Formation of Political Networks: Bifurcations, Patterns, and Universality

Eli Ben-Naim
Theoretical Division, Los Alamos National Lab

I Motivation
II Continuum: Numerics \& Scaling
III Discrete: Theory \& General Features
with: Paul Krapivsky, Sidney Redner (Boston)

How many political parties?

- Data: CIA world factbook 2002
- 120 countries with multiparty senates
- Average $=5.8$, Variance $=2.9$

The Compromise Model

- Opinion measured by continuum variable

$$
-\Delta<x<\Delta
$$

- Compromise: via pairwise interactions

$$
\left(x_{1}, x_{2}\right) \rightarrow\left(\frac{x_{1}+x_{2}}{2}, \frac{x_{1}+x_{2}}{2}\right)
$$

- Conviction: restricted interaction range

$$
\left|x_{1}-x_{2}\right|<1
$$

- Initial conditions: uniform distribution

$$
P(x, t=0)= \begin{cases}1 & |x|<\Delta \\ 0 & |x|>\Delta\end{cases}
$$

- Minimal, one parameter model
- Mimics competition between compromise and conviction

Consensus

- Nonlinear rate equations

$$
\begin{aligned}
\frac{\partial P(x, t)}{\partial t} & =\iint_{\left|x_{1}-x_{2}\right|<1} d x_{1} d x_{2} P\left(x_{1}, t\right) P\left(x_{2}, t\right) \\
& \times\left[2 \delta\left(x-\frac{x_{1}+x_{2}}{2}\right)-\delta\left(x-x_{1}\right)-\delta\left(x-x_{2}\right)\right]
\end{aligned}
$$

- Integrable for $\Delta<1 / 2$:

$$
\left\langle x^{2}(t)\right\rangle=\left\langle x^{2}(0)\right\rangle e^{-\Delta t}
$$

- Final state: localized

$$
P_{\infty}(x)=2 \Delta \delta(x)
$$

- Time dependence: similarity solution

$$
\Phi(z)=\frac{2 \Delta}{\pi} \frac{1}{\left(1+z^{2}\right)^{2}} \quad z=\frac{x}{\left\langle x^{2}(t)\right\rangle^{1 / 2}}
$$

Generally, what is nature of final state?

Diversity

- $\sqrt{ }$ Numerical integration of rate equations
- Monte Carlo simulation of random process
- Final state:

$$
P_{\infty}(x)=\sum_{i=1}^{N} m_{i} \delta\left(x-x_{i}\right)
$$

Multiple political networks (parties)

Bifurcations and Patterns

- Periodic sequence of bifurcations

$$
x(\Delta)=x(\Delta+L)
$$

- Alternating major-minor pattern
- Clusters are equally spaced
- Period \rightarrow cluster mass, separation

$$
L=2.155
$$

Self-similar structure, universality

Cluster masses, bifurcation types

- Masses are periodic as well

$$
m(\Delta)=m(\Delta+L)
$$

- 3 types of bifurcations:

1. $\emptyset \rightarrow\{-x, x\}$ Nucleation of 2 minor branches
2. $\{0\} \rightarrow\{-x, x\}$ Nucleation of 2 major branch's
3. $\emptyset \rightarrow\{0\}$ Nucleation of central cluster

- Bifurcations occur near origin
- Major: $M \rightarrow 2.15$, Minor: $m \rightarrow 3 \times 10^{-4}$

Central cluster may or may not exist

Near critical behavior

- Perturbation theory: $\Delta=1+\epsilon$
- Central cluster: mass $M, x(\infty)=0$
- Minor cluster: mass $m, x(\infty)=1+\epsilon / 2$

$$
\frac{d m}{d t}=-m M \quad \rightarrow \quad m(t) \sim \epsilon e^{-t}
$$

- Process stops when $x \sim e^{-t_{f} / 2} \sim \epsilon$
- Final minor cluster mass

$$
m(\infty) \sim m\left(t_{f}\right) \sim \epsilon^{3}
$$

- Argument generalizes to type 3 bifurcations

$$
m \sim\left(\Delta-\Delta_{c}\right)^{\alpha} \quad \alpha= \begin{cases}3 & \text { type } 1 \\ 4 & \text { type } 3\end{cases}
$$

Masses vanish algebraically near type 1, 3 bif

Discrete Opinions

- Basic process: $(i-1, i+1) \rightarrow(i, i)$
- Rate equation:

$$
\frac{d}{d t} P_{i}=2 P_{i-1} P_{i-1}-P_{i}\left(P_{i-2}+P_{i+2}\right)
$$

- Example: 6 states, $P_{i}=P_{N-i}$
- Initial conditions determine final state
- Isolated fixed points, lines of fixed points

General Features

- Dissipative system: volume contracts
- Lyapunov (energy) function exists $\left\langle x^{2}\right\rangle$
- No cycles or strange attractors
- Uniform state is unstable: $P_{i}=1+\phi_{i}$

$$
\phi_{t}+\left(\phi+a \phi_{x x}+b \phi^{2}\right)_{x x}=0
$$

Discrete case yields useful insights

Exponential initial conditions

- Bifurcations induced at the boundary
- Periodic structure
- Two types of bifurcations

1. Nucleation of major branch
2. Nucleation of minor branch

Central party is stable

Conclusions

- Networks form via bifurcations
- Periodic structure
- Alternating major-minor pattern
- Central party not always exists
- Power-law behavior near transitions

Outlook

- Role of initial conditions? Classification?
- Role of spatial dimension? Correlations?
- Add disorder, inhomogeneities
- Tiling/Packing in 2D,3D?
E. Ben-Naim, P.L. Krapivsky, S. Redner, it cond-mat/0212313, Physica D, submitted.
G. Weisbuch, cond-mat/0111494.

