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Experimental studies show that the density of a vibrated granular material evolves from a low
density initial state into a higher density final steady state. The relaxation towards the final density
follows an inverse logarithmic law. As the system approaches its final state, a growing number of
beads have to be rearranged to enable a local density increase. A free volume argument shows
that this number grows as N = ρ/(1 − ρ). The time scale associated with such events increases
exponentially ∼ eN , and as a result a logarithmically slow approach to the final state is found
ρ∞−ρ(t) ∼ 1/ ln t. Furthermore, a one dimensional toy model that captures this relaxation dynamics
as well as the observed density fluctuations is discussed.

PACS numbers: 05.40.+j, 81.20.Ev, 82.65.My

Systems consisting of many macroscopic particles such
as sand and powders exhibit complex behavior despite
their apparent simplicity [1]. Vibrated sand may result
in size segregation, rich pattern formation [2], solitary
waves [3] or convection rolls [4]. Despite a growing inter-
est, a comprehensive understanding of the basic princi-
ples underlying granular materials is lacking. Although
individual grains are solid, it is inappropriate to classify
their collective properties as entirely solid-like or liquid-
like. Conventional thermodynamic theory is not appli-
cable to sand as thermal fluctuations are negligible, i.e.,
kBT ≡ 0.

A simple, yet fundamental property of granular materi-
als is their densification under applied vibrations. Gran-
ular compaction is relevant to production, packing, and
transportation of a wide array of products such as food,
grains, chemicals, and drugs. Granular compaction can
be viewed as a model system for non-thermal relaxation
in a disordered medium. A granular assembly provides
us with a practically uniform system where upon vibra-
tion, the well-defined bulk density evolves from a loosely
packed mechanically stable initial state into a denser final
state. The system explores available microscopic config-
urations, and slowly eliminates low-density metastable
configurations.

In a series of recent compaction experiments, monodis-
perse glass beads were confined to a long tube and were
tapped vertically [5–7]. The waiting time between suc-
cessive taps was large enough to allow the beads to come
to a rest before the next tap. Due to the vibration, the
volume fraction increased from a loosely packed initial
value of ρ0

∼= 0.58 to a a final density ρ∞ close to the
random close packed limit ρ∞ ∼= 0.64. A large number of
taps (> 105) was necessary to to reach the final density.
Moreover, the time dependence of the density was most
consistent with an inverse logarithmic four parameter fit,
ρ(t) = ρf −∆ρ∞/[1+B ln(1+ t/τ)]. The parameters ρf ,
∆ρ∞, B, and τ depend only the tapping strength or the
acceleration Γ.

Several mechanisms were proposed to explain the tem-
poral relaxation of the density of vibrated granular ma-
terial [8–14]. However, these studies did not address the
relevant excluded volume interaction between the parti-
cles. As the compaction progresses, individual particles
move slowly, and when a void of the size of a particle is
created, it is quickly filled by a new particle. Particles
can not move into the space occupied by other particles.
In other words, they interact with their neighbors via a
hard core interaction. When the packing fraction is large,
voids the size of a particle are rare and a large number
of particles must be rearranged to accommodate an addi-
tional particle and a local density increase. Following this
line of reasoning, we propose a simple heuristic picture
based on free volume counting to explain the observed
relaxation. We complement this picture with an analyti-
cally tractable one-dimensional model where the heuris-
tic picture turns out to be exact. This model also proves
very useful for studying density fluctuations around the
steady state.
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Fig. 1 A rearrangement of a growing number of particles

is necessary to enable a local density increase.

