University)
- Katja Lindenberg (UC, San Diego)
- John Machta (University of Massachusetts)
- Sidney Redner (Boston University)
- Lev Tsimring (UC, San Diego)

Two parts

I. Averaging velocities and angles
2. Averaging opinions

Themes and concepts

I. Self-similarity, scaling
2. Multi-scaling
3. Cascades
4. Phase transitions
5. Synchronization
6. Bifurcations
7. Pattern Formation
8. Coarsening

- Naturally emerge in various kinetic theories
- Useful in complex and nonequilibrium particle systems

Part I:
 Averaging velocities and angles

Plan

I. Averaging velocities

A. Kinetics of pure averaging
B. Averaging with forcing: steady-states
II. Averaging angles
A. Averaging with forcing: steady states

The basic averaging process

- N identical particles (grains, billiard balls)
- Each particle carries a number (velocity) v_{i}
- Particles interact in pairs (collision)
- Both particles acquire the average (inelastic)

$$
\left(v_{1}, v_{2}\right) \rightarrow\left(\frac{v_{1}+v_{2}}{2}, \frac{v_{1}+v_{2}}{2}\right)
$$

Conservation laws \& dissipation

- Total number of particles is conserved
- Total momentum is conserved

$$
\sum_{i=1}^{N} v_{i}=\mathrm{constant}
$$

- Energy is dissipated in each collision $\quad E_{i}=\frac{1}{2} v_{i}^{2}$

$$
\Delta E=\frac{1}{4}\left(v_{1}-v_{2}\right)^{2}
$$

We expect the velocities to shrink

Some details

- Dynamic treatment

Each particle collides once per unit time

- Random interactions

The two colliding particles are chosen randomly

- Infinite particle limit is implicitly assumed

$$
N \rightarrow \infty
$$

- Process is galilean invariant $v \rightarrow v+v_{0}$

Set average velocity to zero $\langle x\rangle=0$

The temperature

- Definition

$$
T=\left\langle v^{2}\right\rangle
$$

- Time evolution $=$ exponential decay

$$
\frac{d T}{d t}=-\lambda T \quad \Longrightarrow \quad T=T_{0} e^{-\lambda t} \quad \lambda=\frac{1}{2}
$$

- All energy is eventually dissipated
- Trivial steady-state

$$
P(v) \rightarrow \delta(v)
$$

The moments

- Kinetic theory

$$
\frac{\partial P(v, t)}{\partial t}=\iint d v_{1} d v_{2} P\left(v_{1}, t\right) P\left(v_{2}, t\right)[\underbrace{\delta\left(v-\frac{v_{1}+v_{2}}{2}\right)}_{\text {gain }}-\delta\left(v-v_{1}\right)]
$$

- Moments of the distribution

$$
M_{n}=\int d v v^{n} P(v, t) \quad \begin{aligned}
M_{0} & =1 \\
M_{2 n+1} & =0
\end{aligned}
$$

- Closed nonlinear recursion equations

$$
\frac{d M_{n}}{d t}+\lambda_{n} M_{n}=2^{-n} \sum_{m=2}^{n-2}\binom{n}{m} M_{m} M_{n-m}
$$

- Asymptotic decay

$$
M_{n} \sim e^{-\lambda_{n} t} \quad \text { with } \quad \lambda_{n}=1-2^{-(n-1)}
$$

Multiscaling

- Nonlinear spectrum of decay constants

$$
\lambda_{n}=1-2^{-(n-1)}
$$

- Spectrum is concave, saturates

$$
\lambda_{n}<\lambda_{m}+\lambda_{n-m}
$$

- Each moment has a distinct behavior

$$
\frac{M_{n}}{M_{m} M_{n-m}} \rightarrow \infty \quad \text { as } \quad t \rightarrow \infty
$$

Multiscaling Asymptotic Behavior

The Fourier transform

- The Fourier transform $\quad F(k)=\int d v e^{i k v} P(v, t)$
- Obeys closed, nonlinear, nonlocal equation

$$
\frac{\partial F(k)}{\partial t}+F(k)=F^{2}(k / 2)
$$

- Scaling behavior, scale set by second moment

$$
F(k, t) \rightarrow f\left(k e^{-\lambda t}\right) \quad \lambda=\frac{\lambda_{2}}{2}=\frac{1}{4}
$$

