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We investigate statistical properties of trails formed by a random process incorporating aggre-
gation, fragmentation, and diffusion. In this stochastic process, which takes place in one spatial
dimension, two neighboring trails may combine to form a larger one and also, one trail may split
into two. In addition, trails move diffusively. The model is defined by two parameters which quantify
the fragmentation rate and the fragment size. In the long-time limit, the system reaches a steady
state, and our focus is the limiting distribution of trail weights. We find that the density of trail
weight has power-law tail P (w) ∼ w−γ for small weight w. We obtain the exponent γ analytically,
and find that it varies continuously with the two model parameters. The exponent γ can be pos-
itive or negative, so that in one range of parameters small-weight tails are abundant, and in the
complementary range, they are rare.

I. INTRODUCTION

Processes by which objects may randomly merge or
split into smaller parts are found in a wide range of nat-
ural and physical phenomena [1–6], including reversible
polymerization [7–9], river networks [10, 11], and force
chains [12, 13]. Irreversible aggregation can lead to gela-
tion where a single aggregate forms and accounts for a
finite fraction of system mass [14–18], and irreversible
fragmentation can result in shattering where zero-mass
fragments account for a finite fraction of all mass [19–
23]. When aggregation and fragmentation compete, the
system typically reaches a steady state, and the precise
balance between merger and breakup controls the nature
of the steady state [4, 5, 9].

Many studies of aggregation-fragmentation processes
do not implicitly account for aggregate mobility, nor do
these models allow for an underlying spatial structure [1].
In this paper we investigate a stochastic process in which
trajectories, which we call “trails”, can diffuse, merge, or
split. The trajectories each carry a “weight”, or popu-
lation, and the process can serve as a model for migra-
tion trails of animals [24, 25]. The current investigation
complements recent studies of chaotic dynamics [26, 27]
which reveal distinctive trajectories, which have qualita-
tive and quantitative similarities to the trails which are
investigated here.

The stochastic process for the evolution of trails takes
place in one spatial dimension. In our model, both space
and time are discrete. At each timestep, every trail may
split, with probability p, into two smaller trails, or remain
intact with the complementary probability 1− p (see fig-
ure 1). In the former case, two trails are created with
weights that are fractions r and 1−r of the weight of the
parent trail, and hence, the overall weight is conserved.
Trails also move randomly, and essentially perform a sim-
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FIG. 1: Illustration of: (a) fragmentation with probability p,
with a fixed ratio between the two fragments, characterized
by r, and (b) random hopping with probability 1− p.

ple random walk. Finally, when two trails collide, they
merge, with the overall weight being a conserved quan-
tity.

Regardless of the initial conditions, the system evolves
toward a steady state. We study the steady-state den-
sity P (w) of trails with weight w and find the power-law
behavior

P (w) ∼ w−γ , (1)

for small weights, w → 0. Interestingly, the power-
law exponent varies continuously with the fragmentation
probability p and the fragmentation ratio r as γ is a real
root of the equation

rγ−1 + (1− r)γ−1 =
3− p
1− p . (2)

Results of our numerical simulations are in excellent
agreement with this theoretical prediction. Depending
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on the parameters p and r, the exponent γ < 1 can be
positive such that small-weight trails are enhanced, or
it can be negative such that small-weight trails are sup-
pressed. Our theoretical approach assumes that spatial
correlations are absent at the steady state, and our ex-
tensive numerical simulations support this assumption.

The rest of this manuscript is organized as follows. Sec-
tion II introduces the model, and section III provides an
elementary derivation of the trail concentration. In sec-
tion IV, we analyze the density of trail weights theoret-
ically and numerically. We obtain analytic expressions
for moments of the trail density, and also, obtain the
distribution of small weights. Section V addresses the
weak fragmentation limit where aggregation and frag-
mentation proceed independently. In this limit, dynam-
ical properties of voids between adjacent trails can be
understood using first-passage properties of an ordinary
random walk. We conclude in section VI.