Consider an ensemble of identical rigid spherical par-
ticles of volume V with average density ρ (see Fig. 1).
Denoting by V0 the pore volume per particle, we have
ρ = V/(V + V0), or alternatively,
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V0 = V
1− ρ
ρ

. (1)

Let us draw an imaginary box of size much larger then
a particle diameter. Several particles have to move in a
cooperative way to increase the number of the particles
in the box by one. This number can be estimated by
simply counting the amount of free volume. Assuming
that the N particles are rearranged in such a way that
they contribute their entire free volume to create a void
large enough to accommodate a particle, NV0 = V , or

N =
ρ

1− ρ
. (2)

Indeed, as the density vanishes no rearrangements are
necessary, and when the density approaches its maximal
value the number of rearrangements diverges. We further
assume that the motion of particles is not correlated and
therefore, the time associated with such a rearrangement
should increase exponentially with N , T ∼ eN . Conse-
quently, at large times the density increases according to
the following rate equation,

dρ

dt
∝ (1− ρ)

1
T

= (1− ρ)e−ρ/(1−ρ). (3)

The rate at which the density increases is proportional
to the void volume and inversely proportional to the re-
arrangement time. The latter exponential factor effec-
tively reduces the density increase rate and it dominates
as ρ → 1. The solution of this equation is given asymp-
totically by

ρ(t) ∼= ρ∞ −
1

ln t
, (4)

with ρ∞ = 1.
This heuristic argument ignores the structure of the

granular assembly and the fact that the density cannot
exceed the close-packed value. In the physical case of
three dimensions, the available free volume for rearrange-
ments should vanish as the density approaches the close
packing limiting value, thereby suggesting a more real-
istic form for V0 such as V (ρmax − ρ)/ρ. Despite the
simplifying assumptions, this heuristic picture is useful
as it highlights the basic mechanism underlying granular
compaction, i.e., the diverging number of rearrangements
needed for the density to increase. In one-dimension, no
geometrical complications occur and the exponential rate
reduction factor is in fact exact. In the following, we
present an analytically tractable model and discuss its
relevance to density relaxation and steady state density
fluctuations.

Consider a stochastic adsorption-desorption process on
a continuous one dimensional substrate. Identical parti-
cles of unit diameter adsorb uniformly from the bulk to
a substrate with rate k+ and desorb with rate k−. In
other words, k+ adsorption attempts are made per unit
time per unit length, and similarly, the probability that

an adsorbed particle desorbs in an infinitesimal time in-
terval (t, t + dt) is k−dt. While the desorption process
is unrestricted, the adsorption process is subject to ex-
cluded volume constraints, i.e., particles can not adsorb
on top of previously adsorbed particles. The attempted
adsorption event in Fig. 2 is thus rejected. This “car-
parking” process was previously studied in the context
of chemisorption [15] and protein binding [16].
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Fig 2 The adsorption-desorption process.

Let us consider P (x), the distribution of voids of size
equal to x between particles. This distribution satis-
fies two normalization conditions : ρ =

∫
dxP (x) and

1 =
∫
dx(x + 1)P (x). The first condition states that

there are as many voids as particles, while the second re-
flects conservation of the total length. Ignoring correla-
tions between neighboring voids, this distribution evolves
according to

∂P (x)
∂t

= 2k+

∫
x+1

dyP (y)− 2k−P (x) (5)

+θ(x− 1)
[
k−
ρ(t)

∫ x−1

0

dyP (y)P (x− 1− y)− k+(x− 1)P (x)
]
.

The first term represents gain due to adsorption and the
second loss due to desorption. The last two terms apply
only for voids larger than a particle. The above process
satisfies detailed balance, and consequently, the system
approaches its equilibrium state after waiting sufficiently
long time. In this state, neighboring voids are uncorre-
lated and the above master equation holds. The equilib-
rium void distribution is exponential [17]

P∞(x) =
ρ2
∞

(1− ρ∞)
exp

[
− ρ∞

1− ρ∞
x

]
. (6)

Using this equilibrium distribution, one can obtain the
exact equilibrium density. Furthermore using a qua-
sistatic (near-equilibrium) approximation time depen-
dent properties can be studied as well. The density
evolves according to the following rate equation

dρ

dt
= −k−ρ+ k+(1− ρ)e−ρ/(1−ρ). (7)

Since desorption is unrestricted, the loss term is linear in
the density. The second term is obtained by evaluating
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the total adsorption rate
∫∞

