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We investigate experimentally the distribution of configurations of a ring with an elementary
topological constraint, a “figure-8” twist. Using a system far from thermal equilibrium, a vibrated
granular chain, we show that configurations where one loop is small and the second is large are
strongly preferred. Despite the highly non-equilibrium nature of the system, our results are consis-
tent with recent predictions for equilibrium properties of topologically-constrained polymers. The
dynamics of the tightening process weakly violates a (coarse-grained) detailed balance, indicating
that the unexpected correspondence with an equilibrium entropic approach is not exact.
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Extending the concept of entropy to nonequilibrium
systems remains an important challenge with only a few
scattered examples where an effective statistical mechan-
ics can be constructed [1,2]. Recently, vertically-vibrated
granular media consisting of spherical particles have been
studied from the perspective of kinetic theory and sta-
tistical mechanics [3,4]. Granular chains composed of
spherical beads connected by rods were suggested as a
model for polymers driven far from equilibrium [5,6]. In
this study, we use this system to test the relevance of
statistical measures, particularly entropy, to nonequilib-
rium systems, by analyzing steady state conformations
of topologically constrained chains.

In equilibrium polymers and biomolecules such as
DNA, topological constraints constantly form and relax
[7–12]. Whereas the role entanglements play in chain dy-
namics is well appreciated [13,14], their effect in systems
far from equilibrium received much less attention. More-
over, direct dynamical experiments are lacking. Theoret-
ical studies, numerical simulations and scaling analysis
predict that in equilibrium, a knotted polymer will gen-
erally favor configurations where the knot is “tight”, i.e.,
localized to a small region of the chain [15–18].

We experimentally examine the applicability of this
interesting prediction to vertically-vibrated granular
chains. A vibrating plate supplies the system with en-
ergy, balancing the energy dissipation due to inelastic
collisions experienced by beads [3,19–21]. This system is
well suited for studying topological constraints as demon-
strated by experiments on diffusive relaxation [5] and
spontaneous formation [6] of knots. Indeed, it allows con-
trol of the chain size and the constraint type, as well as
direct observations of the chain conformation.

We considered the simplest possible topology, a
“figure-8”: a once-twisted ring consisting of two loops,
separated by a single crossing point, which functions as
the topological constraint (see Fig. 1). Under appropri-
ate vibration amplitude, the system is effectively two-
dimensional and the crossing point hops along the chain
without flipping open the figure-8. Surprisingly, despite
the highly nonequilibrium drive applied to the system,
we observed strong entropic tightening. The microscopic
degrees of freedom, the beads, experience periodic drive

and dissipative collisions with the plate, rods, and other
beads, as well as frictional forces. Remarkably the macro-
scopic observable, the loop size, obeys an effective statis-
tical mechanics. Detailed balance is only weakly violated
and the empirical loop-size distribution is close to that
conjectured on entropic grounds.

FIG. 1. A vibrated ring with a figure-8 twist.

Tightening of knots in polymers can be understood by
considering the simplest case [15], in which electrostatic
interactions are perfectly screened. Let a knot be consid-
ered as located at a point, with several loops of lengths
N1, N2, ... projecting from the knot. Ignoring hard-core
interactions, the total number of configurations is then
proportional to ecN

∏
iN
−d/2
i , where d = 2 is the spatial

dimension, and c is a constant. Therefore, assuming all
microscopic configurations are equally likely, the prob-
ability of having a given N1, N2, · · · is maximized when
N1 ≈ N and N2, · · · are all as short as possible. That is,
the knot spontaneously tightens due to entropic effects.

A ring with a figure-8 constraint is natural for studying
this effect as it simply contains two loops of sizes N1, N2

with the overall size N = N1 +N2 fixed. The argument
above predicts a power law divergence in the loop-size
probability distribution

ρ(n) ∝ n−α (1)

with n ≡ N1, N2 for 1 � n � N . The exponent
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α = 43/16 ≈ 2.7 can be obtained even when excluded
volume interactions are taken into account [18,22]. Al-
though this is obtained from large n,N asymptotics, an
enumeration for smaller sizes only leads to small correc-
tions.

