Escape and Finite-Size Scaling in Diffusion-Controlled Annihilation
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We study diffusion-controlled single-species annihilation with a finite number of particles. In this
reaction-diffusion process, each particle undergoes ordinary diffusion, and when two particles meet,
they annihilate. We focus on spatial dimensions d > 2 where a finite number of particles typically
survive the annihilation process. Using scaling techniques we investigate the average number of
surviving particles, M, as a function of the initial number of particles, V. In three dimensions, for
instance, we find the scaling law M ~ N /3 in the asymptotic regime N > 1. We show that two
time scales govern the reaction kinetics: the diffusion time scale, T ~ N?/3 and the escape time
scale, 7 ~ N*/3. The vast majority of annihilation events occur on the diffusion time scale, while

no annihilation events occur beyond the escape time scale.

Reaction-diffusion processes are found in most areas
of science including biology, chemistry, physics, and geo-
physics [1-5]. Typically, in diffusion-controlled reactions,
particles diffuse in space and a reaction occurs when two
or more particles “meet” [6-9]. Being strongly interact-
ing many-body systems, reaction-diffusion processes play
a central role in pattern formation [10, 11] and in non-
equilibrium statistical mechanics [12, 13].

Studies of simplified reaction schemes such as annihi-
lation, coalescence, and aggregation show that there are
two types of behavior. In sufficiently low spatial dimen-
sions, significant spatial fluctuations develop and slow
down the reaction kinetics [5, 6, 13—-24]. This effect has
been confirmed, both qualitatively and quantitatively, in
a number of experiments [25-27]. In large spatial di-
mensions spatial fluctuations are minor, and the stan-
dard rate equation approach is applicable. The critical
dimension which differentiates these two regimes of be-
havior depends on the reaction scheme [13].

The vast literature on non-equilibrium statistical me-
chanics of reacting systems is focused on spatially-
homogeneous systems where the number of particles is
infinite. Moreover, most of the theoretical methods
used to describe reaction processes apply to spatially-
homogeneous systems [17, 19, 21, 22, 24]. While there
are a few exceptional studies of spatially-inhomogeneous
[28, 29], or finite [30, 31] systems, little attention has
been given to systems with a finite number of particles.

Here, we investigate diffusion-controlled reaction pro-
cesses with a finite, yet large, number of particles in an
unbounded space. We focus on the simplest possible re-
action, single-species annihilation which is represented by
the reaction scheme

A+A—=1. (1)

In the annihilation process (1), identical particles, de-
noted by A, undergo Brownian motion and whenever
two particles come into contact, they disappear. We fo-
cus on the initial condition where N particles occupy a
d—dimensional ball (see Fig. 1). We also briefly discuss
initial conditions where the occupied region has an in-
trinsic dimension smaller than d.
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FIG. 1: Illustration of the diffusive escape process: (a) the
initial condition with N = 38,911 particles inside a ball of ra-
dius R = 21 in three dimensions; (b), (c¢), & (d) show particle
positions when 4.1%, 3.1%, and 2.5% of the initial particles
remain. Particle positions are projected from three dimen-
sions onto two dimensions.

We are especially interested in the ultimate fate of the
system, that is, the behavior in the limit ¢ — co. This be-
havior follows from recurrence properties of a single ran-
dom walk [13, 32]. A random walk on an ordinary lattice
in dimension d is guaranteed to return to its starting site
if and only if d < 2. Since the separation between a pair
of particles also undergoes a random walk, the two par-
ticles are guaranteed to meet if and only if d < 2. There-
fore in single-species annihilation, all particles disappear
when d < 2, while a finite number eternally survive when
d > 2 [33].

We focus on the interesting case d > 2, and we study
the average number of surviving particles M as a function
of the number of starting particles N. Our first result is
the scaling law (see Fig. 2)

d—2
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M ~ N¢ with
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FIG. 2: The average number of surviving particles M versus
the initial number of particles N. Initially, the particles oc-
cupy a ball on a three-dimensional lattice. The quantity M is
measured by fitting the late-time behavior of n(t) to the lin-
ear function a+bt~1/2, as follows from (12). The inset shows
the exponent o = dIn M/dIn N versus N; the reference line
a =1/3 is drawn as well.

which applies for N > 1. To derive (2), we study the
time evolution of the number of particles. Our second
result is that there are two time scales

T ~N?%% and 1~ N¥4, (3)

where T is the diffusion time, and 7 is the escape time.
The vast majority of annihilation events occur on the
diffusion time scale, while no annihilation events events
occur beyond the escape time scale.