1
dx(x−1)P (x) and substitut-

ing for P (x) the equilibrium distribution of Eq. (6). Only
voids larger than a particle contribute to adsorption, and
there is a correction factor (x − 1) that vanishes at the
minimal gap. This quasistatic approximation assumes
that the system evolves slowly and thus is close to equi-
librium. The total adsorption rate can be understood
as follows: the factor (1 − ρ) accounts for the total void
density, while the factor s(ρ) = e−ρ/(1−ρ) is the stick-
ing probability, i.e., the probability that an adsorption
event is successful. This factor is roughly unity in the
dilute limit, and vanishes exponentially as ρ → 1. The
excluded volume interaction effectively reduces the ad-
sorption rate, k+ → k+(ρ) = k+s(ρ). Interestingly, the
sticking probability is identical to the one of Eq. (3), and
therefore the heuristic picture is shown to be exact in
one dimension. We also note that the density increases
with rate proportional to the density of voids the size of a
particle, and it is quite possible that this holds in higher
dimensions as well.

Using Eq. (7), the exact equilibrium density is obtained
from the following transcendental equation, αeα = k,
with k ≡ k+/k− and α = ρ∞/(1− ρ∞). The ratio of ad-
sorption to desorption determines the equilibrium density
in the model. Using Eq. (7), the equilibrium density is
found. The leading behavior in the two limiting cases is

ρ∞(k) ∼=
{
k k � 1;
1− (ln k)−1 k � 1. (8)

While the behavior in the dilute limit is linear, the ap-
proach to the close packed state is very slow. The effect
of the volume exclusion constraint is striking, a huge ad-
sorption to desorption rate ratio, k ∼= 109, is necessary to
achieve a 0.95 steady-state occupancy. One can associate
the parameter k in the model with the vibration inten-
sity in experiments, where a monotonic correspondence
between the steady-state density and the acceleration Γ
[6].

We now focus on the relaxation properties of the
system. The granular compaction process corresponds
to the high density limit, and we thus focus on the
desorption-controlled case, k � 1. Hence, we fix k+ = 1
and consider the limit k− → 0 of Eq. (7). The early
time behavior is dominated by adsorption and can be
obtained by neglecting the desorption term. The system
approaches complete coverage according to Eq. (4). This
behavior was confirmed by numerical simulations [17,18].
It also occurs in a situation where diffusion plays the role
of desorption [19]. Use of Eq. (7) is justified a posteriori
since the system evolves slowly and has enough time to
equilibrate. The inverse logarithmic behavior is simply a
reflection of the exponentially suppressed adsorption in
the dense limit.

Eq. (4) holds indefinitely only for the truly irreversible
limit of the parking process, i.e., for k = ∞. For large
but finite rate ratios, the final density is given by Eq. (8).
As the density approaches this steady state value, the

loss term becomes significant and should be taken into
account. The crossover time between the two different
relaxation regimes, t0, can be conveniently estimated by
equating the time dependent density of Eq. (4) with the
equilibrium density of Eq.(8) 1 − 1/ ln t0 = 1 − 1/ ln k,
and as a result t0 ∼= 1/k−. For t � t0, the loss term
is no longer negligible. By computing how a small per-
turbation from the steady state decays with time, an ex-
ponential relaxation towards the steady state is found
|ρ∞−ρ(t)| ∝ e−t/τ for t� t0. The relaxation time is re-
lated to t0, however, an additional logarithmic correction
occurs, τ = t0(1 − ρ∞)2 ' t0/(ln k)2. In summary, the
early time behavior of the system follows the irreversible
limit of k− = 0. Once the system is sufficiently close to
the steady-state, the density relaxes exponentially to its
final value.

The experimentally observed relaxation curves which
corresponds to large compaction are indistinguishable
over the observed time range [5]. Also, steady state is
achieved in a finite time < 106 taps. Both features are
consistent with our theory. The inverse logarithmic re-
laxation can be viewed as a sum of many exponential
functions with growing decay times. In a finite system,
however, a maximal relaxation scale should eventually
dominate and the relaxation law of Eq. (4) should apply
only up to this time scale.