- Nonlinear differential equation

$$
-\lambda z f^{\prime}(z)+f(z)=f^{2}(z / 2)
$$

$$
\begin{aligned}
f(0) & =1 \\
f^{\prime}(0) & =0
\end{aligned}
$$

- Exact solution

$$
f(z)=(1+|z|) e^{-|z|}
$$

Closure: derivation

- The Fourier transform

$$
F(k)=\int d v e^{i k v} P(v, t)
$$

- The kinetic theory

$$
\frac{\partial P(v, t)}{\partial t}+P(v, t)=\iint d v_{1} d v_{2} P\left(v_{1}, t\right) P\left(v_{2}, t\right) \delta\left(v-\frac{v_{1}+v_{2}}{2}\right)
$$

- Fourier transform of the gain term

$$
\begin{aligned}
& \int d v e^{i k v} \iint d v_{1} d v_{2} P\left(v_{1}, t\right) P\left(v_{2}, t\right) \delta\left(v-\frac{v_{1}+v_{2}}{2}\right) \\
= & \iint d v_{1} d v_{2} P\left(v_{1}, t\right) P\left(v_{2}, t\right) \int d v e^{i k v} \delta\left(v-\frac{v_{1}+v_{2}}{2}\right) \\
= & \iint d v_{1} d v_{2} P\left(v_{1}, t\right) P\left(v_{2}, t\right) e^{i k \frac{v_{1}+v_{2}}{2}} \\
= & \int d v_{1} P\left(v_{1}, t\right) e^{i k \frac{v_{1}}{2}} \int d v_{2} P\left(v_{2}, t\right) e^{i k \frac{v_{2}}{2}} \\
= & F(k / 2) F(k / 2)
\end{aligned}
$$

- Closed equation for Fourier Transform

$$
\frac{\partial F(k)}{\partial t}+F(k)=F^{2}(k / 2)
$$

Fourier transform generates the moments

- The Fourier transform $F(k)=\int d v e^{i k v} P(v, t)$
- Is the generating function of the moments $M_{n}=\int d v v^{n} P(v)$

$$
\begin{aligned}
F(k) & =\int d v e^{i k v} P(v) \\
& =\int d v\left[1+i k v+\frac{1}{2!}(i k v)^{2}+\frac{(i k v)^{3}}{3!}+\cdots\right] P(v) \\
& =\int d v P(v)+i k \int d v v P(v)+\frac{(i k)^{2}}{2!} \int d v v^{2} P(v)+\frac{(i k)^{3}}{3!} \int d v v^{3} P(v)+\cdots \\
& =M_{0}+i k M_{1}+\frac{(i k)^{2}}{2!} M_{2}+\frac{(i k)^{3}}{3!} M_{3}+\cdots \\
& =M_{0}-\frac{k^{2}}{2!} M_{2}+\frac{k^{4}}{4!} M_{4}+\cdots
\end{aligned}
$$

- Closed equation for Fourier transform

$$
\frac{\partial F(k)}{\partial t}+F(k)=F^{2}(k / 2)
$$

- Generates closed equations for the moments

$$
\frac{d M_{2}}{d t}=-\frac{M_{2}}{2}
$$

The velocity distribution

- Self-similar form

$$
P(v, t) \rightarrow e^{\lambda t} p\left(v e^{\lambda t}\right)
$$

- Obtained by inverse Fourier transform

$$
p(w)=\frac{2}{\pi} \frac{1}{\left(1+w^{2}\right)^{2}}
$$

- Power-law tail

$$
p(w) \sim w^{-4}
$$

I. Temperature is the characteristic velocity scale
2. Multiscaling is consequence of diverging moments of the power-law similarity function

Stationary Solutions

- Stationary solutions do exist!

$$
F(k)=F^{2}(k / 2)
$$

- Family of exponential solutions

$$
F(k)=\exp \left(-k v_{0}\right)
$$

- Lorentz/Cauchy distribution

$$
P(v)=\frac{1}{\pi v_{0}} \frac{1}{1+\left(v / v_{0}\right)^{2}}
$$

How is a stationary solution consistent with dissipation?