II. THE MODEL

Our aggregation-fragmentation-diffusion model takes
place on an unbounded lattice in one dimension. A lattice
site labeled i may be either vacant or occupied by a trail
with weight wi. The weight can also be understood as
density of a trail of particles concentrated at location i.
In the initial configuration, each site is occupied by a trail
with weight unity.

The stochastic process has three elements: (i) Frag-
mentation. With the probability p, a trail with weight wi
splits into two fragments with weights rwi and (1− r)wi.
One of these fragments moves to neighboring site i − 1
and the remaining fragment moves to neighboring site
i + 1. The two realizations are equally likely (see figure
1). (ii) Diffusion: With the complementary probability
1 − p the trail remains intact and it moves, with equal
probabilities, to site i − 1 or to site i + 1. (iii) Aggrega-
tion. All sites are updated simultaneously according to
the fragmentation and diffusion steps above. When two
distinct trails arrive at the same site, they immediately
merge to form a new trail whose weight equals the sum
of those of the two original trails.

Hence, two parameters characterize the model: the
fragmentation probability, p with 0 < p < 1, and the
fragmentation ratio, r with 0 < r < 1. These parameters
control how the weight at each site evolves prior to the
final aggregation step,

w →
{
rw, (1− r)w with prob. p ,

w with prob. 1− p . (3)

All trails are updated simultaneously, and time n is aug-
mented by one after each iteration, n → n + 1. Essen-
tially, trails perform a random walk (see figure 2), and
importantly, mobility is not coupled to weight. We stress
that total trail weight is conserved since both fragmen-
tation and aggregation are conservative processes.
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FIG. 2: A numerical realization of the aggregation-
fragmentation-diffusion process with r = 0.01 and p = 0.05.
The color coding illustrates weights from low (blue) to high
(yellow) values, and the color bar is in natural logarithmic
scale. Unoccupied sites are dark purple.

Our Monte Carlo simulations were performed using a
regular lattice with N sites and periodic boundary con-
ditions. Initially, each site is occupied with a trail of unit
weight. In each iteration, all sites are updated simultane-
ously according to the model rules. Namely, a trail jumps
without splitting to a neighboring site with probability
1− p, or decomposes into two fragments, with probabil-
ity p, as in figure 1 and equation (3). Two trails landing
at iteration n at the same location immediately merge.
Figure 2 shows trajectories in a space-time diagram using
simulation data.

III. THE CONCENTRATION

We first study the trail concentration c, defined as frac-
tion of occupied sites. Our primary focus is the steady
state, where the competing processes of aggregation and
fragmentation balance each other. The fragmentation
ratio r affects the trail weight but it does not affect the
number of trails. Hence, the concentration depends on
the fragmentation probability p alone. By assuming that
occupations at neighboring sites are not correlated, we
can write a closed equation for the concentration. In each
fragmentation event a single trail generates two trails and
conversely, in each aggregation event two trails coalesce
into one. At the steady state, the gain rate and the loss
rate balance,

p c =

(
1 + p

2
c

)2

. (4)

The fragmentation rate on the left-hand-side is propor-
tional to the concentration c and the fragmentation prob-
ability p. The aggregation rate equals the probability
that two trails arrive at the same site. The quantity in
parentheses is the sum of p c and 1−p

2 c accounting for
trail fragments and intact trails respectively (see figure
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FIG. 3: Numerically computed trail concentration c(p) versus
the fragmentation probability p. The dashed line corresponds
to the analytic expression (5), and circles to Monte Carlo
simulations on a lattice of N = 106 sites.

1). In writing the quadratic aggregation term in (4), we
make the assumption that the occupancy at a site is not
correlated with that at its next-nearest neighbor.