Our apparatus consists of an anodized aluminum plate,
driven sinusoidally by an electromechanical vibrator.
The bead and rod chains consist of hollow nickel-plated
stainless steel spheres of radius 1.18±0.01 mm connected
by thin rigid rods of radius 0.26±0.01 mm. The rods con-
strain both the bending and stretching of the chain. In
particular, the rods must lie within a cone of a half-angle
of roughly 45◦ about the axis of either of the two adjacent
rods, and the separation b between two adjacent beads
lies in the range 0 ≤ b ≤ 0.94 mm. The chains were con-
nected end-to-end to form rings, and then twisted with
a single crossing point thereby forming a figure-8. For
the experiments reported here, the number of beads in
the figure-8 ring was between 69 and 219, much larger
than the tightest possible 8-bead loop. The plate was
oscillated harmonically at a frequency of 16 Hz.

The dynamics of the crossing depend on the rms accel-
eration of the plate, γ (this dimensionless quantity is in
units of the gravitational acceleration g). For γ <∼ 1.35,
the crossing does not move along the chain. For γ >∼ 1.55,
the vertical motion of the chain is large enough that the
number of crossings in the ring is not fixed: a loop of the
figure-8 can easily flip, untwisting the ring, or creating
additional crossings. We chose γ = 1.5, for which flipping
events remained rare, occurring every roughly 104 oscil-
lation cycles, while the crossing remained mobile, with
50% chance of the loop size changing in a 1/16-th sec-
ond cycle. The probabilities of the loop size changing
by 1, 2, 3 in a single cycle were 37%, 9%, 2% respectively,
with larger jumps rare. The acceleration was constant
and uniform across the plate to better than 1%. The
27.2 cm plate diameter, corresponding to approximately
115 beads, was large enough so that collisions with the
sloped acrylic wall were rare.

Digital images of the chain were obtained to determine
the loop size distribution. Image analysis requires a two
step procedure involving: (i) monomer recognition, and
(ii) chain reconstruction. To obtain the monomer po-
sitions, images of resolution 1000 × 1016 pixels were ac-
quired. At this resolution, the reflected light from a bead
appears in the images as a bright spot of about 5×5 pix-
els, even though the bead has a diameter of just over 8
pixels. The positions of the beads were determined by
fitting the intensity pattern generated by each bead to a
Gaussian, with the peak position taken as the bead posi-
tion. We estimate the positional accuracy obtained using
this procedure as 0.05 bead diameters.

Given these positions, the order of the monomers along
the chain was determined using an efficient greedy al-
gorithm which requires only N2 operations for an N -
bead ring. This algorithm utilizes the aforementioned
geometrical restrictions on stretching and bending im-
posed by the rods (given two connected beads, the third

was searched only in a properly restricted neighborhood).
Once the ring was reconstructed, the crossing point was
identified, thereby determining the two loop sizes.
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FIG. 2. The observed loop size distribution for chains of
length N = 99 (solid line), N = 149 (dashed line). To com-
pare the two distributions, the range of possible loop sizes,
8 ≤ i ≤ N − 8, is scaled to unity.

We first sampled the loop size at a much slower rate of
0.25 Hz. Starting with two equal-size loops at each run
we obtained the loop-size distributions shown in Fig. 2 for
chains of size N = 99, 149. The distributions both have
sharp peaks located at the smallest possible loop size.
We repeated the experiments using larger beads, chang-
ing the driving frequency to 13 Hz, and using chains of
length 49, 69, and 219, as well as using a plate with differ-
ent roughness. Further, many sets of images at arbitrary
phase with respect to the driving were analyzed. In all
these cases, the same qualitative loop-size distribution
emerged. Hence, the loop is tight.

