Monotonicity in the averaging process
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We investigate an averaging process that describes how interacting agents approach consensus
through binary interactions. In each elementary step, two agents are selected at random and they
reach compromise by adopting their opinion average. We show that the fraction of agents with
a monotonically decreasing opinion decays as e~ ®', and that the exponent a = % - % is
selected as the extremum from a continuous spectrum of possible values. The opinion distribution
of monotonic agents is asymmetric, and it becomes self-similar at large times. Furthermore, the tails
of the opinion distribution are algebraic, and they are characterized by two distinct and nontrivial
exponents. We also explore statistical properties of agents with an opinion strictly above average.

I. INTRODUCTION

The averaging process models a system of agents who
reach agreement via compromise. The system consists of
N agents. In each step, two agents, say ¢ and j, are cho-
sen at random and their opinions v; and v; are replaced
by the average

(1)

(05, 0;) — (’Ui—FUj U¢+1}j> .

2 72

As this elementary step is repeated, the system moves
closer and closer toward consensus where all agents have
the same opinion.

This averaging process has been studied by statistical
physicists [1], applied probabilists [2], computer scien-
tists [3], and social scientists [4] with applications rang-
ing from opinion dynamics [5] to communication algo-
rithms for computer and sensor networks [6, 7] to linguis-
tics [8]. For the pure averaging process (1), the system
approaches perfect consensus. However, when interac-
tions are restricted to agents with sufficiently close opin-
ions, the system bifurcates into groups [4, 9-13], with all
agents within the same group sharing the same opinion.
Another generalization of the averaging process (1) in-
volves partial averaging where the opinion difference is
reduced by a fixed multiplicative factor in each interac-
tion. Partial averaging is equivalent to inelastic collisions,
and it has been used to model freely evolving and driven
inelastic gases [14-23] that satisfy the Maxwell model
rules [24].

In this study, we analyze the pure averaging process
(1). The system approaches perfect consensus and the
difference between the typical opinion and the consensus
opinion decays exponentially with time [14]. While the
typical opinion follows a unidirectional path en route to
consensus, an individual opinion may increase or decrease
due to fluctuations. We focus on agents with a monotoni-
cally decreasing opinion (similar behavior is exhibited by
agents with a monotonically increasing opinion).

We study the fraction M (t) of agents whose opinions

have only decreased up to time ¢, and find that this quan-
tity decays exponentially with time,

M(t) ~ Ae | (2)

in the long-time limit (see Fig. 1). Our main result is
that the exponent « is nontrivial
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The opinion distribution of monotonic agents becomes
self-similar at sufficiently large times. Further, this dis-
tribution has two algebraic tails that are characterized
by two different exponents. These features of the opin-
ion distribution enable us to determine the exponent «
which is selected as the extremal value from a spectrum
of possible values.

The rest of this paper is organized as follows. We begin
with a brief overview of the averaging process in Sec. II.
In Sec. ITI, we consider monotonic agents with an opinion
that only decreases with time. We obtain the exponent
(3), and also study the opinion distribution of monotonic
agents. In Sec. IV, we investigate the behavior of agents
with strictly positive opinion. In Sec. V, we summarize
our findings and discuss possible avenues for future work.
The generalization of the pure averaging process (1) to
partial averaging is outlined in Appendix A, and correc-
tions to the leading asymptotic behavior (2) are discussed
in appendix B.

II. THE AVERAGING PROCESS

In the averaging process, there are N interacting
agents. In each averaging event, two agents are selected
at random, and their opinions evolve according to (1).
This pairwise interaction is repeated indefinitely, and
time is augmented by 2/N after each interaction, so that
agents experience one averaging event per unit time. The
distribution F'(v, t) of agents with opinion v at time ¢ sat-



isfies the nonlinear rate equation [14]

% :2/00 du F(u,1)F(20 — u,t) — F(v,t), (4)
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in the limit N — oo. The convolution term reflects the
binary nature of (1), and the linear loss rate reflects that
agents participate in one interaction per unit time. The
averaging process (1) conserves the number of agents and
the total opinion, and consequently, the rate equation (4)
conserves the two lowest moments of the opinion distribu-
tion: the normalized distribution, [dv F(v,t) = 1, and
the average opinion, (v(t)) = [ dvv F(v,t) = const.