Rearranging Eq. (4) we find the trail concentration

c =
4p

(1 + p)2
. (5)

Figure 3 shows a comparison of Eq. (5) with numerical
simulations of the model. The numerical results indicate
that spatial correlations in the trail concentration disap-
pear in the steady state. Qualitatively, the equilibrium
concentration of domain walls in the one-dimensional
Ising model with single-spin flip dynamics exhibits simi-
lar phenomenology [28–30].

The trail concentration has the following limiting be-
haviors

c '
{

4p p→ 0 ,

1− 1
4 (1− p)2 p→ 1 .

(6)

The concentration vanishes linearly when p → 0, and
hence, the average trail weight which according to mass
conservation is inversely proportional to c, diverges in
this limit. Also, the fraction of vacant sites vanishes
quadratically when p→ 1.

IV. THE WEIGHT DENSITY

We now turn to the main focus of our investigation,
the steady-state weight density. Our theory builds on
the results of section III, and using the assumption that
weights at different sites are not correlated, we can ac-
curately predict key statistical properties of the weight
density.

We define the weight density P (w) such that P (w)dw is
the fraction of sites occupied by a trail with weight in the

infinitesimal range [w : w+dw]. Trail weight is conserved
throughout the aggregation-fragmentation-diffusion pro-
cess and hence, the total weight density

∫
dwwP (w) is

a constant. The concentration c equals the integrated
weight density

c =

∫ ∞
0

dw P (w) . (7)

The normalized quantity c−1P (w) is the probability dis-
tribution function for the weight.

Changes in trail weight occur in two stages: first, be-
fore trails move and then, after they move. In the first
stage, trail weight may change by fragmentation. Let
G(w) be the weight density of trails produced at the first
stage. According to the random process (3), we have

G(w) =
p

r
P
(w
r

)
+

p

1− rP
(

w

1− r

)
+(1−p)P (w) . (8)

Here, the first two terms on the right-hand side account
for fragments and the last term accounts for intact trails.
As also follows from Eq. (8), weight conservation sets∫
dwwG(w) =

∫
dwwP (w), and the fragmentation rule

(3) implies
∫
dwG(w) = (1 + p)

∫
dw P (w).

In the steady state, the trail density before an itera-
tion, P (w), is unchanged after one iteration of the com-
bined aggregation-fragmentation diffusion process. This
is expressed by the nonlinear-integral equation:

P (w) =

(
1− 1 + p

2
c

)
G(w) +

1

4

∫ w

0

dv G(v)G(w − v). (9)

The first term on the right-hand side accounts for the
scenario where there is no aggregation. It is a product of
three factors: (i) The quantityG(w)/2 which represents a
trail produced at a neighboring site and where the factor
1/2 accounts for the equal distribution of weight from
one site to its two neighbors, (ii) The factor 2 accounting
for two neighbors, and (iii) The probability 1− 1+p

2 c that
such a trail avoids aggregation. This probability sums
1−c and 1−p

2 c for a vacant and an occupied next-nearest
neighbor, respectively. The second term on the right-
hand side is the aggregation term; it is a convolution of
two identical terms of the form G(w)/2 with G(w) given
by (8). By integrating Eq. (9) over all weights, we recover
equation (4), and furthermore, this equation is consistent
with mass conservation.

We stress that substitution of equation (8) into (9)
turns the latter into a closed, nonlinear, equation for the
weight density P (w). Compared with Eq. (4), the steady-
state equation (8) makes an even stronger assumption
that weights at different sites are not correlated. Indeed,
the convolution term in (9) which accounts for the weight
of aggregates is quadratic in the density P (w).



4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

n−1/2

 

 

10
0

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

n

 

 

m2

m3

m2

m3

(b)

(a)

FIG. 4: The normalized second and third moments m2(n) =

M2(n)/2 and m3(n) = M3(n)/6, versus: (a) n, and (b) n−1/2.
Shown are results of Monte Carlo simulations on a ring with
108 sites for the case r = p = 1/2. A fourth order polynomial

fit to mk(n) versus n−1/2 yields the asymptotic values 1.0001
and 1.0002 for m2(∞) and m3(∞).