There were, however, some quantitative differences
with the peak height varying by about 20%. Since the
number of hopping events before flipping (∼ 104) hap-
pens to be of the same order as the number required for
the loop size to reach its minimum (∼ N2), the observed
distribution depends on the initial loop size. This effect
is more pronounced for larger chains as seen in in Fig. 2,
where the N = 149 chain exhibits a small maximum at
the symmetric configuration, a remnant of the initial con-
ditions. Although the Rouse time of an ideal chain also
scales as N2, the chain conformation relaxes on a much
faster time scale than the loop size, so the dependence
on the initial chain conformation is negligible.

To find the true peak height, with flipping events re-
moved, we measured the loop size at a much faster frame
rate of 16 Hz, and experimentally determined the transi-
tion probability ti,j from a loop of size i to a loop of size
j. To sample ti,j for all i, the twisted ring was started
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manually at various equally-spaced loop sizes, and then
allowed to run for 200 cycles to let the chain equilibrate,
after which 200 frames were taken to measure ti,j . By
taking 20,000 total frames over 100 separate runs, we
obtained an accuracy of 10% on individual ti,j . After
equilibration, correlations between successive transitions
were negligible, implying a Markov process.

Given Markovian dynamics, it is possible to calculate
the steady state probability, ρi, of the loop having size
i, from the ti,j by performing a Monte Carlo simula-
tion of the transition process. For a chain of length
149, we found the distribution shown as the solid line
in Fig. 3. Compared to that measured directly, this
histogram is characterized by a sharper peak and con-
siderable curvature at the center because flipping events
and dependence on initial conditions were eliminated, re-
spectively. The dashed line shows the theoretical curve
ρi ∝ [i−α(N − i)−α], with α = 43/16. The two curves are
consistent, although the peak is more sharply defined in
the solid line. Making quantitative statements about the
relation between the curves would require much larger
chain lengths N to obtain a sufficient scaling region. Fur-
ther, the statistical error in ρi is most pronounced in the
center of the histogram where ρi is small. Other chain
lengths have similar histograms, in this case using 0.25
Hz transition rates.
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FIG. 3. Loop-size distribution obtained from transition
rates (solid line), and equilibrium result (dashed line).

The transition rates enable us to check detailed bal-
ance, a sharp test of the nonequilibrium nature of
the system. For a system in thermal equilibrium, de-
tailed balance implies a vanishing net flux between
any two microscopic states, namely ρiti,j = ρjtj,i, or
fj(i) ≡ ln [(ρiti,i+j)/(ρi+jti+j,i)] = 0. Interestingly, we
have found that f1(i) > 0 and f2(i) < 0, namely, short
jumps tend to tighten the loop more than long jumps.
This is shown in Fig. 4, where we plot a moving average

of f1(i) as the solid line, and a moving average of f2(i)
as the dashed line. The average of f1(i) is 0.1± 0.02 for
i > 100.

As this is an important point, we have made several
additional checks. We also considered f1(i) + f1(i+ 1)−
f2(i + 2), which measures the flux around a three point
neighborhood. This ρ-independent quantity was positive,
demonstrating violation of detailed balance directly from
the ti,j . Furthermore, we tested detailed balance using
0.25 Hz transition rates for other chain lengths, and again
found that short jumps tighten the loop more than long
jumps. As a final check, we have tested this procedure
using surrogate data from a simulated process which sat-
isfies detailed balance to verify that the violation is not
an artifact of the reconstruction of ρ from the ti,j .
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FIG. 4. Plot of smoothed f1(i) (solid line), and smoothed
f2(i) (dashed line).

Since it is surprising that an argument based on count-
ing of states should be relevant in a nonequilibrium sys-
tem, we now consider a simplified model. We show that,
even out of equilibrium, there are entropic tightening
forces, despite violation of detailed balance and possible
quantitative changes in the size distribution. We consider
a chain with linear elastic interactions between neighbor-
ing beads and ignore self-avoidance. We will first consider
the equilibrium case, with the chain subject to thermal
forcing and damping, and then generalize to athermal
drive. Number the beads from 1 to N , and label the po-
sition of bead i by ~x(i). Let the crossing occur at beads
n1, n1 + 1 and n2, n2 + 1. We will compute the forces on
the crossing, and from this derive an effective dynamics.

