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Domain Number Distribution
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Fig. 1. Domain motion in the Ising-Glauber model. Surviving domains are

marked by +, annihilated domains by −. The domain number m at a later

time is also indicated.

• The Domain Distribution: Let Qm(t) be the distribution

of domains withm ancestors. Well defined in arbitrary 1D coars-

ening processes. Gives the following quantities:

• The Domain Density: N(t) =
∑

mQm(t)

• The Domain Survival Probability: S(t) =
∑

mmQm(t)

• Unreacted (“single parent”) Domain Density: Q1(t)



1D Ising model with nonconserving Glauber dynamics
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Fig. 2. Monte Carlo data for the Ising-Glauber model. The domain survival

probability S(t), the domain density N(t), and the density of unreacted

domains Q1(t) are shown (top to bottom). The inset plots the local slope

−d lnS(t)/d ln t. Size of spin chain is L = 107.

All densities decay algebraically



Scaling Properties

The domain density (ν = 1/z, z the dynamical exponent)

N(t) ∼ t−ν

The domain survival probability

S(t) ∼ t−ψ

The density of unreacted Domains

Q1(t) ∼ t−δ

The domain distribution

Qm(t) ' tψ−2νQ(mtψ−ν)

Bounds on exponent (since Q1 ≤ ∑

mQm ≤ ∑

mmQm)

ψ ≤ ν ≤ δ

Relation to persistence exponent (since S(t) ≤ P (t) ∼ t−θ)

ψ ≤ θ



Numerical Verification
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Fig. 3. The scaling distribution Q(z) vs. z = m/〈m〉 for three different

times t = 102, 103, 104 in the Ising-Glauber case. The inset demonstrates the

exponential behavior of the large-z tail. 100 systems of size L = 105.

Extremal properties of scaling function

Q(z) ∼














zσ z ¿ 1,

exp(−κz) z À 1.

Scaling relation (obtained by considering Q1)

δ − ν = (ν − ψ)(1 + σ)

Only ψ and δ are independent exponents



Independent Interval Approximation (IIA)

• Domain Length-Number Distribution: Let Pn,m(t) be

the distribution of domains of length n and m ancestors. Gives

the domain number distribution Qm(t) =
∑

n Pn,m(t), and the

domain length distribution Pn(t) =
∑

m Pn,m(t).

1D T=0 Ising-Potts model with Glauber dynamics:

Single spin flip dynamics. Domains walls perform random walk

and annihilate/coalesce upon contact.

Rate Equation:

dPn,m
dt

= Pn−1,m + Pn+1,m − 2Pn,m

+
P1

(q − 1)N 2







∑

i,j
Pi,jPn−1−i,m−j −N(Pn,m + Pn−1,m)







Exact exponents: (Dα the cylinder parabolic function)

δ =
1

2
+

1

q

0 =
∫ ∞
0
dx x−2ψD1/q(x)D

′
1/q(x)

IIA assumes neighboring domains are uncorrelated



Features of the approximation

MC IIA

q ψ δ σ ψ δ

2 0.126 1.27 1.05 0.136612 1

3 0.213 0.98 0.67 0.231139 5/6

8 0.367 0.665 0.24 0.385019 5/8

50 0.476 0.525 0.03 0.480274 13/25

∞ 1/2 1/2 0 1/2 1/2

• Gives exact ν = 1/2, good approximation for ψ, δ:

• Approximation is exact for q = 1 and q =∞

• Correct scaling behavior of Qm(t) and Pn(t)

IIA provides a very close description



Ising Model with Conserving Kawasaki Dynamics

• Kinetics: spin-exchange. In T ↓ 0 limit, domains of length

L diffuse with rate L−1.

• Independent Interval Approximation:

(〈n−1〉 = ∑

n,m n
−1Pn,m)

dPn,m
dt

= 〈n−1〉(Pn−1,m − 2Pn,m + Pn+1,m)

+
P1

N 2







∑

i+j=n

∑

k+l=m
i−1Pi,kPj,l −N(n−1 + 〈n−1〉)Pn,m





 .

• Gives the exact ν = 1/3

• Good estimates for domain exponents:

Monte Carlo: ψ = 0.130, δ = 0.705; IIA: ψ = 0.147, δ = 645

• Good approximation of domain density:
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Conclusions

• Two additional nontrivial decay exponents found.

• Independent Interval Approximation provides correct

qualitative behavior of domain distribution, good estimates for

domain exponents.

• Behavior is independent of dynamics/model.

Outlook

• How many more exponents exist? Probably an infinite

number. For example, consider the survival probability of con-

secutive domains.

• Are these exponents really independent? Yes. Exact

solution for the random field Ising model gives ψ = (3−
√
5)/8

while θ = 1/2 [D. S. Fisher et al, cond-mat/9710270].


