Kinetics of Diffusion-Controlled Annihilation with Sparse Initial Conditions
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We study diffusion-controlled single-species annihilation with sparse initial conditions. In this ran-
dom process, particles undergo Brownian motion, and when two particles meet, both disappear. We
focus on sparse initial conditions where particles occupy a subspace of dimension § that is embedded
in a larger space of dimension d. We find that the co-dimension A = d —§ governs the behavior. All
particles disappear when the co-dimension is sufficiently small, A < 2; otherwise, a finite fraction
of particles indefinitely survive. We establish the asymptotic behavior of the probability S(¢) that
a test particle survives until time t. When the subspace is a line, § = 1, we find inverse logarithmic
decay, S ~ (Int)™!, in three dimensions, and a modified power-law decay, S ~ (Int)t~'/2, in two
dimensions. In general, the survival probability decays algebraically when A < 2, and there is an
inverse logarithmic decay at the critical co-dimension A = 2.

Reaction-diffusion processes are ubiquitous in a wide
range of natural and physical phenomena [1-3]. Minimal
models of diffusion-limited aggregation, coalescence, and
annihilation play a central role in the theory of fractals
[4], pattern formation [5, 6], and non-equilibrium statis-
tical physics [7]. In the latter context, the central finding
is that in low dimensions, spatial correlations dominate
and lead to slow reaction kinetics. This behavior has
been observed experimentally [8-10], and it well under-
stood theoretically [11-22].

The single-species annihilation process has played a
key role in illuminating the statistical mechanics of reac-
tion kinetics. It is represented by the reaction scheme

A+A—=1. (1)

In this random process, particles undergo ordinary dif-
fusion and whenever two particles meet, they both dis-
appear. Starting with a uniform density, the survival
probability of a test particle, S(t), exhibits the long-time
asymptotic behaviors [12, 15, 16]

t—4/2 d<?2;
S(t) ~< (Int)t=t d=2; (2)
1 d> 2.

The decay is slow below the critical dimension, while in
the complementary case, there is a quick decay, and the
exponent does not depend on the dimension. Strong spa-
tial correlations in the positions of the surviving particles,
which develop below the critical dimension d. = 2, are
responsible for this behavior [12, 23, 24].

Previous studies of single-species diffusion-controlled
annihilation have mostly dealt with spatially-
homogeneous initial conditions, namely, uniform initial
densities. Among a few exceptions are the analyses of
single-species reaction processes in one dimension where
particles initially occupy the half-line [20, 21, 25, 26].
There are also a few studies of single-species annihilation
with a finite (but large) number of particles [27, 28].

FIG. 1: An initial condition where particles, denoted by red
dots, occupy a line in two dimensions (6 = 1, d = 2).

A recent study shows that the survival probability is
altered dramatically when the initial number of particles
is finite, as a finite number of the particles may survive
indefinitely [29].

Motivated by these results, we consider reaction ki-
netics of single-species annihilation with another sparse
initial condition. Specifically, we consider beginning con-
figurations where particles occupy a subspace with inte-
ger dimension § that is embedded in a space with larger
integer dimension d. We consider the simplest possible
case where the initial distribution of particles is uniform
inside the occupied sub-space (figure 1 illustrates a line
in two dimensions).

Our main result is that the co-dimension A = d — ¢
controls the asymptotic behavior. For dimensions d > 2,
we obtain

t—(2-4)/2 A <2,
S(t) ~ ¢ (Int)~! A =2, (3)
S + const. x t7(A=2)/2 A > 9.

All particles disappear when the co-dimension is suffi-
ciently small, A < 2, and the survival probability de-
cays as a power law in this case. A finite fraction



Soo = S(00) of the particles survives indefinitely when
the co-dimension is large enough, A > 2. Finally, all par-
ticles disappear in the borderline case A = 2, although
the survival probability decays extremely slowly, as in-
verse the logarithm of time.