The parking process can be used to study density
fluctuations in the steady state in finite systems. In
a finite system, after the system relaxed to the steady
state, the observed density can deviate from its aver-
age expected value. Since the equilibrium properties of
the parking model are understood, the distribution of
these deviations can be calculated. A useful quantity is
G(x1, x2 . . . , xn), the probability of finding n consecutive
voids of sizes x1, x2, etc. In equilibrium voids are uncor-
related and this distribution is given by

G∞(x1, x2 . . . , xn) = ρ1−n
∞ P∞(x1)P∞(x2) · · ·P∞(xn)

= ρ∞

(
ρ∞

1− ρ∞

)n
exp

[
− ρ∞

1− ρ∞
V

]
(9)

where V =
∑
xi is the total void space of that con-

figuration. The conditional probabilities ρ−1
∞ P∞(x2)

etc. has to be used to ensure proper normalization∫
dx1 · · ·

∫
dxnG∞(x1, x2 . . . , xn) = ρ∞ (the normaliza-

tion
∫
dxP (x) = ρ∞ is used here). The multiple void dis-

tribution depends exponentially on the total void space
V , and a factor of ρ∞/(1−ρ∞) is generated by each void.

To calculate P (ρ), the probability that the observed
density in a system of size L is ρ we note that the total
void length in such a case is V = (1− ρ)L and the total
number of cars is n = ρL. Every configuration with n
voids x1,. . ., xn, and V =

∑
xi contributes to this prob-

ability and therefore

P (ρ) =
n∑
i=1

∫
dxiG∞(x1, x2 . . . , xn) (10)
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Evaluating the multiple integral using the steepest decent
method we find a Gaussian density distribution

P (ρ) =
1√

2πσ2
exp

[
− (ρ− ρ∞)2

2σ2

]
, (11)

with the variance σ2 = ρ∞(1−ρ∞)2/L. Of course, in the
limits of infinite systems, the variance vanishes. The fluc-
tuations width, σ, and the relaxation time scale, τ , are
related via Lσ2 = k−ρ∞τ , an analog of the fluctuation
dissipation theorem.

Surprisingly, this prediction is in agreement with the
experimental observations. Most of the observed distri-
butions of the density fluctuations are Gaussian. There
are exceptions, however, especially near the bottom of
the column, where a high density configuration is slightly
preferred and the positive tail of the distribution is en-
hanced. This suggests that the system gets locked in
a long lived high density metastable state. It is possi-
ble that averaging over longer time records will restore
the Gaussian nature. The experimental variance also de-
creases with increasing density, as is the case for the
theoretical variance that vanishes as ρ∞ → 1. Addi-
tionally, one can study the spectrum of the steady state
density fluctuations. It is remarkable that despite the
fact that the model is one dimensional, its density fluc-
tuations power spectrum is very similar the experimental
curves [6].

In a realistic granular material, an individual particle
can not penetrate its neighbors, and it is in contact with
several other particles. Our model properly accounts for
the hard core repulsion, but it ignores mechanical sta-
bility. We argue that in the long time limit mechanical
stability can not play a significant role in determining
the motion of individual grains during the compaction
process. Instead, the motion is limited primarily by the
presence of other beads. The tradeoff, however, is that
such a simple theory can not make predictions about the
final density. Nevertheless, it does elucidate the leading
mechanism in granular compaction. It also motivates
studying the form of the void distribution and specifi-
cally its large volume tail in higher dimensions .

In conclusion, we have studied theoretically density re-
laxation towards steady state in granular compaction us-
ing heuristic arguments and a microscopic model in one
dimension. Due to volume exclusion, exponentially grow-
ing time scales are associated with cooperative motion of
grains. As a result the approach towards the steady state
is an inverse logarithmic one. Since the argument leading
to the logarithmic relaxation is quite general, the results

should hold in a large class of physical situations such as
horizontal shaking, aspherical particles, or even polydis-
perse distribution. Additionally, our toy model exhibits
density fluctuations that agree remarkably well with the
experiment. This provides an additional confirmation for
the validity of this model.
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