Domain Statistics in Coarsening Systems

E. Ben-Naim¹ and P. L. Krapivsky²

¹Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545 ²Center for Polymer Studies and Department of Physics, Boston University, Boston, MA 02215

References

1. P. L. Krapivsky and E. Ben-Naim, Phys. Rev. E 56, 3788 (1997).

2. E. Ben-Naim and P. L. Krapivsky, J. Stat. Phys., in press.

Domain Number Distribution

Fig. 1. Domain motion in the Ising-Glauber model. Surviving domains are marked by +, annihilated domains by -. The domain number m at a later time is also indicated.

- The Domain Distribution: Let $Q_m(t)$ be the distribution of domains with m ancestors. Well defined in arbitrary 1D coarsening processes. Gives the following quantities:
- The Domain Density: $N(t) = \sum_m Q_m(t)$
- The Domain Survival Probability: $S(t) = \sum_m mQ_m(t)$
- Unreacted ("single parent") Domain Density: $Q_1(t)$

1D Ising model with nonconserving Glauber dynamics

Fig. 2. Monte Carlo data for the Ising-Glauber model. The domain survival probability S(t), the domain density N(t), and the density of unreacted domains $Q_1(t)$ are shown (top to bottom). The inset plots the local slope $-d \ln S(t)/d \ln t$. Size of spin chain is $L = 10^7$.

All densities decay algebraically

Scaling Properties

The domain density ($\nu = 1/z$, z the dynamical exponent)

 $N(t) \sim t^{-\nu}$

The domain survival probability

 $S(t) \sim t^{-\psi}$

The density of unreacted Domains

$$Q_1(t) \sim t^{-\delta}$$

The domain distribution

$$Q_m(t) \simeq t^{\psi - 2\nu} \mathcal{Q}(mt^{\psi - \nu})$$

Bounds on exponent (since $Q_1 \leq \Sigma_m Q_m \leq \Sigma_m m Q_m$)

$$\psi \le \nu \le \delta$$

Relation to persistence exponent (since $S(t) \leq P(t) \sim t^{-\theta}$)

 $\psi \le \theta$

Numerical Verification

Fig. 3. The scaling distribution Q(z) vs. $z = m/\langle m \rangle$ for three different times $t = 10^2, 10^3, 10^4$ in the Ising-Glauber case. The inset demonstrates the exponential behavior of the large-z tail. 100 systems of size $L = 10^5$.

Extremal properties of scaling function

$$\mathcal{Q}(z) \sim \begin{cases} z^{\sigma} & z \ll 1, \\ \exp(-\kappa z) & z \gg 1. \end{cases}$$

Scaling relation (obtained by considering Q_1)

$$\delta - \nu = (\nu - \psi)(1 + \sigma)$$

Only ψ and δ are independent exponents

Independent Interval Approximation (IIA)

• Domain Length-Number Distribution: Let $P_{n,m}(t)$ be the distribution of domains of length n and m ancestors. Gives the domain number distribution $Q_m(t) = \sum_n P_{n,m}(t)$, and the domain length distribution $P_n(t) = \sum_m P_{n,m}(t)$.

1D T=0 Ising-Potts model with Glauber dynamics: Single spin flip dynamics. Domains walls perform random walk and annihilate/coalesce upon contact.

Rate Equation:

$$\begin{aligned} \frac{dP_{n,m}}{dt} &= P_{n-1,m} + P_{n+1,m} - 2P_{n,m} \\ &+ \frac{P_1}{(q-1)N^2} \left[\sum_{i,j} P_{i,j} P_{n-1-i,m-j} - N(P_{n,m} + P_{n-1,m}) \right] \end{aligned}$$

Exact exponents: (D_{α} the cylinder parabolic function)

$$\delta = \frac{1}{2} + \frac{1}{q}$$

$$0 = \int_0^\infty dx \, x^{-2\psi} D_{1/q}(x) D'_{1/q}(x)$$

IIA assumes neighboring domains are uncorrelated

Features of the approximation

	MC			IIA	
q	ψ	δ	σ	ψ	δ
2	0.126	1.27	1.05	0.136612	1
3	0.213	0.98	0.67	0.231139	5/6
8	0.367	0.665	0.24	0.385019	5/8
50	0.476	0.525	0.03	0.480274	13/25
∞	1/2	1/2	0	1/2	1/2

- Gives exact $\nu = 1/2$, good approximation for ψ , δ :
- Approximation is exact for q = 1 and $q = \infty$
- Correct scaling behavior of $Q_m(t)$ and $P_n(t)$

IIA provides a very close description

Ising Model with Conserving Kawasaki Dynamics

- Kinetics: spin-exchange. In $T \downarrow 0$ limit, domains of length L diffuse with rate L^{-1} .
- Independent Interval Approximation:

$$\begin{aligned} \langle \langle n^{-1} \rangle &= \sum_{n,m} n^{-1} P_{n,m} \\ \frac{dP_{n,m}}{dt} &= \langle n^{-1} \rangle (P_{n-1,m} - 2P_{n,m} + P_{n+1,m}) \\ &+ \frac{P_1}{N^2} \left[\sum_{i+j=n} \sum_{k+l=m} i^{-1} P_{i,k} P_{j,l} - N(n^{-1} + \langle n^{-1} \rangle) P_{n,m} \right]. \end{aligned}$$

- Gives the exact $\nu = 1/3$
- Good estimates for domain exponents:

Monte Carlo: $\psi = 0.130, \, \delta = 0.705$; IIA: $\psi = 0.147, \, \delta = 645$

• Good approximation of domain density:

Conclusions

- Two additional nontrivial decay exponents found.
- Independent Interval Approximation provides correct qualitative behavior of domain distribution, good estimates for domain exponents.
- Behavior is independent of dynamics/model.

Outlook

- How many more exponents exist? Probably an infinite number. For example, consider the survival probability of consecutive domains.
- Are these exponents really independent? Yes. Exact solution for the random field Ising model gives ψ = (3 − √5)/8 while θ = 1/2 [D. S. Fisher et al, cond-mat/9710270].