The averaging process (1) is invariant under transla-
tion v — v + const., as well as dilation, v — const. X v.
Hence, without loss of generality, we may consider ini-
tial distributions with zero average, (v(0)) = 0, and unit
variance, (v2(0)) = 1 [25]. Furthermore, we restrict our
attention to symmetric distributions as Eq. (4) implies
F(v,t) = F(—v,t) when F(v,0) = F(—v,0).

The system approaches consensus, F(v,t) — 0(v),
as all agents acquire the average initial opin-
ion in the long-time limit. The second moment
(v*(t)) = [ dvv®F(v,t) quantifies the distance be-
tween the typical opinion and the consensus opinion.
This quantity decays exponentially with time [14]

(WA(1) = e/, ()

as follows from Eq. (4). Moreover, the distribution
F(v,t) becomes self-similar in the long-time limit, and
the second moment (5) sets the scale for the typical opin-
ion. In particular, the distribution F'(v,t) adheres to the
scaling form [15]

Fo,t) = e "F(V), with F(V) =2 — 2 5 0

T (14 V2
and the scaling variable V' = v e*/4. This scaling behavior
holds in the limits t - oo and v — 0. Also, the scaling
function is normalized [~ dVF(V) = 1.

III. MONOTONICITY

The ultimate opinion of every agent vanishes, v; — 0
as t — oo. Further, according to Eqgs. (5)—(6), the typi-
cal magnitude of the opinion |v| decreases monotonically,
lu| ~ e~t/%. In this study, we focus on agents with
a monotonically decreasing opinion. At time ¢, we re-
fer to agents with opinion that satisfies the inequality
vi(t1) > vi(te) for all t; < to < t as monotonic agents.
In the context of opinion dynamics, monotonic agents
change their opinion only in one direction, say toward
the left of the political spectrum only. According to (1),
monotonic agents interact only with agents who have a
smaller opinion. We stress that monotonic agents have
an opinion that strictly decreases with time, but the sign
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FIG. 1: The fraction of monotonic agents M (t) versus time ¢.
A dashed line with slope given by Eq. (2) is displayed for refer-
ence. The inset shows that the local slope a(t) = —dIn M/ Int
varies linearly with 1/¢. The dotted line shows a linear fit that
yields the estimate o = 0.272 % 0.003.

of the opinion is not constrained. In particular, mono-
tonic agents may start with a positive opinion and end
up with a negative one.

We denote by M(t) the fraction of monotonic agents
at time ¢, and by M (v, t) the density of such agents with
opinion v. Of course, M(t) = [dvM(v,t). By symme-
try, the dual fraction of agents with monotonically in-
creasing opinion equals M (t), and their density is given
by M(—v,t). The density M (v,t) is coupled to the total
density F(v,t), and it satisfies the linear rate equation

o0
% = 2/ du M (u,t)F(2v —u,t) — M(v,t). (7)
v

The loss term reflects that on average, each agent ex-
periences one interaction per unit time. The gain term
in Eq. (7) resembles the gain term in Eq. (4), but the
lower limit of integration ensures that the opinion of a
monotonic agent may only decrease.

By integrating the master equation (7) over all opin-
ions, we find that the fraction M (t) decreases with time
according to the rate equation

dM() _ 7/00 du M (u, 1) /OO doF(v,t).  (8)

dt —0o0 u

This evolution equation reflects that monotonic
agents may only interact with agents having smaller
opinions. The fraction M(t) has two bounds,
et < M(t) < 1. The upper bound follows from
the inequality M(v,t) < F(v,t). The lower bound
reflects that agents experiencing zero interactions are
necessarily monotonic. Since agents interact once per
unit time, the overall density N(¢) of noninteracting
agents decays exponentially with time, N(t) = e~
The bounds & = 0 and a = 1 are realized in limiting
cases of the partial averaging process, as discussed in
Appendix A.
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FIG. 2: The normalized scaling function A~*M(V') versus the
scaling variable V. This quantity is the probability distribu-
tion function of the scaled opinion V, as follows from Egs. (2)
and (11).