The single-species annihilation process (1) can be re-
alized either in continuous or in discrete space. In the
continuous-space realization, particles have a finite size
and undergo Brownian motion with diffusion coefficient
D. In the discrete-space realization, particles reside in
a d-dimensional hyper-cubic lattice. Each particle occu-
pies a single site and hops with rate D to a neighboring
site, chosen at random. When a particle hops onto an
already occupied site, both particles disappear instanta-
neously. In the numerical simulations, we implemented
the discrete-space version.

Our focus is the behavior of a finite number of parti-
cles. Hence, we consider initial conditions where a com-
pact region of space is occupied by a finite number of
particles, N, while its outer region is empty. We make
two assumptions regarding the initial arrangement of the
particles: (i) the occupied region is compact, and (ii) the
particle density is uniform. Hence, the number of parti-
cles is proportional to the volume of the region: N ~ L¢,
where L is the linear dimension of that domain. In the
simulations, we implemented a uniform distribution in-
side a d-dimensional ball: all lattice sites within distance
R of the origin are occupied.

The density c¢(r,t) obeys the standard reaction-
diffusion equation

Jdc

a:DV%—K& (4)

In writing this equation, we assume that the particles are
perfectly mixed, that is, particle positions are not corre-
lated. Consequently, the reaction term is quadratic in
the density. For single-species annihilation, the reaction
equation (4) is valid in dimension d > 2. The reaction
coefficient K scales with the diffusion coefficient D and
the particle size a according to K ~ Da%"2, as shown by
Smoluchowski [7]. For the discrete-space realization, we
identify D with the hopping rate, and a with the lattice
spacing. Without loss of generality, we set D =1, a =1,
and K = 1.

Using the reaction-diffusion equation (4) and a key
simplifying assumption about the spatial arrangement of
the particles, we can obtain a rate equation for the total
number of particles at time ¢, n(t) = [drc(r,t). First,
we integrate the reaction-diffusion equation (4) over the
entire space and obtain

dn 9
E__/drc. (5)

This equation states that the rate of decline in the num-
ber of particles equals the total reaction rate.

In the initial state, particles are confined to a region
of space with a finite volume. Importantly, the same
remains true at all times. We expect that the particle
“cloud” expands with time, but nevertheless, the size of
this cloud remains finite because the number of particles
is finite. Let us consider a cloud of particles, confined to
within a region of volume V. In our heuristic analysis,
we assume that the particles are uniformly distributed
inside this region

e(r,t) =

; (6)

<Is

while the density vanishes outside this domain,
¢(r,t) = 0. By substituting the uniform density (6) into
the (5), we arrive at a rate equation for the average num-
ber of particles,

dn n?
@V @

We reiterate that two assumptions were used to derive
(7), viz. (i) the particles are confined to a finite region
with volume V, and (ii) the particles are uniformly dis-
tributed inside this volume. But we made no assumptions
about the shape of the confining region.

As the particles diffuse, the volume of the region con-
fining them grows with time, V' = V(¢). Initially, parti-
cles are uniformly distributed and hence V(¢ = 0) ~ N.
Particles that survive the annihilation process eventually
manage to diffuse outside the initially occupied domain
(see figure 1). From the diffusion length scale ¢ ~ t/2,
we deduce the growth V(t) ~ (¢ ~ t%/2. Therefore the
confining volume exhibits two regimes of behavior,

N t< T,
V(t) ~ {td/Q

t>T.

(8)
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FIG. 3: The total reaction rate —dn/dt versus time ¢ for a
system with N = 7153 particles in three dimensions. Also
shown for reference is a line with slope —3/2.

The crossover time scale T' ~ N?/¢ in (3) can be obtained
by matching the two quantities. We term T the diffusion
time, as this scale characterizes the time it takes a par-
ticle to diffuse outside the initially occupied domain. As
we show below, this time scale separates two regimes of
behavior: an initial regime during which most annihila-
tion events occur, and a late regime during which the
remaining few reaction events occur.

In the early regime, the reactions occur within the ini-
tially occupied region with volume V' ~ N. Equation (7)
becomes dn/dt ~ —n?/N, and therefore,

n(t) ~ Nt~! (9)

for 1 « t < T. This rapid decay holds as long as most
particles remain within the initially occupied domain.
We estimate the average number of particles that sur-
vive the first phase of the annihilation process by substi-
tuting the time scale T in (3) into Eq. (9) to yield

n(T) ~ N° (10)

with o = (d — 2)/d. Since n(T)/N ~ N~2/4 the vast
majority of particles are annihilated at times t < T'.