A. Moment Analysis

To examine the validity of this no-correlation assump-
tion, we study the moments of the weight density,

Mk =

∫
dwwkP (w) . (10)

Of course, the zeroth moment corresponds to the total
concentration M0 = c, and the first moment M1 = 1 cor-
responds to the total weight density which is a conserved
quantity. As shown in Fig. 3, the numerical simulations
confirm the predictions of (9) for the zeroth moment.

We now introduce the Laplace transform
M(s) =

∫∞
0
dwe−swP (w) which is the generating

function of the moments,

M(s) =

∞∑
n=0

(−s)k
k!

Mk . (11)

By first substituting the concentration (5) into (9), then
multiplying equation (9) with e−sw, and finally, integrat-
ing over weight, we find that the Laplace transform obeys
the nonlinear equation

M(s) =
1− p
1 + p

U(s) +
1

4
U2(s) , (12)

with U(s) = pM(rs) + pM(s− rs) + (1− p)M(s). The
quantity U(s) is the following Laplace transform
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FIG. 5: The power-law tail of the weight density P (w). The
curves shown here correspond to different values of p, indi-
cated in the legend, and are obtained from Monte Carlo sim-
ulations on a lattice ofN = 106 sites. Dashed lines correspond
to the theoretical predictions of equations (1)-(2). The value
of r was chosen to be r = 0.01. The inset displays the case
r = 0.25 and p = 0.7 for which γ = −0.32.

U(s) =
∫
dwe−swG(w), and it can be conveniently ex-

pressed in terms of the moments Mk,

U(s) =

∞∑
n=0

(−s)k
k!

ukMk . (13)

Here, uk = 1− p[1− rk − (1− r)k], and we quote the
values u0 = 1 + p, u1 = 1, and u2 = 1 − 2pr(1 − r).
Using M(0) = c and U(0) = (1 + p)c, we can recover
from (12) the trail concentration (5). Mass conservation
dictates that M1 equals the initial mass density. In gen-
eral, the moments satisfy the recursion

Mk =
1

4(1− uk)

k−1∑
l=1

(
k

l

)
uluk−lMlMk−l , (14)

when k ≥ 2. In particular, the second and third moments
are given by

M2 =
M2

1

2(1− u2)
, M3 =

3u2M
3
1

4(1− u2)(1− u3)
. (15)

For the special case p = r = 1/2 with M1 = 1, we have
M0 = 8/9, M2 = 2 and M3 = 6. Results of our Monte
Carlo simulations are in excellent agreement with these
theoretical predictions (see figure 4). We also verified
numerically that (15) holds for other values of the frag-
mentation probability p and the fragmentation ratio r,
and for a variety of initial conditions.

We have also examined numerically the empty-interval
probability El that l consecutive sites are vacant. As ex-
pected given the absence of spatial correlations, we con-
firmed the exponential behavior El = El1 with E1 = 1−c
and c given in (5).
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FIG. 6: (a) The exponent γ for different values of p and r.
The lines correspond to the theoretical predictions, given by
Eq. (2), for different values of r, see the legend. The inset
shows the region of negative γ as shaded. (b) When data
is plotted as rγ−1 + (1 − r)γ−1 it collapses into the curve
(3− p)/(1− p) (solid line) in accord with (2).

We also studied a continuous-time analog of the
aggregation-fragmentation-diffusion model with sequen-
tial dynamics where sites are updated one at a time. The
continuous-time version admits an analytic solution for
concentration, but apparently, an exact solution for the
weight distribution is not feasible. We find that spatial
correlations do not vanish, and therefore, qualitative fea-
tures of the steady state are sensitive to the details of the
dynamics.