Assume n1 < n2, and consider the loop formed by
beads n1 + 2, ..., n2− 2. This loop exerts a force on bead
n1 + 1 proportional to ~x(n1 + 2)− ~x(n1 + 1). This force
tries to tighten the loop. Summing over normal modes
of the loop, the average force of a loop of length n is
found to be kT (c− 1/n), with c > 0. The fluctuations in
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this force introduce an effective noise into the dynamics
of n1. There is also an effective dissipation: if the cross-
ing moves to tighten a given loop, the force exerted by
that loop temporarily increases (both these contributions
are determined by short distance effects). We then make
an approximation that n1, n2 can be treated as particles
of mass M subject to the above forces. The resulting
dynamics for n = n2 − n1 when n << N is,

M∂2
t n = −kT

n
− ν∂tn+ η(t), (2)

where ν is the dissipation parameter and η is the noise.
By the fluctuation-dissipation theorem, noise and dissi-
pation in (2) are such that n also behaves as a thermal
particle at temperature T , giving an equilibrium distri-
bution ρ(n) ∝ n−d/2.

Suppose instead that the chain is subject to athermal
forcing with large, non-Gaussian fluctuations at short dis-
tances, a reasonable assumption given the collisions with
the plate. The average force will remain proportional to
−1/n, but the noise in (2) also becomes athermal. The ef-
fect of this is most easily understood in the overdamped
limit of (2). Then, n executes a biased random walk
with a drift of order 1/n, with additional random jumps
of varying size due to noise. As a result, large jumps
are less biased than small jumps, and detailed balance
is violated as in the experiment. At large n this gives
biased diffusion, with the diffusivity determined by the
mean-square step size. This yields ρ ∝ n−α, α 6= d/2.
For smaller n, the probability distribution is determined
only by the smaller, more biased jumps, sharpening the
peak in the distribution at a width of order the largest
jump size, consistent with observations. This behavior is
independent of the precise form of the noise, as confirmed
by our numerical simulations of (2).

Finally, we consider the dynamics of constraints in lin-
ear chains instead of rings. In this case, knots can open
at the ends of the chain. Consider a linear chain which
crosses itself at one point. Let the crossing occur at links
n1, n2, with 0 < n1 < n2 < N . The points n1, n2 describe
a random walk, with boundary conditions n1 < n2, and a
bias proportional to 1/(n2−n1). For α > 1, the two walk-
ers form a bound state, and the time for the knot to open
will behave for large N as for a single random walker.
This contrasts with the behavior found in a larger accel-
eration regime, for which experimental measurements of
knot opening times showed a purely diffusive behavior [5],
with negligible entropic interaction between walkers. We
speculate that the reason for the reduced interaction in
the larger acceleration regime is that the increased drive
takes the system further out of equilibrium.

In conclusion, we have observed spontaneous tighten-
ing of topological constraints in vertically-vibrated gran-
ular chains so that the presence of the constraint merely
reduces the chain length by a fixed amount, rather then
leading to an extensive size reduction. For equilibrium
polymers the tightening arises from entropy. Here, be-
cause of the strongly nonequilibrium drive applied to the

system, the bead dynamics are athermal and the cross-
ing dynamics breaks detailed balance. Nevertheless, the
loop-size distribution remains close to equilibrium. This
system provides further possibilities for experimental ex-
amination of the role of entropic forces in nonequilibrium
statistical mechanics. For example, it can be used to
probe fluctuation-dissipation relations by a quantitative
comparison between the forces on the crossing point and
the velocity fluctuations in the beads, namely the gran-
ular temperature. Furthermore, monitoring steady state
chain conformations may illuminate the ergodic proper-
ties of the system.
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