When the opinion v is sufficiently large, the dominant
contribution to the integral in (7) comes from the vicinity
of u = 2v. Using the normalization [~ dv F(v,t) =1
we arrive at the linear equation

OO0 avraw, 1) - M(w,1), (9)
that holds for sufficiently large v. The derivation of
Eq. (9) relies on the fact that the distribution F(v,t)
is normalized, but remarkably, the precise form of that
distribution is not utilized. Indeed, as follows directly
from (1), the outcome of interactions involving an agent
with a very large opinion v is not affected by the opin-
ion of the interaction counterpart. Consequently, large
opinions are reduced by a factor 2 with each interaction,
thereby leading to a simple multiplicative process [26]

v—=v/2—=v/d--- . (10)

Equation (9) merely reflects this multiplicative process.
In the long-time limit, the density M (v, t) of monotonic
agents adheres to the scaling form

M (v, t) ~ et/ M(V) (11)

with the same scaling variable V = ve!/4. By inte-

grating (11), we obtain the exponential decay (2) with
A= ffooo dV M(V). Figure 2 convincingly shows that the

scale v ~ t~1/4 also characterizes the opinion distribution
of monotonic agents.

By substituting the scaling form (11) into (9), we find
that the scaling function M(V') satisfies

v aM(v)
1 av

+ (Z - a) M(V) = 2M(2V)  (12)

when V' > 1. This difference-differential equation admits
an algebraic solution, M(V) ~ V%, with
5—v
4

o=

— 27, (13)
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FIG. 3: The exponent « in (13) versus v. The maximal value
o = 0.271517 occurs at v = 2.47123.

The right-hand side of (13) is bounded from above, see
Fig. 3. The maximal value quoted in (3) occurs at

Inln2
In2

Thus, the algebraic tail for V' > 1 yields the upper bound
a < a,. We postulate that this extremal value is real-
ized, & = a, for the averaging process. Our numerical
simulations give the estimate o = 0.27240.003 and hence
support this theoretical prediction (see the inset to Fig. 1
and also, Appendix B). We note that our assumption that
the behavior in the neighborhood of v = 2v dominates
the integral in Eq. (7) is consistent with the fact that the
tail M(v) ~ v~"* is shallower than the tail F(v) ~ v~%.
The selection of the extremal value emerging from the
dispersion-like relation (13) very much resembles the se-
lection of the extremal propagation velocity in traveling
waves that are governed by partial differential equations
in deterministic [27-31] and stochastic systems [32-36].

Next, we substitute the scaling form (11) into the
master equation (7) and arrive at the linear integro-
differential equation

v=3+

—=2.471233... . (14)

V dMm 5 o
a dv+<4 a)M—2/V dU M(U) F(2V —-U) (15)
with F(V) given in Eq. (6). We stress that this equation
governs the scaling equation M(V) for all values of V,
in contrast with Eq. (12) that applies only when V' >> 1.
The parameter « is an eigenvalue of this equation, and
in principle, a solution for the eigenvalue « requires a
solution for the entire eigenfunction M(V'). However, in
our particular problem, extreme-value analysis suffices.
To understand the behavior when V <« —1, we in-
troduce the change of variables U = 2V — W, and
thereby recast the right-hand side of Eq. (15) into
2 [V AWMV - W)F(W). In the limit V — —oo,
this integral is negligible and Eq. (15) simplifies to
VM + (5 — 4a)M = 0. Therefore, there is a second
algebraic tail, M (V) ~ (=V)~ 074 when V <« —1.



Thus, the scaling function M(V') has two distinct al-
gebraic tails

V-1,
V>1.

_y)—(6—4a)
(V) ~ {(V_Y)

Interestingly, both tails of the scaling function M(V') are
shallower than the tails of the scaling function F(V) as
both v < 4 and 5 —4a < 4. Of course, the inequality
M(v,t) < F(v,t) holds for all v. By comparing the two
densities e~ *M(Vy) ~ F(Vy), we find that (6) and (11)
hold simultaneously in the scaling region V_ < V <« V..
Both scales V and V_ grow exponentially with time,
and hence, the two scaling forms (6) and (11) hold over
an exponentially growing range of scaled opinions.