Below, we discuss the small-weight statistics of the trail
density and provide numerical results that confirm the
theoretical predictions. Based on the simulation results,
we conclude that at the steady state, spatial correlations
in trail weight disappear. A similar behavior occurs in
adsorption-desorption processes [31–33] where gaps be-
tween adsorbed particles in one-dimension essentially un-
dergo an aggregation-fragmentation process, and also, in
a related model for the propagation of force chains in
granular matter [13].

The results of section III imply that in a finite sys-
tem, every configuration with N1 occupied sites and N2

vacant sites is realized with the equilibrium probability
cN1(1 − c)N2 that corresponds to a noninteracting two-
state system. The moment analysis indicates that an
even stronger statement applies as all states with the
same configuration of weights are equally probable. In
essence, the weight density P (w) completely describes
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FIG. 7: The exponent γ versus the parameter r for small
values of p.

the system.

B. Small-weight statistics

We now focus on the small-weight tail of the density
P (w). In the limit w → 0, the nonlinear terms become
negligible. If we substitute the concentration given in (5)
into (9), we find that the small-w tail of the steady-state
density P (w) satisfies the linear equation

1

r
P
(w
r

)
+

1

1− rP
(

w

1− r

)
=

3− p
1− pP (w) . (16)

From this equation we arrive at our main result, the
power-law behavior P (w) ∼ w−γ with the exponent γ
being root of Eq. (2). Clearly, the exponent γ < 1 varies
continuously with the model parameters r and p. In the
special case r = 1/2 we have γ = 2− (ln 3−p

1−p )/ ln 2.

The small-weight statistics also follow from the Laplace
transform. When M(s) is small, the nonlinear term in
the governing equation (12) is negligible, thereby lead-
ing to the linear equation (1 + p)M(s) = (1 − p)U(s).
This equation implies the large-s decay M(s) ∼ sγ−1,
which is equivalent to the power-law behavior (1), with
the exponent γ root of equation (2).

Our numerical simulations provide excellent support
for equation (2). Figure 5 demonstrates the power-law
tail of the weight density, and figure 6 compares the
numerically-computed exponent γ for different model pa-
rameters with the theoretical prediction.

In a finite system of size N , the power-law tail (1)
holds in the range N−1/(1−γ) � w � 1. The lower
limit follows from the criterion N

∫ z
0
dw P (w) ∼ 1 which

gives an estimate for the scale z of the smallest weight in
the system [1]. The scaling law z ∼ N−1/(1−γ) explains
the large variation in the extent of the power-law regime
observed in figure 5.

Equation (2) implies that there are two distinct
regimes of behavior, since the exponent γ vanishes when

r(1− r) =
1− p
3− p . (17)
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As shown in figure 6a, γ can be positive, in which case,
the density of small-weight tails is enhanced. In the com-
plementary regime, γ is negative and small-weight trails
are suppressed. When p < 1/3 the exponent is always
positive, γ > 0.

The linear equation (16) reflects the nature of
the fragmentation process in which weight “cascades”
from small trails into even smaller trails according to
w → rw, (1− r)w . This cascade process is balanced by
aggregation of small trails into larger trails. The power-
law behavior is valid over a substantial size range, and
throughout this range only terms that are linear in P (w)
dominate Eq. (9). Qualitatively similar cascades, where
the full nonlinear theory reduces to a linear theory for
extreme-value statistics, are found in wave turbulence
[34, 35] and inelastic gases [36]. Yet, the cascade pro-
cess described by equation (16) has two distinctive fea-
tures. First, the tail (1) can be vanishing or diverging.
Second, in equation (9), the term linear in P (w) is also
proportional to the trail concentration c. Consequently,
the prefactor on the right-hand side of (16) depends on
the steady-state value (5) of the concentration, and de-
spite its linear nature, this equation does incorporate a
two-point correlation.

For completeness, we mention that we also numeri-
cally studied the large-w tail of the weight density. In
contrast with the broad power-law tail that may occur
at small weights, we find that large weights are exponen-
tially rare, P (w) ∼ exp(−const. × w) for w � 1. This
behavior is consistent with the large-size statistics found
in irreversible aggregation [18] and in the closely related
q-model for force chains [12, 13].