The single-species annihilation process is tractable an-
alytically only in one dimension (see e.g. [16, 22-24, 26]).
Therefore our arguments in favor of (3) rely on heuristic
reasoning. We start with three dimensions, d = 3, and
derive (3) for initial conditions where particles initially
occupy a line, § = 1, or a plane, § = 2. We then ana-
lyze a line, 6 = 1, embedded in a two-dimensional space,
d = 2. We use scaling methods to obtain (3) from the
reaction-diffusion equation, and thereby adopt a similar
approach to that used to analyze initial conditions with
a finite number of particles [29].

In single-species annihilation, identical particles un-
dergo diffusion and whenever two particles touch each
other, both particles disappear. This process can be re-
alized in discrete or in continuum space. In the discrete
version, particles move in an unbounded hyper-cubic lat-
tice of dimension d, and each lattice site can be occupied
by at most one particle. Particles move asynchronously
and independently. In each hopping event, a particle
moves to one of its 2d neighboring sites, chosen at ran-
dom. If the particle lands on an occupied site, both parti-
cles disappear. Initially, the particles occupy a subspace
of dimension . We implemented this discrete version in
our numerical simulations.

We begin with the three-dimensional case, d = 3, and
our starting point is the standard reaction-diffusion equa-
tion for the density ¢ = ¢(z, y, 2, t)

%:DVZC—KCQ. (4)

Here D is the diffusion coefficient, V2 the Laplace oper-
ator, and K the reaction coefficient. Our approach em-
ploys a variant of Smoluchowski’s classical self-consistent
arguments: the reaction term is quadratic in ¢ reflecting
that the reaction process (1) involves two particles [30].
For a spatially uniform system, the diffusion term van-
ishes, so (4) reduces to dc/dt = —Kc?, and the density
decay ¢ ~ t~! in (2) follows. Of course, for homoge-
neous systems, the survival probability of a test particle
is proportional to the density, S o c. Here, we set the
diffusion coefficient and the reaction coefficient to unity
D = K =1, as we are primarily interested in asymp-
totic behaviors. We note that when d > 2, the reaction
coefficient can be set to a constant [24].

We now treat the case where the particles occupy a
line, § = 1. Without loss of generality we set this line
as the z-axis in a standard Cartesian coordinate sys-
tem. With this setup, we expect that d,¢ = 0. Further,
the Laplace operator in (4) becomes two-dimensional,
Vi=092+ 85. The density ¢ = ¢(x,y,t) depends only
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FIG. 2: The inverse survival probability S~* versus time ¢ for
single-species annihilation in three dimension, starting with
a line of particles (6 = 1). Except for slight curvature at
very large times due to the fact that the system is finite, the
data forms a straight line, thereby validating the inverse log-
arithmic decay (9). The simulations were performed on a
cubic lattice with 2500% sites and periodic boundary condi-
tions. Initially, there are 2500 particles, and the results are
obtained using 10® independent runs.

on two of the three coordinates, and the survival proba-
bility of a particle is the integrated density

S(t) = // dzx dy c(z,y,t). (5)

We stress that the survival probability equals the total
number of particles per unit length along the z-axis. By
substituting (5) into the reaction-diffusion equation (4),
we find that the survival probability obeys

%:—//dmyc?. (6)

The right-hand side of this equation is simply the total
reaction rate per unit length.

We now use heuristic methods to estimate the total re-
action rate in (6). The initial arrangement of the particles
is radially-symmetric along the z-axis, and this symmetry
is maintained throughout the reaction-diffusion process.
Therefore, the density depends only on the radial coor-
dinate, ¢ = ¢(r,t) with » = /22 + y2. Since particles
move diffusively, we expect that particles are essentially
confined to within a cylinder of growing radius r ~ v/t
whose axis coincides with the z-axis. Hence, we approx-
imate the density by

c(r,t)ws(t)x{l <V (7)
0 r>t.

In this approximation, the density is uniform inside the
growing cylinder and vanishes outside of it. In this sense,
our approximation employs diffusive mixing that is com-
mon in heuristic treatments of reaction-diffusion systems.
By substituting the approximate density (7) into (6), we
obtain a rate equation for the survival probability,
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FIG. 3: The survival probability S(t) versus time ¢ for d = 3
and § = 2. As a reference, the straight line depicts the ¢~1/2
decay predicted by equation (10). The simulations were per-
formed using a cubic lattice with 2500% sites and periodic
boundary conditions. Initially, 25002 particles occupy a plane,
and the results are obtained from 10! independent Monte
Carlo runs.