The inequality v < 5 — 4« suggests that that scaling
function M(V) is asymmetric (figure 2). Moreover, as
the tail in the positive velocity region is shallower than
the tail in the negative velocity region, we expect that
the fraction of monotonic agents with a positive opinion

(16)

M, = /000 AV MV, (17)

exceeds the fraction M_ =1 — M, of monotonic agents
with a negative opinion. Using numerical simulations we
find that M, = 0.74 £ 0.01 is roughly three times larger
than M_.

Our Monte Carlo simulations utilize a straightforward
implementation of the averaging process. Initially, there
are N agents whose opinions are drawn from a uniform
distribution: F'(v,0) =1 for |v| < 1/2 and F(v,0) =0
otherwise. We stress that our main results are indepen-
dent of the shape of the initial distribution: the same
scaling functions F(V) and M(V') are realized for com-
pact distributions as well as non-compact distributions
[25]. In each simulation step, two agents are selected at
random, and their opinions are updated according to the
averaging rule (1). Time is augmented by 2/N subse-
quently. We maintain a counter for the number of mono-
tonic agents, and whenever an agent interacts for the first
time with an agent having a larger opinion, the counter
decreases by one. The simulation results shown through-
out this paper represent an average over 10° independent
Monte Carlo runs in a system of size N = 108.

We made the following choices to optimize the simu-
lations: (i) we adjust the average initial opinion to zero,
(ii) we keep track of agents with monotonically increas-
ing opinions as well as agents with monotonically increas-
ing opinions, and (iii) we rescale the opinion v — ve'/*
once per unit time. The latter rescaling enables direct
measurement of V = ve!/4, and additionally, it prevents
simulation of exponentially small opinions.

IV. POSITIVITY

We also studied a related subset of agents with an opin-
ion that remains strictly above average. Since the average
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FIG. 4: The normalized fraction of positive agents 2P(t) ver-
sus time ¢ (since only one half of all agents start with a positive
opinion, 2P(0) = 1). The inset shows 8(t) = —dIn P/Int ver-
sus exp(—3t/8). A linear fit, shown as the dashed line, yields
the estimate 8 = 0.188 + 0.001.

opinion is zero, these are the agents with a strictly pos-
itive opinion. Let P(t) be the fraction of such positive
agents at time ¢. Our numerical simulations show that
P(t) decays exponentially with time (Fig. 4)

P(t)~ Be P with £=0.188+0.01. (18)

We analyze the density P(v,t) of agents with opin-
ion v >0, from which the overall density follows,
P(t) = [, dvP(v,t). Of course, there is a dual set of
agents who maintain a strictly negative opinion, with an
overall fraction P(t) and density P(—v,t). In the context
of opinion dynamics, positive and negative agents can be
viewed as agents that remain consistently on the left side
or the right side of the political spectrum. The density
P(v,t) evolves according to the linear equation

OP(v,t *°

# - 2/ du P(u, ) F(20 — u,t) — P(u,1), (19)
0

for v > 0. This equation reflects that the density P(v,t)

is coupled to the overall density F(v,t), and it differs

from (7) only in the lower limit of integration. Using

(19), we deduce the rate equation

d]jTEt) :-/OOO du P(u, 1) /:O dwF(ut)  (20)

for the fraction P(t). Again, this evolution equation dif-
fers from (8) only in the lower limit of integration.

In the long-time limit, the distribution P(v,t) acquires
the scaling form

P(v,t) ~ e Ptet/* P(vet/?) . (21)

This form is consistent with the exponential decay (18)
with B = [;*dV P(V). Our numerical simulations con-
firm that this scaling behavior applies at sufficiently large
times (Fig. 5). The scaling function P(V) is qualitatively
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FIG. 5: The normalized scaling function B~*P(V) versus the
scaled opinion V.

similar to M(V) (see Fig. 2): both functions are non-
monotonic and are maximal at a nonzero value of V.
For positive agents, the “depletion” region near V = 0
reflects that positive agents with a sufficiently small opin-
ion are less likely to remain positive.