C. Stochastic Fragmentation

The fragmentation process in (3) is deterministic in
the sense that the sizes of the two trail fragments are
fixed fractions of the original trail. We briefly mention
a natural counterpart, stochastic fragmentation, where
the fraction 0 < r < 1 is drawn from the distribution

η(r). We require that the distribution be: (i) normal-

ized
∫ 1

0
drη(r) = 1, and (ii) symmetric η(r) = η(1 − r).

It is straightforward to generalize the above theoretical
analysis to stochastic fragmentation and in particular,
equation (2) becomes∫ 1

0

dη η(r)
[
rγ−1 + (1− r)γ−1

]
=

3− p
1− p . (18)

For the so-called random-scission model [1, 13] where the
fraction r is uniformly distributed, η(r) = 1, we find

γ = 2
1− p
3− p . (19)

In this case, the exponent γ satisfies 0 < γ < 2/3, and
the small-weight tail of the distribution is enhanced, re-
gardless of p.

V. WEAK FRAGMENTATION

We now analyze the small p case and show that ag-
gregation and fragmentation proceed independently in
this regime. In the limit p → 0, the trail concentration
vanishes, see Eq. (5), and consequently, P (w) ∝ p. By
keeping dominant terms of the order O(p2) and neglect-
ing sub-dominant terms of the orders O(p3) and O(p4),
we find that equation (9) simplifies to

0 = 4p

[
1

r
P
(w
r

)
+

1

1− rP
(

w

1− r

)
− P (w)

]
+

∫ w

0

dy P (y)P (w − y)− 2 c P (w) . (20)

The first two (linear) terms account for fragmentation,
while the next two (nonlinear) terms account for aggre-
gation between two intact trails. Thus, fragmentation
and aggregation are not coupled when fragmentation is
weak. As a check of self-consistency, we integrate (20) to
find c2 = 4p c. Hence, the concentration is proportional
to the fragmentation probability c ' 4p as in (6).
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In the limit w → 0, the nonlinear term in Eq. (20) is
negligible, and the linear terms satisfy

1

r
P
(w
r

)
+

1

1− rP
(

w

1− r

)
= 3P (w) . (21)

This linear equation accepts a solution of algebraic form
P (w) ∼ w−γ for small w, where the exponent γ < 1 is
root of the equation

rγ−1 + (1− r)γ−1 = 3. (22)

Figure 7 shows a plot of γ(r) as given by the above equa-
tion where we observe that the minimal value γ = 2− ln 3

ln 2
is attained when r = 1/2.

As discussed above, when fragmentation is weak, the
trail concentration is low. Moreover, since fragmenta-
tion events are rare, fragmentation and aggregation pro-
ceed independently. In this limit, it is relatively simple
to characterize the dynamics of voids between adjacent
trails. In the limit p → 0, trails merely perform a ran-
dom walk, and when two trails come to within distance of
two sites, there is a finite probability for the two to coa-
lesce. Hence, the problem is equivalent to a first-passage
process of a simple random walk (the distance between
two independent random walks itself performs a random
walk). Let T be the lifetime of a void between two trails
and Q(T ) be the probability a void has a lifetime T (see
figure 8a). Using the well-known return probability of a
random walk [37], we conclude (see figure 8b)

Q(T ) ∼ T−3/2 . (23)

Furthermore, we can also consider the area S of a void in
a space-time diagram (see figure 8a). Because the edges
of the void are random walks, the width of the void scales
as T 1/2 and consequently the area scales as S ∼ T 3/2.
Using R(S) for the probability of observing a void with
area S, the scaling behavior (see figure 8c)

R(S) ∼ S−4/3 , (24)

follows immediately from (23). Our numerical simulation
results, shown in figures 8b and 8c, support the first-
passage behaviors (23) and (24).