Extreme Statistics

- Large velocities, cascade process

$$
v \rightarrow\left(\frac{v}{2}, \frac{v}{2}\right)
$$

- Linear evolution equation

$$
\frac{\partial P(v)}{\partial t}=4 P\left(\frac{v}{2}\right)-P(v)
$$

- Steady-state: power-law distribution

$$
P(v) \sim v^{-2}
$$

$$
{ }_{4 P}\left(\frac{v}{2}\right)=P(v)
$$

- Divergent energy, divergent dissipation rate

Power-law energy distribution $\quad P(E) \sim E^{-3 / 2}$

Energy cascade

Injection, Cascade, Dissipation

Pure averaging: conclusions

- Moments exhibit multiscaling
- Distribution function is self-similar
- Power-law tail
- Stationary solution with infinite energy exists
- Driven steady-state
- Energy cascade

Averaging with diffusive forcing

Two independent competing processes
I. Averaging (nonlinear)

$$
\left(v_{1}, v_{2}\right) \rightarrow\left(\frac{v_{1}+v_{2}}{2}, \frac{v_{1}+v_{2}}{2}\right)
$$

2. Random uncorrelated white noise (linear)

$$
\frac{d v_{j}}{d t}=\eta_{j}(t)
$$

$$
\left\langle\eta_{j}(t) \eta_{j}\left(t^{\prime}\right)\right\rangle=2 D \delta\left(t-t^{\prime}\right)
$$

- Add diffusion term to equation (Fourier space)

$$
\left(1+D k^{2}\right) F(k)=F^{2}(k / 2)
$$

System reaches a nontrivial steady-state Energy injection balances dissipation

Infinite product solution

- Solution by iteration

$$
F(k)=\frac{1}{1+D k^{2}} F^{2}(k / 2)=\frac{1}{1+D k^{2}} \frac{1}{\left(1+D(k / 2)^{2}\right)^{2}} F^{4}(k / 4)=\cdots
$$

- Infinite product solution

$$
F(k)=\prod_{i=0}^{\infty}\left[1+D\left(k / 2^{i}\right)^{2}\right]^{-2^{i}}
$$

- Exponential tail $v \rightarrow \infty$

$$
P(v) \propto \exp (-|v| / \sqrt{D})
$$

- Also follows from

$$
D \frac{\partial^{2} P(v)}{\partial v^{2}}=-P(v)
$$

Non-Maxwellian distribution/Overpopulated tails

Cumulant solution

- Steady-state equation

$$
F(k)\left(1+D k^{2}\right)=F^{2}(k / 2)
$$

- Take the logarithm $\psi(k)=\ln F(k)$

$$
\psi(k)+\ln \left(1+D k^{2}\right)=2 \psi(k / 2)
$$

- Cumulant solution

$$
F(k)=\exp \left[\sum_{n=1}^{\infty} \psi_{n}\left(-D k^{2}\right)^{n} / n\right]
$$

- Generalized fluctuation-dissipation relations

$$
\psi_{n}=\lambda_{n}^{-1}=\left[1-2^{1-n}\right]^{-1}
$$

Experiments

"A shaken box of marbles"

Averaging with forcing: conclusions

- Nonequilibrium steady-states
- Energy pumped and dissipated by different mechanisms
- Overpopulation of high-energy tail with respect to equilibrium distribution

Averaging angles

- Each rod has an orientation

$$
0 \leq \theta \leq \pi
$$

- Alignment by pairwise interactions (nonlinear)

$$
\begin{gathered}
\left(\theta_{1}, \theta_{2}\right) \rightarrow \begin{cases}\left(\frac{\theta_{1}+\theta_{2}}{2}, \frac{\theta_{1}+\theta_{2}}{2}\right) & \left|\theta_{1}-\theta_{2}\right|<\pi \\
\left(\frac{\theta_{1}+\theta_{2}+2 \pi}{2}, \frac{\theta_{1}+\theta_{2}+2 \pi}{2}\right) & \left|\theta_{1}-\theta_{2}\right|>\pi\end{cases} \\
\end{gathered}
$$

- Diffusive wiggling (linear)

$$
\begin{equation*}
\frac{d \theta_{j}}{d t}=\eta_{j}(t) \tag{j}
\end{equation*}
$$

Relevance

- Biology: molecular motors
- Ecology: flocking
- Granular matter: granular chains and solid rods
- Phase synchronization

