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How many political parties?
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• Data: CIA world factbook 2002

• 120 countries with multiparty senates

• Average=5.8, Variance=2.9

Simple model?



The Compromise Model

• Opinion measured by continuum variable

−∆ < x < ∆

• Compromise: via pairwise interactions

(x1, x2)→
(

x1 + x2
2

,
x1 + x2
2

)

• Conviction: restricted interaction range

|x1 − x2| < 1

• Initial conditions: uniform distribution

P (x, t = 0) =

{

1 |x| < ∆,

0 |x| > ∆.

• Minimal, one parameter model

• Mimics competition between compromise
and conviction



Consensus

• Nonlinear rate equations

∂P (x, t)

∂t
=

∫ ∫

|x1−x2|<1

dx1dx2P (x1, t)P (x2, t)

×
[

2 δ

(

x− x1 + x2
2

)

− δ(x− x1)− δ(x− x2)

]

• Integrable for ∆ < 1/2:

〈x2(t)〉 = 〈x2(0)〉 e−∆t

• Final state: localized

P∞(x) = 2∆δ(x)

• Time dependence: similarity solution

Φ(z) =
2∆

π

1

(1 + z2)2
z =

x

〈x2(t)〉1/2

Generally, what is nature of final state?



Diversity
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Numerical integration of rate equations

• Monte Carlo simulation of random process

• Final state:

P∞(x) =

N
∑

i=1

mi δ(x− xi)

Multiple political networks (parties)



Bifurcations and Patterns
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• Periodic sequence of bifurcations
x(∆) = x(∆ + L)

• Alternating major-minor pattern
• Clusters are equally spaced
• Period → cluster mass, separation

L = 2.155

Self-similar structure, universality



Cluster masses, bifurcation types
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• Masses are periodic as well

m(∆) = m(∆ + L)

• 3 types of bifurcations:

1. ∅ → {−x, x} Nucleation of 2 minor branches
2. {0} → {−x, x} Nucleation of 2 major branch’s
3. ∅ → {0} Nucleation of central cluster

• Bifurcations occur near origin
• Major: M → 2.15, Minor: m→ 3× 10−4

Central cluster may or may not exist



Near critical behavior

−1 1 1+ε−1−ε

• Perturbation theory: ∆ = 1 + ε

• Central cluster: mass M , x(∞) = 0
• Minor cluster: mass m, x(∞) = 1 + ε/2

dm

dt
= −mM → m(t) ∼ ε e−t

• Process stops when x ∼ e−tf/2 ∼ ε

• Final minor cluster mass
m(∞) ∼ m(tf) ∼ ε3

• Argument generalizes to type 3 bifurcations

m ∼ (∆−∆c)
α α =







3 type 1

4 type 3

Masses vanish algebraically near type 1, 3 bif



Discrete Opinions
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• Basic process: (i− 1, i+ 1)→ (i, i)

• Rate equation:

d

dt
Pi = 2Pi−1Pi−1 − Pi(Pi−2 + Pi+2)

• Example: 6 states, Pi = PN−i

• Initial conditions determine final state

• Isolated fixed points, lines of fixed points



General Features
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• Dissipative system: volume contracts

• Lyapunov (energy) function exists 〈x2〉

• No cycles or strange attractors

• Uniform state is unstable: Pi = 1 + φi

φt +
(

φ+ aφxx + bφ2
)

xx
= 0

Discrete case yields useful insights



Exponential initial conditions
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• Bifurcations induced at the boundary

• Periodic structure

• Two types of bifurcations

1. Nucleation of major branch
2. Nucleation of minor branch

Central party is stable



Conclusions

• Networks form via bifurcations

• Periodic structure

• Alternating major-minor pattern

• Central party not always exists

• Power-law behavior near transitions

Outlook

• Role of initial conditions? Classification?

• Role of spatial dimension? Correlations?

• Add disorder, inhomogeneities

• Tiling/Packing in 2D,3D?
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