VI. DISCUSSION

We have studied an aggregation-fragmentation-
diffusion random process that describes the evolution of
trails of particles with local weight density. In our model,
a trail may fragment into two or it may stay intact. In ad-
dition, trails move randomly, essentially performing dif-
fusion. Aggregation occurs when two trails arrive at the
same location. The model is characterized by two param-
eters, the fragmentation probability which controls the
relative strength of the fragmentation process, and the
fragmentation ratio which controls the size of the pro-
duced fragments. An equilibrium state is found, where

the two competing processes of aggregation and fragmen-
tation balance each other. In this steady state, the small-
weight tail of the fragment density has a power-law tail.
The exponent governing this tail varies continuously with
the model parameters.

At the core of our theoretical approach are the as-
sumptions that the occupancy and even the weights of
trails at different locations are uncorrelated. Our exten-
sive numerical simulations confirm this behavior. The
aggregation-fragmentation-diffusion model therefore pro-
vides a rare case where a discrete-time model admits an
exact solution for the steady-state behavior, despite the
fact that the time-dependent behavior involves nontrivial
spatial correlations.

Ultimately, the system achieves an equilibrium state,
where aggregation and fragmentation are in perfect bal-
ance, with the remarkable property that all configura-
tions with the same number of trails are equally prob-
able. Usually, it is possible to trace such behavior to a
detailed balance condition where there is zero net flux be-
tween any two microscopic configurations of the system.
It is an interesting challenge to construct an equivalent
condition for our synchronous dynamics.

Interestingly, our numerical results also show that spa-
tial correlations do exist at all times and only at the
steady state do they strictly vanish. It is straightforward
to convert the steady-state equation (9) into a discrete-
time recursion equation for the weight density. Such re-
cursion equation implies fast exponential relaxation to-
ward the steady state, dMk/dn ∼ exp[−(1 − uk)n] for
k ≥ 2. However, our simulations reveal slow algebraic
relaxation instead (figure 4) dMk/dn ∼ n−3/2, for k ≥ 2.
Spatial correlations, which steadily diminish with time
and eventually disappear altogether, are responsible for
slow relaxation toward the steady state. The diffusive
relaxation we observe numerically is consistent with the
first-passage behavior (23), and is reminiscent of time-
dependent behavior in reaction-diffusion processes in-
volving aggregation in one spatial dimension [38–40].

The aggregation-fragmentation-diffusion process pro-
vides insight into the highly inhomogeneous distributions
of particles advected by turbulent, compressible flows.
Specifically, we refer here to the following model of trans-
port of inertial particles by a turbulent fluid [41–46]:

ẋ = v,

v̇ = µ[u(x, t)− v], (25)

where µ is a constant, proportional to the fluid viscos-
ity, describing the rate of damping of motion of a small
particle relative to the fluid and u(x, t) is the randomly
fluctuating velocity field of the fluid in which the particles
are suspended. The velocity is characterized by the fol-
lowing correlations 〈u(x, t)〉 = 0 and 〈u(x, t)u(x′, t′)〉 =
C(x− x′)δ(t− t′) where the angular brackets denote en-
semble averages, and the function C is a Gaussian.

Numerical studies of (25) reveal particle trajectories
that share many similarities with the trails displayed in
Figure 2: particle trajectories may meander in space,
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merge, or split [26, 27]. There are also strong quantitative
similarities between the two models. The distribution of
empty regions with area S in the space-time diagram de-
fined in Fig. 8a, is characterized by a power-law tail with
an exponent 4/3 [26], in agreement with equation (24).
Further, the distribution of trajectories with weight w has
a power-law tail as in (1) with a positive exponent γ. It
would be interesting to explore further analogies between
the aggregation-fragmentation-diffusion model, and the

theoretical model for particle transport by compressible
turbulent flows. The resulting theoretical understanding
could provide insight on experimental observations on the
dispersion of particles on a surface flow [47].
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