In the late regime, the confining volume grows accord-
ing to V ~ t%2 and Eq. (7) becomes dn/dt ~ —n?/t%/2.
By integrating this equation from ¢y till time ¢ we find

1 1 1 1
n)  nto) (T T ydj2—10 (11)

for t > to > T. In writing (11) we ignored numerical fac-
tors of order unity. Setting tg ~ T and taking the limit
t — oo in Eq. (11), we arrive at our main result: the scal-
ing law (2) for the average number of surviving particles,
M = n(o0), as a function of the total number of starting
particles N. From extensive numerical simulations we
estimate a = 0.34 4+ 0.02 for the exponent governing the
scaling law (2) in three dimensions (Fig. 2). The reduc-
tion in the number of particles in the second stage of the
reaction process is moderate, n(oco) ~ n(T). Hence, the
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FIG. 4: The scaled number of particles n(t)/N*/3 versus the
scaled time t/N?/3, for three different initial conditions. The
particle numbers correspond to balls with radii Ry = 27,
Ry =58, and Rz = 119. The simulation results represent
an average over 10%, 102, and 10! independent realizations.

finite fraction of particles that survive past the diffusion
time scale, escape annihilation. The exponent « in (2)
vanishes in the limit d — 2, consistent with the fact that
no particles survive when d < 2. Also, a finite fraction
of the particles survive, M ~ N, in the limit d — oc.

In summary, the total number of particles exhibits two
regimes of behavior

n(t) J/7)7" 1<t T (12)
M 1+ const. x (t/T)2=D/2 T «t.
Our simulation results confirm the asymptotic behav-
ior dn/dt ~ t~%? when t > T (see Fig. 3). We have
used the asymptotic n(t) ~ n(oco) + const x t2~9/2 to
estimate the final number of particles M = n(oo). For a
given N, we measure the late time behavior and fit the
number of remaining particles n(t) to a linear function
of t(3=9/2_ The intercept of this line yields M.

A useful way to express the time-dependent behavior
(12) is through the finite-size scaling form [34, 35]

n(t) ~ N F (t/NQ/d) . (13)

This form reflects that, in properly scaled units, the
statistics become independent of the number of particles
in the large-N limit (see Fig. 4). The scaling function
has two limiting behaviors

r <L 1
x> 1.

1
x
F ~ 14
() {1 + const. x z(2=4)/2 (14)

Since the number of particles is finite, the time at
which the final reaction event takes place is also finite.
The final reaction reduces the number of particles by two,
and hence, the time of the final reaction event 7 can
be estimated from n(7) — n(co) = 2. Rewriting (12) as
n(t) —n(oo) ~ N2 t(2=4)/2 e obtain the “escape” time



scale 7 ~ N*/4 in (3). This time scale also sets a length
scale p ~ 71/2 ~ N2/ for the escape process. Particles
that manage to diffuse a distance comparable to the es-
cape length scale p survive forever. Note that the escape
length scale grows quadratically with the linear dimen-
sion of the initial domain p ~ L2.

To summarize, the diffusion time scale T ~ N2/¢ ig
the time it takes particles to diffuse outside the initially
occupied domain, and nearly all annihilation events occur
in this time window. The escape time 7 ~ N*/? is the
time at which the reaction process stops. The universal
relationship, 7 ~ T2, connects these time scales.

We now estimate the average lifetime of an annihilated
particle. Nearly all particles disappear in the first time
regime, t < T. From the density decay (9), we get ¢ 2 for
the annihilation rate and therefore the average lifetime

is (t) ~ [T dttt=2. Using T ~ N¥4, we obtain
() ~ In . (15)

Hence, the lifetime of reacting particles is relatively short,
growing only logarithmically with system size. This fea-
ture allows us to simulate a large number of particles.
Our Monte Carlo simulations utilize O(N) memory but
require a quadratic number of operations per surviving
particle, per unit time. Thanks to (15), the overall com-
plexity of our brute-force simulations is only O(N?1In N).