By substituting the scaling forms (6) and (21) into the
evolution equation (19), we find that the scaling function
P(V) satisfies the linear integro-differential equation

v ap

Y (5 _5) P Q/OOOdU‘P(U)S’(ZV— U). (22)
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This equation poses an eigenvalue problem with the scal-
ing function P(V') being the eigenfunction, and the expo-
nent 3 being the eigenvalue. The eigenfunction is subject
to the constraint (V) > 0 for all V' > 0.

To determine the asymptotic behavior of P(V) when
V > 1, we repeat the approach used in Section III and
arrive at an equation that is entirely analogous to (15),

V dP 5
- — - — P =2P12V). 2
et (G-e)r-wen. o

Hence, the tail of the scaling function is algebraic,
P(V) ~ V~H and the dispersion relation reads

B="—=—2"r (24)

By substituting the Monte Carlo simulation result
(18) into the dispersion relation (24), we expect
©=3.58 £0.01. The numerical simulation results
(Fig. 6) give p=3.6+0.2, consistent with (24). The
eigenvalue 8 does not correspond to an extremum in the
dispersion equation (24), so it must be determined as the
eigenvalue of the full integro-differential equation (22).
As was the case for monotonic agents, the large-v tail
of the opinion density P(v,t) is algebraic. Furthermore,
the algebraic tail of the scaling function P(V) is shallower
than the tail of the scaling function F(V') as p < 4.
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FIG. 6: The scaling function F(V) and P(V) for V > 1. Also
shown as a reference are the theoretical results (6) and (24).

V. DISCUSSION

In summary, we considered the averaging process and
studied sub-classes of agents with an opinion that main-
tains a certain property throughout the evolution. In par-
ticular, we probed the fraction of agents with a monoton-
ically decreasing opinion and the fraction of agents with
a positive opinion. These fractions decrease exponen-
tially with time, and the exponents characterizing these
decays are eigenvalues of linear integro-differential equa-
tions. In the case of monotonic agents, we were able to
find the eigenvalue analytically using an extremum selec-
tion principle, analogous to velocity selection in traveling
waves [27-36]. Both monotonicity and positivity can be
viewed as types of persistence, and as is typically the
case, nontrivial persistence exponents characterize the
time evolution [37-39].

For the averaging process, the opinion distribution be-
comes self-similar, and in particular, the scaling form (6)
is characterized by the second moment (5). However, mo-
ments of the opinion distribution exhibit multiscaling and
are not characterized by the second moment. The mo-
ments decay exponentially with time (v™) ~ exp(—ont)
with a nonlinear spectrum of exponents, o, /n # o2/2
when n > 2. We anticipate that moments of the opinion
distribution of monotonic agents also exhibit multiscal-
ing. Finding the corresponding spectrum of exponents is
challenging because the evolution equations that govern
the moments of M (v,t) are not closed.

A natural generalization of the averaging process is to
multi-component opinions. When the opinion of each
agent is a vector, rather than a scalar, one may study
monotonicity properties of the magnitude of the opinion
vector. Additionally, one can investigate agents with one
component of the opinion vector being always larger than
all other components.

Monotonicity can also be studied in systems that reach
a steady state, and in particular, averaging processes that
are forced into a steady state [26]. Monotonicity can be



probed in an even broader class of stochastic processes
since the trajectory of any fluctuating quantity may in-
clude segments where all changes in the value of the fluc-
tuating quantity occur in the same direction.
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Appendix A: Partial averaging

In the partial averaging process, agents make a partial
compromise by moving part-way toward each other. The
post interaction opinions are linear combinations of the
pre-interaction opinions

(vi, v) = (pvi + quj, qui + pvj) | (A1)
with 0 < p <1 and p+¢q = 1 so that the average opinion
is conserved. Each interaction reduces the opinion differ-
ence by factor |p — ¢, as in an inelastic collision [14].