Kinetic Theory

- Nonlinear integro-differential equation

$$
\frac{\partial P}{\partial t}=D \frac{\partial^{2} P}{\partial \theta^{2}}+\int_{-\pi}^{\pi} d \phi P\left(\theta-\frac{\phi}{2}\right) P\left(\theta+\frac{\phi}{2}\right)-P .
$$

- Fourier transform

$$
P_{k}=\left\langle e^{-i k \theta}\right\rangle=\int_{-\pi}^{\pi} d \theta e^{-i k \theta} P(\theta) \quad P(\theta)=\frac{1}{2 \pi} \sum_{k=-\infty}^{\infty} P_{k} e^{i k \theta}
$$

- Closed nonlinear equation

$$
\left(1+D k^{2}\right) P_{k}=\sum_{i+j=k} A_{i-j} P_{i} P_{j}
$$

- Coupling constants

$$
A_{q}=\frac{\sin \frac{\pi q}{2}}{\frac{\pi q}{2}}= \begin{cases}1 & q=0 \\ 0 & q=2,4, \cdots \\ (-1)^{\frac{q-1}{2}} \frac{2}{\pi|q|} & \end{cases}
$$

The order parameter

- Lowest order Fourier mode

$$
R=\left|\left\langle e^{i \theta}\right\rangle\right|=\left|P_{-1}\right|
$$

- Probes state of system

$$
R=\left\{\begin{array}{lll}
0 & \text { disordered state } & \leqslant \uparrow \downarrow \downarrow \uparrow \\
0.4 & \text { partially ordered } & \uparrow \uparrow \uparrow \uparrow \\
1 & \text { perfectly ordered state } & \uparrow \uparrow \uparrow \uparrow
\end{array}\right.
$$

The Fourier equation

- Compact Form

$$
P_{k}=\sum_{i+j=k} G_{i, j} P_{i} P_{j}
$$

- Transformed coupling constants

$$
G_{i, j}=\frac{A_{i-j}}{1+D(i+j)^{2}-2 A_{i+j}}
$$

- Properties

$$
\begin{aligned}
G_{i, j} & =G_{j, i} \\
G_{i, j} & =G_{-i,-j} \\
G_{i, j} & =0, \quad \text { for } \quad|i-j|=2,4, \ldots .
\end{aligned}
$$

Solution

- Repeated iterations (product of three modes)

$$
P_{k}=\sum_{\substack{i+j=k \\ i \neq 0, j \neq 0}} \sum_{\substack{l+m=j \\ l \neq 0, m \neq 0}} G_{i, j} G_{l, m} P_{i} P_{l} P_{m} .
$$

- When $\mathrm{k}=2,4,8, \ldots$

$$
\begin{aligned}
& \left.P_{2}=G_{1,1} P_{1}^{2}\right) \\
& P_{4}=G_{2,2} P_{2}^{2}=G_{2,2} G_{1,1}^{2}\left(P_{1}^{4}\right) .
\end{aligned}
$$

- Generally

$$
\begin{aligned}
P_{3} & =2 G_{1,2} P_{1} P_{2}+2 G_{-1,4} P_{-1} P_{4}+\cdots \\
& =2 G_{1,2} G_{1,1} P_{1}^{3}+2 G_{-1,4} G_{2,2} G_{1,1}^{2}\left(P_{1}^{4} P_{-1} \ldots\right.
\end{aligned}
$$

Partition of Integers

- Diagramatic solution
- Partition

$$
P_{k}=R^{k} \sum_{n=0}^{\infty} p_{k, n} R^{2 n}
$$

$$
k=\underbrace{1+1+\cdots+1+1}_{k+n} \underbrace{-1-\cdots-1}_{n} .
$$

- Partition rules

$$
\begin{aligned}
k & =i+j \\
i & \neq 0 \\
j & \neq 0 \\
G_{i, j} & \neq 0
\end{aligned}
$$

All modes expressed in terms of order parameter

The order parameter

- Diagramatic solution

$$
R=R^{k} \sum_{n=0}^{\infty} p_{1, n} R^{2 n}
$$

- Landau theory

$$
R=\frac{C}{D_{c}-D} R^{3}+\cdots
$$

- Critical diffusion constant

$$
D_{c}=\frac{4}{\pi}-1
$$

Closed equation for order parameter

Nonequilibrium phase transition

- Critical diffusion constant $D_{c}=\frac{4}{\pi}-1$
- Weak diffusion: ordered phase $R>0$
- Strong diffusion: disordered phase $R=0$
- Critical behavior $R \sim\left(D_{c}-D\right)^{1 / 2}$