We now mention several extensions of the above re-
sults. First, we consider the multi-particle annihilation
process

A+ A+---+ A0, (16)
N———

which generalizes the binary reaction process (1) to an
arbitrary number m of reacting particles. The basic rate
equation (7) becomes dn/dt = —n™/V. By generalizing
the above analysis, we obtain

M~ NU=d)/d g = 2 (17)
This scaling behavior holds above the critical dimension,
d > d¢; for d < d., all particles disappear. The dif-
fusion time remains 7 ~ N?/¢ but the escape time is
m-dependent, 7 ~ N@m)/[d(m=1)]

Thus far, we have implicitly assumed that the dimen-
sion of the initially-occupied region § equals the spatial
dimension d. We now consider the situation where ¢ < d
[36]. For example, when particles initially occupy a two-
dimensional disk in three dimensions then § = 2 and
d = 3. In general, the number of particles scales with
the linear dimension as follows N ~ L?. To address this
problem, we use an alternative, probabilistic, approach.

We demonstrate this approach for the case d = §. Ini-
tially, the particles occupy a compact domain of volume
L% and the typical distance between particles equals 1.
At later times, the surviving particles still occupy the
same domain of volume L%, but the typical distance be-
tween neighboring particles grows to £ > 1. We take a

test particle, located in the bulk of the domain, and esti-
mate its survival probability, assuming that all other par-
ticles survive. Around the test particle, we draw spheres
of radius nf, with n = 1,2,...,L/¢ and n?~! particles
on each spherical shell. For two Brownian particles sepa-
rated by distance r, the probability that they never meet
is 1 — 7~(4=2)[37]. The product of such probabilities,

L/¢ d—1

(B

{=1

gives a lower bound for the survival probability. If this
product is finite in the limit N — oo, then the survival
probability is finite. The product is finite if and only if
its logarithm is finite and hence,

Lje 9
1 L
(=1

Therefore, to guarantee that the survival probability is
finite we must choose /¢ ~ L%, and using the number of
surviving particles, M ~ (L/£)?, we recover (2).

This probabilistic argument can be generalized to situ-
ations where the initially-occupied region has dimension
5. Replacing the power n?~! in the product (18) with
n®~1, and repeating the steps above, yields the average
number of surviving particles

N@=2)/0 A <2,
M~{N(InN)"1 A=2 (20)
N A>2.
Here, A = d — § is the co-dimension. For example,

for a two-dimensional disk in three dimensions we have
M ~ N'/2_ In general, the co-dimension governs the be-
havior. A finite fraction of the particles eternally survive
when the co-dimension is sufficiently large, A > 2, while
the number of surviving particles grows algebraically
with N when the co-dimension is small, A < 2. We
mention that Eq. (20) can also be derived from the time-
dependent density obtained in [36].

In summary, we studied reaction kinetics of single-
species annihilation starting with a finite number of par-
ticle. Using the rate equation approach and heuristic
arguments, we derived finite-size scaling properties of
the time-dependent number of particles. Systems with
a finite, yet large, number of particles exhibit universal
behavior, once time and particle number are properly
scaled. We have shown that when d > 2, a finite num-
ber of particles escape the reaction process. This num-
ber scales sub-linearly with the total number of particles.
In addition to the diffusion time that characterizes the
process, we also found a much larger time scale which
characterizes the escape process.

We note that our initial conditions: a “droplet” con-
taining a finite number of reactants is physically relevant.
While we focused on spherical droplets in our simula-
tions, we expect the same qualitative behaviors occurs



for other compact initial conditions, say for particles oc-
cupying a d—dimensional cube and even for non-compact
initial conditions as long as all moments of the distribu-
tion function characterizing the distance to the origin are
finite.

Our analysis provides scaling predictions for average
quantities such as the average number of surviving par-
ticles. It would be interesting to investigate the dis-
tribution of the number of surviving particles. Given
the finite-size scaling form (13), we expect that a uni-
versal distribution emerges when the number of parti-
cle is large. The shape of this distribution is an in-
teresting topic for future studies. Of special interest is
the probability E4(N) that all particles disappear. Us-
ing the probabilistic approach (18)—(19), we obtained
the following estimate for this extinction probability:
InE4(N) ~—=N*InN.

The behavior of other reaction processes is another
topic for further research. We expect that our scal-

ing results hold for the closely-related coalescence pro-
cess, A+ A — A. However, the aggregation process,
A + A; — A4, with mass-dependent diffusion coef-
ficients, e.g. Dy ~ k™", appears to be more challeng-
ing. Another related problem is two-species annihilation,
A+ B — ), where the critical dimension is d. = 4 [14, 18].
The behavior above the critical dimension should coin-
cide with (2), but the behavior below the critical dimen-
sion is intriguing. Recurrence properties of Brownian
particles again imply that no particle eternally survive
when d < 2. Scaling arguments, along the lines of those
used in this study, suggest M ~ N/2 for all 2 < d < 4.
It would be interesting to investigate this problem using
theoretical or computational methods.
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