In the long-time limit, the survival probability is inversely
proportional to the logarithm of time,

S~ (Int)~t. (9)

This extremely slow decay demonstrates how sparse ini-
tial condition can result in a slow reaction process. The
logarithmic time dependence (9) is difficult to confirm
numerically, but results of our large-scale simulations us-
ing a cubic lattice with 2500% = 1.5625-10'C sites support
the theoretical prediction (Fig. 2).

We now consider a plane, § = 2, embedded in three-
dimensional space. The co-dimension now equals unity,
A =d—6=1, and the Laplace operator is effectively
one-dimensional, V2 = 02. By repeating the steps lead-
ing to (8), we obtain

as 52
=~ 1
o 7 (10)

Therefore, the survival probability has the power-law de-
cay, S ~ t~1/2 as stated in (3). Results of our numerical
simulations are in good agreement with this theoretical
prediction (Fig. 3).

Equations (6) and (10) can be easily generalized to ar-
bitrary co-dimension A. The general rate equation reads
dS/dt ~ —S?/t2/? and equation (3) follows. When the
co-dimension is large enough, A > 2, the survival prob-
ability saturates at a constant value and consequently, a
test particle has a finite chance of avoiding the annihi-
lation process. In the complementary case, A < 2, the
density decays as a power law indefinitely.

Next, we discuss the behavior at the critical dimension,
d = 2. When d > 2, the reaction rate in (4) is a constant,
while for d < 2 the reaction coefficient scales as a power of
the density, K ~ ¢?=9/? [24]. At the critical dimension,
the effective reaction coefficient decays as a logarithmic

FIG. 4: Plot of v/t S(t) versus ¢ for the two-dimensional single-
species annihilation process with initially occupied line. The
simulations were performed on a square lattice with 1250007
sites and periodic boundary conditions, that is initially occu-
pied by 125000 particles. The results were obtained using 103
independent runs.

function of the density, K ~ 1/1In(1/c). Therefore

Jc 9 c?

ot =Y ¢ n{jo) (11)
For uniform systems, the diffusion term vanishes, and
equation (11) simplifies to dc/dt ~ —c?/1In(1/c). The re-
duced reaction rate leads to a logarithmic enhancement
in the survival probability ~ (Int)t~! stated in (2).

We now turn to a line in two dimensions as illustrated
in Fig. 1. In a Cartesian coordinate system, we envision
the particles to occupy the y-axis. Now, the density is
uniform along the y-direction and the Laplace operator
in (11) is effectively one-dimensional, V2 = 92. By in-
tegrating Eq. (11), we see that the survival probability,
S(t) = [ dxc(z,t), decays according to

2
f/dx (/o) (12)

Once again, the total reaction rate represents a rate per
unit length along a line parallel to the y-axis. We antic-
ipate that the reaction process is limited to the diffusive
region |z| < t'/2, and using the same reasoning behind
(6), we obtain a rate equation for the survival probabil-

ity,

ds _
dt

as 52

= - 1
at ~ T t2m(t172/8) (13)

Therefore, the survival probability decays according to
S~ (Int)t=1/2, (14)

Results of our numerical simulations are in good agree-
ment with this prediction (Fig. 4).

We now discuss the complementary case where parti-
cles occupy a sub-space with co-dimension A at or below



the critical dimension, d < 2. In two dimensions, the ef-
fective Laplace operator has dimension A, and the quan-
tity ¢'/2 in the denominator of equation (13) should be re-
placed with t2/2. Below the critical dimension, d < 2, we
substitute the effective reaction coefficient K ~ ¢(2=4)/d
into (4). The survival probability exhibits the asymptotic
decay

d=2;

d<2. (15)

. {(mt) ¢=0/2

t75/2

In our numerical studies, we used a standard algorithm
for simulating the annihilation process [24]. Particles re-
side in a d-dimensional hyper-cubic lattice with linear
dimension L and periodic boundary conditions. Initially,
LY particles occupy a hyper-cubic lattice with dimension
0, that is embedded in the larger space, while the rest
of the sites are empty. In each elementary simulation
step one particle, chosen at random, moves to one of its
neighboring sites. If that site is occupied, both parti-
cles are removed from the system. Time is augmented
by the inverse of the number of remaining particles. The
system memory required by this algorithm is O(L?), and
the processing cost per unit time is proportional to the
number of surviving particles, S(t) x L°.