Distribution of orientation

- Fourier modes decay exponentially with R

$$
P_{k} \sim R^{k}
$$

- Small number of modes sufficient

$$
P(\theta)=\frac{1}{2 \pi}+\frac{1}{\pi} R \cos \theta+\frac{1}{\pi} G_{1,1} R^{2} \cos (2 \theta)+\frac{2}{\pi} G_{1,2} G_{1,1} R^{3} \cos (3 \theta)+\cdots
$$

Arbitrary alignment rates

- Kinetic theory: arbitrary alignment rates

$$
0=D \frac{d^{2} P}{d \theta^{2}}+\int_{-\pi}^{\pi} d \phi \underline{K(\phi)} P\left(\theta-\frac{\phi}{2}\right) P\left(\theta+\frac{\phi}{2}\right)-P(\theta) \int_{-\pi}^{\pi} d \phi K(\phi) P(\theta+\phi)
$$

- Fourier transform of alignment rate

$$
A_{q}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} d \phi e^{i q \phi / 2} K(\phi)
$$

- Recover same Fourier equation using

$$
G_{i, j}=\frac{1}{2} \frac{A_{i-j}+A_{j-i}-A_{2 i}-A_{2 j}}{1+D(i+j)^{2}-2 A_{i+j}}
$$

When Fourier spectrum is discrete: exact solution is possible for arbitrary alignment rates

Experiments

"A shaken dish of toothpicks"

Averaging angles: conclusions

- Nonequilibrium phase transition
- Weak noise: ordered phase (nematic)
- Strong noise: disordered phase (isotropic)
- Solution relates to iterated partition of integers
- KInetic theory of synchronization
- Only when Fourier spectrum is discrete: exact solution possible for arbitrary averaging rates

Publications

1. E. Ben-Naim and P.L. Krapivsky, Phys. Rev. E 61, R5 (2000).
2. E. Ben-Naim and P.L. Krapivsky, Phys. Rev. E 66, 011309 (2002).
3. E. Ben-Naim and P.L. Krapivsky, Lecture notes in Physics 624, 65 (2003).
4. E. Ben-Naim and J. Machta, Phys. Rev. Lett. 94, 138001 (2005).
5. K. Kohlstedt, A. Znezhkov, M. Sapozhinsky, I. Aranson, J. Olafsen, E. Ben-Naim Phys. Rev. Lett. 95, 068001 (2005).
6. E. Ben-Naim and P.L. Krapivsky, Phys. Rev. E 73, 031109 (2006).

Part 2: Averaging Opinions

Plan

I. Restricted averaging as a compromise process
A. Continuous opinions
B. Discrete opinions
II. Restricted averaging with noise
A. Single-party dynamics
B. Two-party dynamics
C. Multi-party dynamics

I. Restricted averaging

The compromise process

- Opinion measured by a continuum variable

$$
-\Delta<x<\Delta
$$

I. Compromise: reached by pairwise interactions

$$
\left(x_{1}, x_{2}\right) \rightarrow\left(\frac{x_{1}+x_{2}}{2}, \frac{x_{1}+x_{2}}{2}\right)
$$

2. Conviction: restricted interaction range

$$
\left|x_{1}-x_{2}\right|<1
$$

- Restricted averaging process
- One parameter model
- Mimics competition between compromise and conviction

Problem set-up

- Given uniform initial (un-normalized) distribution

$$
P_{0}(x)= \begin{cases}1 & |x|<\Delta \\ 0 & |x|>\Delta\end{cases}
$$

- Find final distribution

$$
P_{\infty}(x)=?
$$

- Multitude of final steady-states

$$
P_{0}(x)=\sum_{i=1}^{N} m_{i} \delta\left(x-x_{i}\right)
$$

- Dynamics selects one (deterministically!)