Treatment of the partial averaging process is a straight-
forward generalization of analysis above. For the random
process (Al), the rate equation governing the density
F(v,t) of agents with opinion v at time ¢ becomes

OF (v,t o
OF(v,t) _ l/ du F(u, t)F <’—”“t) — F(v,t). (A2)
ot @) q
We can verify that the distribution remains normalized,
JdvF(v,t) = 1, and that the average opinion is con-
served, [dvvF(v,t) = 0. We restrict our attention
to symmetric distributions, and from (A2), it follows
that the second moment decays exponentially with time,
(v2(t)) = (v2(0)) e~2P9, In the long-time limit, the opin-
ion distribution follows the scaling form
F(v,t) = eP?"F(V) (A3)
with the scaling variable V = veP?. Independent of p,
the scaling function F(V) is given by (6).
The density of monotonic agents M (v, t) satisfies

WZ&/jcduM(u,t)F (%,t)—M(v,t). (A4)

In the long-time limit, the overall density of mono-
tonic agents decays as in (2), and the density
M(v,t) of monotonic agents approaches the scaling
form M (v,t) ~ e~ *'eP? M(V) with the scaling variable
V = vePt, The tail of the scaling function is algebraic,
M(V) ~ V=¥ when V > 1, and equation (13) that re-
lates the exponents o and u becomes

a=1+pg(l—v)—p" " (A5)

1
091 *
0.8
0.7
0.6 n

o 0.5+ n
04r *
03 n
0.2
0.1 n

\
00 0.1

\ \ \ \ \ \ I
02 03 04 05 06 07 08 09 1
Y

FIG. 7: The exponent «, given by (A6), versus p.

The extremum occurs at (figure 7)

1 1

Int (A6)
P

a=1-pq

Our numerical simulations confirm that this extremum
is indeed selected by the dynamics. The exponent
0 < a <1 decreases monotonically as p increases. The
maximal value @ = 1 is achieved when the interaction
is strongest (p = 0), and the minimal value a = 0 is
achieved when the interaction is weakest (p = 1).

The exponent v which characterizes the tail of the
opinion distribution is given by

In (llnl)
¢ p
Ini ’

p

v=2+ (AT)

The exponent v increases monotonically with p. Since
v < 4, the tail of the scaling distribution M(V') remains
less steep than the tail of the scaling distribution P(V).

Appendix B: Correction to the leading asymptotic
behavior (2)

In problems admitting traveling wave solutions, the
speed w and the wavenumber k of the traveling wave
are related via the dispersion relation w = ®(k), and
the propagation velocity w = w, = ®(k,) is selected
at an extremum of the dispersion curve. This happens
in a broad set of problems. Moreover, the asymptotic
approach to the speed w, is remarkably universal

w(t) =w, + —t 1+ Bot™2 4 ... (Bl)

3
2k,
The leading t~! correction was derived by Bramson [29]

in the context of the Fisher-Kolmogorov equation [27,
28], and then confirmed for many other deterministic [30,



31] and stochastic [32-36] systems. The second t~3/2
correction was established in Ref. [30].

In our problem, the dispersion relation is given by
Eq. (13). By assuming (B1) is valid, the correction to

the leading asymptotic behavior (3) is given by

alt) =, + —t L4 Byt ™32 .. (B2)

2V,

This form implies an algebraic correction to the lead-
ing asymptotic behavior (2) as M(t) ~ At~ *exp(—at)
with @ = 3/(2v.). The inset in Fig. 1 shows that
a(t) = —dIn M/ Int varies linearly with the inverse time
1/t. A two-parameter linear fit, accounting only for the

leading correction to the asymptotic behavior, yields the
value o = 0.272 + 0.003. However, equation (B2) which
accounts for the two leading corrections also involves only
two parameters, o and By because o and v are related by
(13). By using (B2) and (13), we obtain the improved es-
timate a = 0.2715+0.0005 from the very same simulation
results. Such an approach is in the spirit of Bob Ziff’s
work on numerous problems including percolation [40],
planar dimer tilings [41], and random sequential adsorp-
tion [42], where he perfected the art of using finite-time
and finite-size corrections for producing high-precision
measurements from Monte Carlo simulations.
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