Formation of Political Networks: Bifurcations, Patterns, and Universality

Eli Ben-Naim

Theoretical Division, Los Alamos National Lab

I Motivation II Continuum: Numerics & Scaling III Discrete: Theory & General Features

with: Paul Krapivsky, Sidney Redner (Boston)

How many political parties?

- Data: CIA world factbook 2002
- 120 countries with multiparty senates
- Average=5.8, Variance=2.9

Simple model?

The Compromise Model

• Opinion measured by continuum variable

$$-\Delta < x < \Delta$$

• Compromise: via pairwise interactions

$$(x_1, x_2) \to \left(\frac{x_1 + x_2}{2}, \frac{x_1 + x_2}{2}\right)$$

• Conviction: restricted interaction range

$$|x_1 - x_2| < 1$$

• Initial conditions: uniform distribution

$$P(x,t=0) = \begin{cases} 1 & |x| < \Delta, \\ 0 & |x| > \Delta. \end{cases}$$

- Minimal, one parameter model
- Mimics competition between compromise and conviction

Consensus

• Nonlinear rate equations

$$\frac{\partial P(x,t)}{\partial t} = \int \int_{|x_1 - x_2| < 1} dx_1 dx_2 P(x_1,t) P(x_2,t) \\ \times \left[2\delta \left(x - \frac{x_1 + x_2}{2} \right) - \delta(x - x_1) - \delta(x - x_2) \right]$$

• Integrable for $\Delta < 1/2$:

$$\langle x^2(t) \rangle = \langle x^2(0) \rangle e^{-\Delta t}$$

• Final state: localized

$$P_{\infty}(x) = 2\Delta\delta(x)$$

• Time dependence: similarity solution

$$\Phi(z) = \frac{2\Delta}{\pi} \frac{1}{(1+z^2)^2} \qquad z = \frac{x}{\langle x^2(t) \rangle^{1/2}}$$

Generally, what is nature of final state?

Diversity t=9 t=6 t=0.5 t=0.5t=0

• \surd Numerical integration of rate equations

х

- Monte Carlo simulation of random process
- Final state:

$$P_{\infty}(x) = \sum_{i=1}^{N} m_i \,\delta(x - x_i)$$

Multiple political networks (parties)

Bifurcations and Patterns

• Periodic sequence of bifurcations

 $x(\Delta) = x(\Delta + L)$

- Alternating major-minor pattern
- Clusters are equally spaced
- Period \rightarrow cluster mass, separation

L = 2.155

Self-similar structure, universality

Cluster masses, bifurcation types

 $m(\Delta) = m(\Delta + L)$

• 3 types of bifurcations:

- 1. $\emptyset \rightarrow \{-x, x\}$ Nucleation of 2 minor branches
- 2. $\{0\} \rightarrow \{-x, x\}$ Nucleation of 2 major branch's
- 3. $\emptyset \rightarrow \{0\}$ Nucleation of central cluster
- Bifurcations occur near origin
- Major: $M \rightarrow 2.15$, Minor: $m \rightarrow 3 \times 10^{-4}$

Central cluster may or may not exist

Near critical behavior

- Perturbation theory: $\Delta = 1 + \epsilon$
- Central cluster: mass M, $x(\infty)=0$
- Minor cluster: mass m, $x(\infty) = 1 + \epsilon/2$

$$\frac{dm}{dt} = -mM \quad \rightarrow \quad m(t) \sim \epsilon e^{-t}$$

- Process stops when $x \sim e^{-t_f/2} \sim \epsilon$
- Final minor cluster mass

$$m(\infty) \sim m(t_f) \sim \epsilon^3$$

Argument generalizes to type 3 bifurcations

$$m \sim (\Delta - \Delta_c)^{lpha}$$
 $lpha = egin{cases} 3 & ext{type 1} \ 4 & ext{type 3} \end{cases}$

Masses vanish algebraically near type 1, 3 bif

Discrete Opinions

- Basic process: $(i 1, i + 1) \rightarrow (i, i)$
- Rate equation:

$$\frac{d}{dt}P_i = 2P_{i-1}P_{i-1} - P_i(P_{i-2} + P_{i+2})$$

- Example: 6 states, $P_i = P_{N-i}$
- Initial conditions determine final state
- Isolated fixed points, lines of fixed points

General Features

- Dissipative system: volume contracts
- Lyapunov (energy) function exists $\langle x^2
 angle$
- No cycles or strange attractors
- Uniform state is unstable: $P_i = 1 + \phi_i$ $\phi_t + (\phi + a\phi_{xx} + b\phi^2)_{xx} = 0$

Discrete case yields useful insights

Exponential initial conditions

- Bifurcations induced at the boundary
- Periodic structure
- Two types of bifurcations
 - 1. Nucleation of major branch
 - 2. Nucleation of minor branch

Central party is stable

Conclusions

- Networks form via bifurcations
- Periodic structure
- Alternating major-minor pattern
- Central party not always exists
- Power-law behavior near transitions

Outlook

- Role of initial conditions? Classification?
- Role of spatial dimension? Correlations?
- Add disorder, inhomogeneities
- Tiling/Packing in 2D,3D?
- E. Ben-Naim, P.L. Krapivsky, S. Redner, it cond-mat/0212313, Physica D, submitted.

G. Weisbuch, cond-mat/0111494.