Further details

- Dynamic treatment

Each individual interacts once per unit time

- Random interactions

Two interacting individuals are chosen randomly

- Infinite particle limit is implicitly assumed

$$
N \rightarrow \infty
$$

- Process is galilean invariant $\quad x \rightarrow x+x_{0}$

Set average opinion to zero $\langle x\rangle=0$

Numerical methods, kinetic theory

- Same master equation, restricted integration $\frac{\partial P(x, t)}{\partial t}=\iint_{\left|x_{1}-x_{2}\right|<1} d x_{1} d x_{2} P\left(x_{1}, t\right) P\left(x_{2}, t\right)\left[\delta\left(x-\frac{x_{1}+x_{2}}{2}\right)-\delta\left(x-x_{1}\right]\right.$
\square Direct Monte Carlo simulation of stochastic process
(V) Numerical integration of rate equations

Two Conservation Laws

- Total population is conserved

$$
\int_{-\Delta}^{\Delta} d x P(x)=2 \Delta
$$

- Average opinion is conserved

$$
\int_{-\Delta}^{\Delta} d x x P(x)=0
$$

Rise and fall of central party

$$
0<\Delta<1.871 \quad 1.871<\Delta<2.724
$$

Central party may or may not exist!

Resurrection of central party

$2.724<\Delta<4.079$

$4.079<\Delta<4.956$

Parties may or may not be equal in size

Emergence of extremists

Tiny fringe parties $\left(\mathrm{m} \sim 10^{-3}\right)$

Bifurcations and Patterns

Self-similar structure, universality

- Periodic sequence of bifurcations,
I. Nucleation of minor cluster branch

2. Nucleation of major cluster brunch
3. Nucleation of central cluster

- Alternating major-minor pattern

- Clusters are equally spaced
- Period L gives major cluster mass, separation

$$
x(\Delta)=x(\Delta)+L \quad L=2.155
$$

How many political parties?

-Data: CIA world factbook 2002

- 120 countries with multi-party parliaments
- Average=5.8; Standard deviation=2.9

Cluster mass

- Masses are periodic

$$
m(\Delta)=m(\Delta+L)
$$

- Major mass

$$
M \rightarrow L=2.155
$$

- Minor mass

$$
m \rightarrow 3 \times 10^{-4}
$$

Why are the minor clusters so small?
gaps?

Scaling near bifurcation points

- Minor mass vanishes

$$
m \sim\left(\Delta-\Delta_{c}\right)^{\alpha}
$$

- Universal exponent m

$$
\alpha= \begin{cases}3 & \text { type } 1 \\ 4 & \text { type } 3\end{cases}
$$

10^{-6}
10^{-3}
10^{-4}
10^{-5}
10^{-6}
10^{-7}
10^{-8}
10^{-9}

$$
\Delta-\Delta_{\mathrm{c}}
$$

$\mathrm{L}-2$ is the small parameter explains small saturation mass

Consensus = pure averaging

- Integrable for $\Delta<1 / 2$

$$
\left\langle x^{2}(t)\right\rangle=\left\langle x^{2}(0)\right\rangle e^{-\Delta t}
$$

- Final state: localized

$$
P_{\infty}(x)=2 \Delta \delta(x)
$$

- Rate equations in Fourier space

$$
P_{t}(k)+P(k)=P^{2}(k / 2)
$$

- Self-similar collapse dynamics

$$
\Phi(z) \propto\left(1+z^{2}\right)^{-2} \quad z=x / \sqrt{\left\langle x^{2}\right\rangle}
$$

Heuristic derivation of exponent

- Perturbation theory $\Delta=1+\epsilon$
- Major cluster $x(\infty)=0$
- Minor cluster $x(\infty)= \pm(1+\epsilon / 2)$

- Rate of transfer from minor cluster to major cluster

$$
\frac{d m}{d t}=-m M \quad \longrightarrow \quad m \sim \epsilon e^{-t}
$$

- Process stops when

$$
\begin{equation*}
x \sim e^{-t_{f} / 2} \sim \epsilon \tag{2}
\end{equation*}
$$

- Final mass of minor cluster

$$
m(\infty) \sim m\left(t_{f}\right) \sim \epsilon^{3} \quad \alpha=3
$$

Pattern selection

- Linear stability analysis

$$
P-1 \propto e^{i(k x+w t)} \quad \Longrightarrow \quad w(k)=\frac{8}{k} \sin \frac{k}{2}-\frac{2}{k} \sin k-2
$$