In what follows, we show how several of the above re-
sults can be derived using alternative probabilistic argu-
ments. First, we obtain the asymptotic decay (14) using
such methods. To derive the S ~ (Int)¢~! decay in (2),
one begins with the number of distinct lattice sites visited
by a random walker [31] in two dimensions,

t

N~ Int’ (16)
Then one argues that if all lattice sites are initially oc-
cupied, all particles in a visited region coalesce into one
particle, and the density is reciprocal to this number,
S ~ N71 in agreement with (2). When the particles ini-
tially occupy a line, we can focus on a square domain with
area v/t x v/t. We now replace the inhomogeneous spatial
distribution with a homogeneous distribution with den-
sity t~1/2, such that the total initial number of particles
equals the linear dimension of the domain, v/t. The total
number of particles in the visited region scales as t /2N,
and its reciprocal gives (14).

Another key result is that when the co-dimension
A > 2, each particle has a finite probability S, > 0
of surviving the annihilation process. This result can
also be derived using probabilistic arguments [29], as we
now demonstrate for a line, § = 1, embedded in a d-
dimensional space. We consider the annihilation to take
place in an unbounded hypercubic lattice where the line
(0,...,0,n) for all —oo < n < oo is initially fully occu-
pied while the rest of the lattice is empty. We also denote
by P, the probability that two random walkers, separated
by distance n in a d-dimensional space, never meet. The

probability S, that the particle, initially located at the
origin, survives forever has the lower bound,

Seo > [[ P2- (17)

n>1

Here, we used P,, = P_,,. If this product is finite, then
the survival probability is necessarily finite. We now in-
voke the well-known asymptotic behavior [32],

1— P, ~n (@2 (18)

when n > 1, to show that the infinite product in (17)
converges to a finite value when d > 3. The above anal-
ysis can also be repeated for a plane, § > 2, and in this
case the lower bound is finite when d > 4. Hence, the sur-
vival probability is finite when the co-dimension is larger
than the critical value, A > 2, in agreement with (3).

In summary, we have studied kinetics of a single-
species reaction process, starting with sparse initial con-
ditions. In our setup, particles initially occupy a sub-
space with dimension d — A embedded in a d-dimensional
space. The effective dimension of the diffusion opera-
tor equals the co-dimension A, and this parameter con-
trols the asymptotic behavior. The survival probabil-
ity of a particle is finite above the critical co-dimension,
A > 2, but it vanishes otherwise. We obtained the time-
dependent behavior of the fraction of surviving particles
using scaling methods. While our scaling analysis and
numerical simulations were performed for integer dimen-
sions and co-dimensions, we expect that the results ex-
tend to non-integer dimensions or co-dimensions. Our
investigation complements studies of catalytic reactions
[33], and reactions with mobile and immobile particles
[34] with a similar geometry.

The survival probability (3) generalizes a classic result
in probability theory. To see this, let us consider two
random walkers in d dimensions, which formally corre-
sponds to the case § = 0. The separation between these
two particles performs a random walk as well, and the
survival probability equals the probability that an ordi-
nary random walk has yet to visit the origin. Indeed,
by substituting A = d into (3), we recover the Pdlya
theorem [35]. Hence, our main result (3) generalizes the
Pélya theorem from a single random walk to a system
of infinitely many random walkers that interact through
the annihilation process.

There are a number of natural extensions of this work.
An immediate generalization is to aggregation processes.
The aggregate mass should no longer be uniform in space,
and it is natural to investigate the spatial dependence of
the mass distribution. It would also be interesting to
study the two-species annihilation process A + B — 0
under sparse initial conditions. For this reaction scheme,
starting from homogeneous initial conditions, the mean-
field behavior emerges when d > 4 [11]. Our study finds
that the critical co-dimension is A = 2, and hence, it is



plausible that there are multiple regimes of behavior for
reactions involving multiple species.
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