- Fastest growing mode

$$
\frac{d w}{d k} \quad \Longrightarrow \quad L=\frac{2 \pi}{k}=2.2515
$$

- Traveling wave (FKPP saddle point analysis)

$$
\frac{d w}{d k}=\frac{\operatorname{Im}(w)}{\operatorname{Im}(k)} \quad \Longrightarrow \quad L=\frac{2 \pi}{k}=2.0375
$$

Patterns induced by wave propagation from boundary However, emerging period is different

$$
2.0375<L<2.2515
$$

Pattern selection is intrinsically nonlinear

Discrete opinions

- Compromise process

$$
(n-1, n+1) \rightarrow(n, n)
$$

- Master equation
$\frac{d P_{n}}{d t}=2 P_{n-1} P_{n+1}-P_{n}\left(P_{n-2}+P_{n+2}\right)$
- Simplest example: 6 states
- Symmetry + normalization:

-Two-dimensional problem
Initial condition determines final state Isolated fixed points, lines of fixed points

Discrete opinions

- Dissipative system, volume contracts
- Energy (Lyapunov) function exists
- No cycles or strange attractors
- Uniform state is unstable (Cahn-Hilliard) -20

$$
P_{i}=1+\phi_{i} \quad \phi_{t}+\left(\phi+a \phi_{x x}+b \phi^{2}\right)_{x x}
$$

Discrete case yields useful insights

Pattern selection

- Linear stability analysis

$$
P-1 \propto e^{i(k x+w t)} \longrightarrow w(k)=4 \cos k-4 \cos 2 k-2
$$

- Fastest growing mode

$$
\frac{d w}{d k} \quad \Longrightarrow \quad L=\frac{2 \pi}{k}=6
$$

- Traveling wave (FKPP saddle point analysis)

$$
\frac{d w}{d k}=\frac{\operatorname{Im}(w)}{\operatorname{Im}(k)} \quad \Longrightarrow \quad L=\frac{2 \pi}{k}=5.31
$$

Again, linear stability gives useful upper and lower bounds

$5.31<L<6 \quad$ while $\quad L_{\text {select }}=5.67$
Pattern selection is intrinsically nonlinear

I. Restricted averaging: conclusions

- Clusters form via bifurcations
- Periodic structure
- Alternating major-minor pattern
- Central party does not always exist
- Power-law behavior near transitions
- Nonlinear pattern selection

I. Outlook

- Pattern selection criteria
- Gaps
- Role of initial conditions, classification
- Role of spatial dimension, correlations
- Disorder, inhomogeneities
- Tiling/Packing in 2D
- Discord dynamics (seceder model, Halpin-Heally 03)

Many open questions

II. Restricted averaging with noise

Diffusion (noise)

- Diffusion: Individuals change opinion spontaneously

$$
n \xrightarrow{D} n \pm 1
$$

- Adds noise ("temperature")
- Linear process: no interaction
- Mimics unstable, varying opinion
- Influence of environment, news, editorials, events

Rate equations

- Compromise: reached through pairwise interactions

$$
(n-1, n+1) \rightarrow(n, n)
$$

- Conserved quantities: total population, average opinion
- Probability distribution $\mathrm{P}_{\mathrm{n}}(\mathrm{t})$
- Kinetic theory: nonlinear rate equations
$\frac{d P_{n}}{d t}=2 P_{n-1} P_{n+1}-P_{n}\left(P_{n-2}+P_{n+2}\right)+D\left(P_{n-1}+P_{n+1}-2 P_{n}\right)$ DDirect Monte Carlo simulations of stochastic process (V) Numerical integration of rate equations

Single-party dynamics

- Initial condition: large isolated party

$$
P_{n}(0)=m\left(\delta_{n, 0}+\delta_{n,-1}\right)
$$

- Steady-state: compromise and diffusion balance

$$
D P_{n}=P_{n-1} P_{n+1}
$$

- Core of party: localized to a few opinion states

$$
P_{0}=m \quad P_{1}=D \quad P_{2}=D^{2} m^{-1}
$$

- Compromise negligible for $n>2$

Party has a well defined core

The tail

- Diffusion dominates outside the core

$$
\frac{d P_{n}}{d t}=D\left(P_{n-1}+P_{n+1}-2 P_{n}\right) \quad P \ll D
$$

- Standard problem of diffusion with source

$$
P_{n} \sim m^{-1} \Psi\left(n t^{-1 / 2}\right)
$$

- Tail mass

$$
M_{\text {tail }} \sim m^{-1} t^{1 / 2}
$$

- Party dissolves when

$$
M_{\text {tail }} \sim m \quad \Longrightarrow \quad \tau \sim m^{4}
$$

Party lifetime grows dramatically with its size

Core versus tail

$$
m=10^{3}
$$

Party height=m Party depth~m-1

Self-similar shape Gaussian tail

Qualitative features

- Exists in a quasi-steady state
- Tight core localized to a few sites
- Random opinion changes of members do not affect party position
- Party lifetime grows very fast with size
- Ultimate fate of a party: demise
- Its remnant: a diffusive cloud
- Depth inversely proportional to size, the larger the party the more stable

Two party dynamics

- Initial condition: two large isolated parties

$$
P_{n}(0)=m_{>}\left(\delta_{n, 0}+\delta_{n,-1}\right)+m_{<}\left(\delta_{n, l}+\delta_{n, l+1}\right)
$$

- Interaction between parties mediated by diffusion

$$
0=P_{n-1}+P_{n+1}-2 P_{n}
$$

- Boundary conditions set by parties depths

$$
P_{0}=\frac{1}{m_{>}} \quad P_{l}=\frac{1}{m_{<}}
$$

- Steady state: linear profile

$$
P_{n}=\frac{1}{m_{<}}+\left(\frac{1}{m_{<}}-\frac{1}{m_{>}}\right) \frac{n}{l}
$$

Merger

- Steady flux from small party to larger one
- Merger time

$$
J \sim \frac{1}{l}\left(\frac{1}{m_{<}}-\frac{1}{m_{>}}\right) \sim \frac{1}{l m_{<}}
$$

$$
T \sim \frac{m_{<}}{J} \sim l m_{<}^{2}
$$

- Lifetime grows with separation ("niche")

- Outcome of interaction is deterministic
- Larger party position remains fixed throughout merger process

Small party absorbed by larger one

Merger: numerical results

Multiple party dynamics

- Initial condition: large isolated party
$P_{n}(0)=$ randomly chosen number in $[1-\epsilon: 1+\epsilon]$
- Linear stability analysis

$$
P_{n}-1 \sim e^{i k n+\lambda t}
$$

- Growth rate of perturbations

$$
\lambda(k)=(4 \cos k-4 \cos 2 k-2)-2 D(1-\cos 2 k)
$$

- Long wavelength perturbations unstable

$$
k<k_{0} \quad \cos k_{0}=D / 2
$$

$P=\mid$ stable only for strong diffusion $D>D_{c}=2$

Strong noise $\left(D>D_{c}\right)$

- Regardless of initial conditions

$$
P_{n} \rightarrow\left\langle P_{n}(0)\right\rangle
$$

- Relaxation time

$$
\lambda \approx\left(D_{c}-D\right) k^{2} \quad \Longrightarrow \quad \tau \sim\left(D-D_{c}\right)^{-2}
$$

No parties, disorganized political system

Weak noise ($\mathrm{D}<\mathrm{D}_{\mathrm{c}}$): Coarsening

- Smaller parties merge into large parties
- Party size grows indefinitely
- Assume a self-similar process, size scale m
- Conservation of populations implies separation

$$
l \sim m
$$

- Use merger time to estimate size scale

$$
t \sim l m^{2} \sim m^{3} \quad \Longrightarrow \quad m \sim t^{1 / 3}
$$

- Self-similar size distribution

$$
P_{m} \sim t^{-1 / 3} F\left(m t^{-1 / 3}\right)
$$

Coarsening: numerical results

-Parties are static throughout process -A small party with a large niche may still outlast a larger neighbor!

Three scenarios

II. Restricted averaging with noise: conclusions

- Isolated parties
-Tight, immobile core and diffusive tail
- Lifetime grows fast with size
- Interaction between two parties
- Large party grows at expense of small one
- Deterministic outcome, steady flux
- Multiple parties
-Strong noise: disorganized political system, no parties
- Weak noise: parties form, coarsening mosaic
- No noise: stable parties, pattern formation

Publications

1. E. Ben-Naim, P.L. Krapivsky, and S. Redner, Physica D 183, 190 (2003).
2. E. Ben-Naim,

Europhys. Lett. 69, 671 (2005).
"I can calculate the motions of heavenly bodies, but not the madness of people."

Isaac Newton

